共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Adenylyl cyclase activity of the fission yeast Schizosaccharomyces pombe is not regulated by guanyl nucleotides 总被引:2,自引:0,他引:2
The adenylyl cyclase activity of the fission yeast Schizosaccharomyces pombe is localized to the plasma membrane of the cell. The enzyme utilizes Mn2+/ATP as substrate and free Mn2+ ions as an effector. Unlike the baker yeast Saccharomyces cerevisiae, S. pombe adenylyl cyclase does not utilize Mg2+/ATP as substrate and the activity is not stimulated by guanyl nucleotides. The optimal pH for the S. pombe adenylyl cyclase activity is 6.0. The activity dependence on ATP is cooperative with a Hill coefficient of 1.68 +/- 0.14. 相似文献
3.
Relationship between cytoplasmic and mitochondrial apparatus of protein synthesis in yeast Saccharomyces cerevisiae 总被引:1,自引:0,他引:1
A P Surguchov A B Sudarickov M V Telckov V N Smirnov M D Ter-Avanesyan S G Inge-Vechtomov 《Molecular & general genetics : MGG》1983,189(1):172-174
A conditional respiratory deficiency in yeast Saccharomyces cerevisiae is expressed as a result of a nuclear mutation in sup1 and sup2 genes (II and IV chromosomes, respectively), coding for a component of cytoplasmic ribosomes (Ter-Avanesyan et al. 1982). One such strain is studied here in detail. The strain is temperature-dependent and expresses a respiratory deficient phenotype at 20 degrees C but not at 30 degrees C. Moreover, the strain is simultaneously chloramphenicol-dependent and is able to grow on media containing glycerol or ethanol as a sole carbon source only in the presence of the drug. Chloramphenicol has a differential effect on protein synthesis in mitochondria of the parent strain and the mutant. Since chloramphenicol is a ribosome-targeting antibiotic we suggest that the differential effect of the drug on parent and mutant mitochondrial protein synthesis is due to the altered properties of mito-ribosomes of the mutant compared to those of the parent strain. Mitochondria of the mutant synthesize all the mitochondrially encoded polypeptides, however, in significantly lowered amounts. A suggestion is put forward for the existence of a common component (a ribosomal protein) for mito and cyto-ribosomes. 相似文献
4.
5.
Terry D. Everett Eric Finzi Diana S. Beattie 《Archives of biochemistry and biophysics》1980,200(2):467-473
Isolated yeast mitochondria incubated with a protein-synthesizing mixture containing excess oxidizable substrate, amino acids, MgCl2, an ATP-regenerating system, and optimal levels of [3H]leucine cease protein synthesis after 30 min. Postpolysomal supernatants from either yeast, rat liver, or Escherichia coli can restore protein synthetic activity to depleted yeast mitochondria; however the addition of bovine serum albumin to the incubation mixture did not restore activity. The restored incorporation activity was sensitive to chloramphenicol, insensitive to cycloheximide, and proportional to the protein concentration of the supernatants. Furthermore, addition of all three high-speed supernatants to isolated mitochondria at time zero stimulated the rate of protein synthesis to a greater extent than when these fractions were added to depleted mitochondria. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate revealed that the translation products obtained from mitochondria labeled in vitro in the presence of supernatant fractions were identical to the proteins labeled by mitochondria in vivo; however, the synthesis of the bands corresponding to subunit III of cytochrome oxidase, cytochrome b, and VAR-3 was stimulated to the greatest extent. The stimulatory activity in the supernatants was non-dialyzable, insensitive to treatment with ribonuclease A, but completely abolished by pretreatment with trypsin suggesting that the stimulatory factor(s) is of a protein nature. The postpolysomal supernatants did not incorporate amino acids into protein when incubated without mitochondria. These results suggest that the protein synthetic capacity of mitochondria is apparently limited by extramitochondrial proteins which are present in either yeast, rat liver, or E. coli. 相似文献
6.
M P Primack 《Biochimica et biophysica acta》1975,407(4):439-441
1--10 muM Cu2+, Ag+, and Au3+ were found to stimulate rat liver mitochondrial protein synthesis in vitro. Cu2+ and Ag+ also produced an increase in mitochondrial volume ("swelling"). Thus, thyroid hormones and their analogs are not unique, as suggested previously (Buchanan, J.L., Primack, M.P. and Tapley, D.F. (1970) Endocrinology 87, 993--999), in stimulating both mitochondrial protein synthesis and swelling. Furthermore, the data suggest a role for Cu2+ in the regulation of mitochondrial protein synthesis. 相似文献
7.
The effects of cytoplasmic extracts on DNA synthesis in vitro 总被引:1,自引:0,他引:1
8.
Extracts prepared from Friend erythroleukemia cells were highly active in translating endogenous mRNA and a consistent 2-fold stimulation by hemin was observed. When extracts were treated with micrococcal nuclease and incorporation was dependent on exogenous globin mRNA, there was more significant stimulation by 37.5 micron hemin and greater than 10-fold stimulation by 75 or 150 micron hemin. The effects of hemin were not strikingly different in extracts of dimethyl-sulfoxide-induced or uninduced cells. The results could reflect an effect on initiation of protein synthesis analogous to that in rabbit reticulocytes. 相似文献
9.
