首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
A 500 MHz and 300 MHz NMR study of the trinucleoside diphosphate 3'd(A2'-5'A2'-5'A) is presented. In addition, circular dichroism is used to study base stacking in the title compound. The complete 1H-NMR spectral assignment of the sugar ring proton signals is given. Information about the sugar ring (N- or S-type conformation) and about the backbone geometry along C4'-C5' and C5'-O5' bonds is obtained from the NMR coupling constants. It is shown that the trimer mainly occurs in the N-N-N stacked state at low temperatures; the presence of a minor amount of N-N-S conformational sequence is indicated.  相似文献   

2.
Analogs of 2-5A trimer 5'-monophosphate (2'-5')pA3,p5'A2'p5'A2'p5'A containing 9-(3-fluoro-3-deoxy-c-D-xylofuranosyl)adenine (AF) or 3'-fluoro-3'- deoxyadenosine (AF) at different positions of the chain have been synthesized. All of them were compared with (2'-5')pA3 and (2'-5')pA2 (3'dA) by (i) their ability to bind to 2-5A-dependent endoribonuclease(RNase L) of mouse L cells and of rabbit reticulocyte lysates and (ii) their susceptibility to the degradation by the (2'-5')phosphodiesterase activity. The results of this study suggest that the oligonucleotide conformation is important for its biochemical properties.  相似文献   

3.
Fully protected pA2'p5'A2'p5'A trimers 1a and 1b have been prepared as prodrug candidates for a short 2'-5' oligoadenylate, 2-5A, and its 3'-O-Me analog, respectively. The kinetics of hog liver carboxyesterase (HLE)-triggered deprotection in HEPES buffer (pH?7.5) at 37° has been studied. The deprotection of 1a turned out to be very slow, and 2-5A never appeared in a fully deprotected form. By contrast, a considerable proportion of 1b was converted to the desired 2-5A trimer, although partial removal of the 3'-O-[(acetyloxy)methyl] group prior to exposure of the adjacent phosphodiester linkage resulted in 2',5'→3',5' phosphate migration and release of adenosine as side reactions.  相似文献   

4.
Specific synthesis of some oligoadenylates including A2'p5'A2'p5'Ap(2'), the 2'-phosphorylated oligoribonucleotide core of the recently discovered protein synthesis inhibitor pppA2'p5'A2'p5'A is described using a novel solid-phase method. The CD spectra of A2'p5'Ap(2'), A2'p5'A2'p5'Ap(2') and A2'p5'A2'p5'A (derived by treatment of the phosphorylated synthetic trimer with E. coli alkaline phosphatase) are presented. Comparison of the latter spectrum with that of A2'p5'A2'p5'A obtained similarly from a biologically derived sample of pppA2'p5'A2'p5'A provides further evidence that this molecule is in fact the first naturally-occurring 2'-5'-linked oligoribonucleotide.  相似文献   

5.
Decauridylate containing exclusively a 2'-5' phospho-diester bond ([2'-5']U10) served as a template for the synthesis of oligoadenylates [oligo(A)s] from the 5'-phosphorimidazolide of 2'-5' diadenylate (ImpA-2'p5'A). Joining of [2'-5']U10and ImpA2'p5'A also took place in substantial amounts to yield long-chain oligoribonucleotides in the template-directed reaction. An unusual CD spectrum ascribed to helix formation between [2'-5']U10and [2'-5'](pA)2was observed under the same conditions as that of the template-directed reaction. The 3'-5' linked decauridylate ([3'-5']U10) also promoted the template-directed synthesis of oligo(A)s from ImpA2'p5'A, but more slowly compared with [2'-5']U10. The results indicate that short-chain RNA oligomers with a 2'-5' phosphodiester bond could lead to longer oligoribonucleotides by template-directed chain elongation.  相似文献   

6.
Hovanessian AG  Justesen J 《Biochimie》2007,89(6-7):779-788
The demonstration by Kerr and colleagues that double-stranded (ds) RNA inhibits drastically protein synthesis in cell-free systems prepared from interferon-treated cells, suggested the existence of an interferon-induced enzyme, which is dependent on dsRNA. Consequently, two distinct dsRNA-dependent enzymes were discovered: a serine/threonine protein kinase that nowadays is referred to as PKR and a 2'-5'oligoadenylate synthetase (2'-5'OAS) that polymerizes ATP to 2'-5'-linked oligomers of adenosine with the general formula pppA(2'p5'A)(n), n>or=1. The product is pppG2'p5'G when GTP is used as a substrate. Three distinct forms of 2'-5'OAS exist in human cells, small, medium, and large, which contain one, two, and three OAS units, respectively, and are encoded by distinct genes clustered on the 2'-5'OAS locus on human chromosome 12. OASL is an OAS like IFN-induced protein encoded by a gene located about 8 Mb telomeric from the 2'-5'OAS locus. OASL is composed of one OAS unit fused at its C-terminus with two ubiquitin-like repeats. The human OASL is devoid of the typical 2'-5'OAS catalytic activity. In addition to these structural differences between the various OAS proteins, the three forms of 2'-5'OAS are characterized by different subcellular locations and enzymatic parameters. These findings illustrate the apparent structural and functional complexity of the human 2'-5'OAS family, and suggest that these proteins may have distinct roles in the cell.  相似文献   

7.
Pretreatment of human large granular lymphocytes (LGL) or unseparated peripheral blood mononuclear cells with interferon (IFN) resulted in a significant augmentation of natural killer (NK) activity. This increase was paralleled by an increase in the 2'-5'A synthetase activity. In order to investigate the possibility that IFN might be inducing augmentation of NK cells via the 2'-5'A pathway, we tested the effects of nonphosphorylated core material [(A2'p)2A] and of the triphosphorylated form of the 2'-5'A [ppp(A2'p)2A]. The core material had no detectable effect on NK activity. In contrast, when experiments were performed with the triphosphorylated form of 2'-5'A, NK activity was stimulated. In order to achieve activation, permeabilization of LGL with calcium chloride was necessary and, under these conditions, a dose-dependent augmentation of NK activity was seen. However, the calcium treatment had considerable toxic effects on basal levels of NK activity. Collectively, these results suggest that IFN may be inducing augmentation of NK activity via the 2'-5'A pathway. Further studies will be necessary to determine the effects of IFN and/or 2'-5'A on subsequent activation steps in the process leading to cytotoxicity by NK cells.  相似文献   

8.
The structural requirements of (2'-5')-oligoadenylic acid (pppA(2'p5'A)x, X greater than or equal to 1 or (2'-5'An) for inhibition of protein synthesis in cells were examined with a modified calcium-coprecipitation technique, using a series of trinucleotide analogs (pppA2'p5'A2'p5'N, N=rC, rG, rU, T, dC, dG, dA). In this system both the degree and the duration of the inhibition of protein synthesis were dependent on the added concentration of (2'-5')A3. Of all the heterotrimers, only the deoxy A derivative was active as an inhibitor of protein synthesis, while the other members of the analog series were found to have no inhibitory effects. In competition experiments between (2'-5')A3 and the non-active analogs, three heterotrimers were shown to reduce the activity of (2'-5')A3 in protein inhibition. In contrast, the dephosphorylated (2'-5')A3 had no inhibitory effect and was not effective in blocking (2'-5')A3. These results indicate that the 5'-terminal triphosphate is important for binding of (2'-5')A3 to the site of (2'-5')An action and the adenine base at the 2'-terminus is important for activating the machinery responsible for protein synthesis inhibition in the cells, most likely the (2'-5')An-activated nuclease.  相似文献   

9.
Analogs of the triphosphate 2'-5'-linked adenylate trimer (ppp5'A2'p5'A2'p5'A, called 2-5A) which contain 3'-deoxyadenosine (cordycepin) instead of adenosine either in positions one and two, or in all three positions, are 10-100-fold less potent than is parent 2-5A in inhibition of protein synthesis in intact cells, when utilizing calcium co-precipitation techniques to introduce the 5'-triphosphate oligonucleotides into the cells. That the inhibition of protein synthesis was a consequence of activation of the 2-5A-dependent endonuclease by the 3'-deoxyadenosine analogs of 2-5A was demonstrated in obtaining the ribosomal RNA cleavage pattern that is characteristic of endonuclease activation by parent 2-5A. Additional results (i.e. lack of activity by the dimer species ppp5'(3'dA)2'p5'-(3'dA) or the monomer 3'dA) as well as kinetic analysis both in intact cells and in cell-free extracts provided further evidence that the inhibition of protein synthesis observed with these 3'-deoxyadenosine 2-5A analogs was not due to their degradation to the antimetabolite monomer unit 3'-deoxyadenosine.  相似文献   

10.
Mouse antibodies to (2'-5')oligoadenylates were obtained by the immunization of animals with the (2'-5')oligoadenylic acid trimer conjugated with bovine serum albumin through a 2',3'-levulinic acid residue. Using radioimmunoassay, the reactivity of mouse polyclonal antibodies to the (2'-5')oligoadenylic acid trimer was studied for the trimer analogues containing 9-(3-deoxy-3-fluro-beta-D- xylofuranosyl)adenine and 3'-deoxy-3'-fluoro-adenosine in various positions of the chain. It was found that (a) the three-dimensional structure of short oligonucleotides is an important factor in the antibody recognition; (b) antibodies are more sensitive to modifications of the 5'-terminal and central ribose fragments of the (2'-5')oligoadenylic acid trimer; (c) the 3'-hydroxyl group plays a secondary role in the formation of the antigen determinant.  相似文献   

11.
2-5A trimer [5'-monophosphoryladenylyl(2'-5')adenylyl(2'-5')adenosine] activates RNase L. While the 5'-terminal and 2'-terminal adenosine N(6)-amino groups play a key role in binding to and activation of RNase L, the exocyclic amino function of the second adenylate (from the 5'-terminus) plays a relatively minor role in 2-5A's biological activity. To probe the available space proximal to the amino function of the central adenylate of 2-5A trimer during binding to RNase L, a variety of substituents were placed at that position. To accomplish this, the convertible building block 5'-O-dimethoxytrityl-3'-O-(tert-butyldimethylsilyl)-6-(2,4-dinitrophenyl)thioinosine 2'-(2-cyanoethylN,N-diisopropylphosphoramidite) was prepared as a synthon to introduce 6-(2,4-dinitrophenyl)thioinosine into the middle position of the 2-5A trimer during automated synthesis. Post-synthetic treatment with aqueous amines transformed the (2,4-dinitrophenyl)thioinosine into N(6)-substituted adenosines. Assays of these modified trimers for their ability to bind and activate RNase L showed that activation activity could be retained, albeit with some sacrifice compared to unmodified p5'A2'p5'A2'p5'A. Thus, the spatial domain about this N(6)-amino function could be available for modifications to enhance the biological potency of 2-5A analogues and to ligate 2-5A to targeting vehicles such as antisense molecules.  相似文献   

12.
We have studied the mechanisms of breakdown of 2'-5' oligoadenylates. We monitored the time-courses of degradation of ppp(A2'p5')nA (dimer to tetramer) and of 5'OH-(A2'p5')nA (dimer to pentamer) in unfractionated L1210 cell extract. The 5' triphosphorylated 2'-5' oligoadenylates are converted by a phosphatase activity. However, 2'-5' oligoadenylates are degraded mainly by phosphodiesterase activity which splits the 2'-5' phosphodiester bond sequentially at the 2' end to yield 5' AMP and one-unit-shorter oligomers. The nonlinear least-squares curve-fitting program CONSAM was used to fit these kinetics and to determine the degradation rate constant of each oligomer. Trimers and tetramers, whether 5' triphosphorylated or not, are degraded at the same rate, whereas 5' triphosphorylated dimer is rapidly hydrolyzed and 5'-OH dimer is the most stable oligomer. The interaction between degradation enzymes and the substrate strongly depends on the presence of a 5' phosphate group in the vicinity of the phosphodiester bond to be hydrolyzed; indeed, when this 5' phosphate group is present, as in pp/pA2'p5'A/or A2'/p5'A2'p5'A/, affinity is high and maximal velocity is low. Such a degradation pattern can control the concentration of 2'-5' oligoadenylates active on RNAse L either by limiting their synthesis (5' triphosphorylated dimer is the primer necessary for the formation of longer oligomers) and/or by converting them into inhibitory (e.g., monophosphorylated trimer) or inactive (e.g., nonphosphorylated oligomers) molecules.  相似文献   

13.
beta-Alanyltyrosine derivative of 2',5'-tetraadenylate 5'-triphosphate, pppA2'p5'A2'-p5'A2'p5'A-beta-Ala-Tyr was prepared by coupling of periodate-oxidized pppA2'p5'-A2'p5'A2'p5'A with beta-alanyltyrosine methyl ester, followed by reduction with sodium cyanoborohydride. Its stability to 2',5'-phosphodiesterase and phosphatase was investigated in mouse L cell extract. The 5'-triphosphate of the compound was cleaved gradually to form the 5'-dephosphorylated derivative, A2'p5'A2'p5'A2'p5'A-beta-Ala-Tyr, followed by slow degradation of the 2',5'-phosphodiester bond. On the other hand, pppA2'p5'A2'p5'A2'p5'A was hydrolyzed very quickly under the same conditions. The tetramer derivative bound tightly to the 2',5'-oligoadenylate-dependent endoribonuclease in rabbit reticulocyte lysate or mouse L cell extract and inhibited protein synthesis of mouse L cells more effectively than the unmodified 2',5'-tetraadenylate 5'-triphosphate. The corresponding trimer derivative had slightly weaker activities than the unmodified trimer for binding to the endoribonuclease and for inhibition of protein synthesis. The compound, pppA2'p5'A2'p5'-A2'p5'A-beta-Ala-Tyr, was iodinated easily at the tyrosine residue with 125I, giving a high-specific-radioactivity derivative which was used as a radio-labeled probe in a radiobinding assay for 2',5'-oligoadenylate.  相似文献   

14.
X-ray crystallographic studies on 3'-5' oligomers have provided a great deal of information on the stereochemistry and conformational flexibility of nucleic acids and polynucleotides. In contrast, there is very little information available on 2'-5' polynucleotides. We have now obtained the crystal structure of Cytidylyl-2',5'-Adenosine (C2'p5'A) at atomic resolution to establish the conformational differences between these two classes of polymers. The dinucleoside phosphate crystallises in the monoclinic space group C2, with a = 33.912(4)A, b = 16.824(4)A, c = 12.898(2)A and beta = 112.35(1) with two molecules in the asymmetric unit. Spectacularly, the two independent C2'p5'A molecules in the asymmetric unit form right handed miniature parallel stranded double helices with their respective crystallographic two fold (b axis) symmetry mates. Remarkably, the two mini duplexes are almost indistinguishable. The cytosines and adenines form self-pairs with three and two hydrogen bonds respectively. The conformation of the C and A residues about the glycosyl bond is anti same as in the 3'-5' analog but contrasts the anti and syn geometry of C and A residues in A2'p5'C. The furanose ring conformation is C3' endo, C2' endo mixed puckering as in the C3'p5'A-proflavine complex. A comparison of the backbone torsion angles with other 2'-5' dinucleoside structures reveals that the major deviations occur in the torsion angles about the C3'-C2' and C4'-C3' bonds. A right-handed 2'-5' parallel stranded double helix having eight base pairs per turn and 45 degrees turn angle between them has been constructed using this dinucleoside phosphate as repeat unit. A discussion on 2'-5' parallel stranded double helix and its relevance to biological systems is presented.  相似文献   

15.
Sequence-specific 3-deazaadenosine (c(3)A)-substituted analogues of trimeric 2',5'-oligoadenylate, p5'A2'p5'A2'p5'A, were synthesized and evaluated for their ability to activate human RNase L (EC 3.1.2.6) aiming at the elucidation of the nitrogen-3 role in this biochemical process. Substitution of either 5'-terminal or 2'-terminal adenosine with c(3)A afforded the respective analogues p5'(c(3)A)2'p5'A2'p5'A and p5'A2'p5'A2'p5'(c(3)A) that were as effective as the natural tetramer itself as activators of RNase L (EC(50)=1nM). In contrast, p5'A2'p5'(c(3)A)2'p5'A showed diminished RNase L activation ability (EC(50)=10nM). The extensive conformational analysis of the c(3)A-substituted core trimers versus the parent natural core trimer by the (1)H and (13)C NMR, and CD spectroscopy displayed close stereochemical similarity between the natural core trimer and (c(3)A)2'p5'A2'p5'A and A2'p5'A2'p5'(c(3)A) analogues, thereby strong evidences for the syn base orientation about the glycosyl bond of the c(3)A residue of the latter were found. On the contrary, an analogue A2'p5'(c(3)A)2'p5'A displayed rather essential deviations from the spatial arrangement of the parent natural core trimer.  相似文献   

16.
The variations in base stacking interactions of two isomeric RNA hexamers, 3'-5'r (AACCUU) and 2'-5'r' (AACCUU), have been studied using temperature dependent CD spectroscopy. Both RNA hexamers, in single strand form, exhibited a right handed helical sense. Van't Hoff analysis of the CD spectral results, derived from a two state model, gave a higher enthalpy of stacking for 3'-5' RNA than for 2'-5'RNA. The results suggest that 3'-5' linkage in RNA facilitates formation of better helical stacks in relation to an isomeric 2'-5' linkage.  相似文献   

17.
The individual diastereomers of trimer A2'p5'A2'p(s)5'A, containing one phosphorothioate linkage, were prepared via a modified hydroxybenzotriazole phosphotriester approach. The 5'-phosphorylated derivatives of the latter compounds were obtained after phosphorylation with a 6-trifluoromethyl-1-benzotriazolyl activated phosphoromorpholidate.  相似文献   

18.
In continued studies to elucidate the requirements for binding to and activation of the 2',5'-oligoadenylate (2-5A) dependent endoribonuclease (RNase L), four 2-5A trimer analogs were examined to evaluate the effect of chirality of phosphorothioate substitution on biological activity. The chemical syntheses and purification of the four isomers of P-thio-3'-deoxyadenylyl-(2'-5')-P-thio-3'- deoxyadenylyl-(2'-5')-3'-deoxyadenosine, by the phosphoramidite approach, is described. The isolated intermediates were characterized by elemental and spectral analyses. The fully deblocked compounds were characterized by 1H and 31P NMR and HPLC analyses. The 2',5'-(3'dA)3 cores with either Rp or Sp chirality in the 2',5'-internucleotide linkages will bind to but will not activate RNase L. This is in contrast to 2',5'-A3 core analogs with either RpRp or SpRp phosphorothioate substitution in the 2',5'-internucleotide linkages which can bind to and activate RNase L. There are also marked differences in the ability of the 2',5'-A3 analogs to activate RNase L following introduction of the 5'-monophosphate. For example, the 5'monophosphates of 2',5'-(3'dA)3-RpRp and 2',5'-(3'dA)3-SpRp can bind to and activate RNase L, whereas the 5'-monophosphates of 2',5'-(3'dA)3-RpSp and 2',5'-(3'dA)3-SpSp can bind to but can not activate RNase L.  相似文献   

19.
A detailed theoretical analysis has been carried out to probe the conformational characteristics of (2'-5') polynucleotide chains. Semi-empirical energy calculations are used to estimate the preferred torsional combinations of the monomeric repeating unit. The resulting morphology of adjacent bases and the tendency to form regular single-stranded structures are determined by standard computational procedures. The torsional preferences are in agreement with available nmr measurements on model compounds. The tendencies to adopt base stacked and intercalative geometries are markedly depressed compared to those in (3'-5') chains. Very limited families of regular monomerically repeating single-stranded (2'-5') helices are found. Base stacking, however, can be enhanced (but helix formation is at the same time depressed) in mixed puckered chains. Constrained (2'-5') duplex structures have been constructed from a search of all intervening glycosyl and sugar conformations that form geometrically feasible phosphodiester linkages. Both A- and B-type base stacking are found to generate non-standard backbone torsions and mixed glycosyl/sugar combinations. The 2'- and 5'-residues are locked in totally different arrangements and are thereby prevented from generating long helical structures.  相似文献   

20.
Incubation of the mouse L-cell-free system with a concentration of pppA2'p5'A2'p5'A [(2'-5')An] just sufficient to inhibit protein synthesis results in formation of a high-molecular-weight, heatlabile inhibitor and enhanced ribonuclease activity and in the rapid breakdown of (2'-5')An to ATP. The (2'-5')An-enhanced ribonuclease activity is also unstable and in the absence of a (2'-5')-An-regenerating system inhibiton of protein synthesis is transient. Although interferon treatment enhances the synthesis of (2'-5')An, the rates of degradation of (2'-5')An and levels of activatible nuclease are similar in extracts prepared from control or interferon-treated cells. Interestingly, the sensitivity of different cell-free systems to (2'-5')An, varies with the source of the cell-free systems and with the methods used in their preparation. There is, however, no obvious correlation between the sensitivities of the system and the rate of breakdown of (2'-5')An. The significance of these results is discussed in relation to a possible control function for the (2'-5')An system in both interferon-treated and control cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号