Richard A. Lange Myron K. Jacobson 《Biochemical and biophysical research communications》1977,76(2):424-428
Washed mitochondrial fractions from yeast catalyze the synthesis of nicotinate mononucleotide and nicotinate adenine dinucleotide from nicotinate or nicotinamide. The synthesis is stimulated 10 fold by sonic disruption of the fractions and shows an absolute requirement for ATP, 5-phosphoribosyl-1-pyrophosphate, and MgCl2. 相似文献
10.
11.
Coupling of protein synthesis and mitochondrial import in a homologous yeast in vitro system. 总被引:6,自引:0,他引:6
We made use of a homologous cell-free mitochondrial protein import system derived from the yeast Saccharomyces cerevisiae to investigate the coupling of protein synthesis and import. Mitochondrial precursor proteins were synthesized in a yeast lysate either in the presence or absence of isolated yeast mitochondria. We were, therefore, able to analyze protein import into mitochondria either in a strictly posttranslational reaction (when isolated mitochondria were added only after protein synthesis has been arrested by the addition of cycloheximide) or in a reaction in which synthesis and import were permitted to occur simultaneously. We found that the import of a precursor protein consisting of the amino-terminal mitochondrial targeting sequence of cytochrome oxidase subunit IV fused to mouse dihydrofolate reductase is very inefficient in a strictly posttranslational reaction, whereas efficient import is observed if precursor synthesis and import are coupled. The same result was obtained when we analyzed the import of bulk endogenous yeast mitochondrial proteins in this system. Finally, we found that the insertion of the yeast outer membrane protein porin is also several times more efficient when synthesis and insertion are coupled. 相似文献
12.
13.
Mitochondrial import of a cytoplasmic lysine-tRNA in yeast is mediated by cooperation of cytoplasmic and mitochondrial lysyl-tRNA synthetases. 总被引:14,自引:0,他引:14 下载免费PDF全文
Cytoplasmic tRNA(Lys)CUU is the only nuclear-encoded tRNA of Saccharomyces cerevisiae found to be associated with mitochondria. Selective import of this tRNA into isolated organelles requires cytoplasmic factors. Here we identify two of these factors as the cytoplasmic and mitochondrial lysyl-tRNA synthetases. The cytoplasmic enzyme is obligatory for in vitro import of the deacylated, but not of the aminoacylated tRNA. We thus infer that it is needed for aminoacylation of the tRNA, which is a prerequisite for its import. The mitochondrial synthetase, which cannot aminoacylate tRN(Lys)CUU, is required for import of both aminoacylated and deacylated forms. Its depletion leads to a total arrest of tRNA import, in vitro and in vivo. The mitochondrial lysyl-tRNA synthetase is able to form specific and stable RNP complexes with the amino-acylated tRNA. Furthermore, an N-terminal truncated form of the synthetase which cannot be targeted into mitochondria is unable to direct the import of the tRNA. We therefore hypothesize that the cytosolic precursor form of the mitochondrial synthetase has a carrier function for translocation of the tRNA across the mitochondrial membranes. However, cooperation of the two synthetases is not sufficient to direct tRNA import, suggesting the need of additional factor(s). 相似文献
14.
Sporulation in diploidSaccharomyces cerevisiae is not dependent on continued protein synthesis in the mitochondria. Using chloramphenicol, it is shown that proteins essential
for respiration and sporulation are synthesized in mitochondria early during growth in a presporulation medium. 相似文献
15.
Of 33 seed extracts examined, 12 inhibited protein synthesis in a rabbit reticulocyte lysate. This activity seems to be due to a protein, since (i) it was recovered with the (NH4)2SO4 precipitate, (ii) it was retained by dialysis membranes, and (iii) in all cases but one was destroyed by boiling. Only the extracts from the seeds of Adenia digitata and, to a lower extent, of Euonymus europaeus inhibited protein synthesis in intact cells. 相似文献
16.
17.
18.
19.
The role of mitochondria in the oxygen induction of a number of catabolic and mitochondrial enzymes (citrate synthase, NAD- and NADP-isocitrate dehydrogenases, oxoglutarate dehydrogenase, NAD-glutamate dehydrogenase) has been investigated in anaerobic yeast grown under different conditions. The patterns of variation of enzyme activity with oxygen and lipid content of the mitochondria and with antibiotics suggest that more than one control is operating. The inhibition produced by cycloheximide, which blocks protein translation, suggests that induction involves de novo protein synthesis, except for an initial 2-h induction of citrate synthase, which is insensitive to all antibiotics tested. Ethidium bromide prevents enzyme induction in lipid-depleted anaerobic yeast. Induction follows normal kinetics in lipid-supplemented cultures despite the ethidium bromide block in the development of respiratory ability. Enzyme induction is inhibited by chloramphenicol in both lipid-depleted and lipid-supplemented anaerobic yeast. On the basis of four results it can be postulated that the mitochondrial genome is involved in controlling the induction of enzymes synthesized on cytoplasmic ribosomes. This control might be exerted by a specific, mitochondrial product or might be the result of modulation by a secondary product of mitochondrial function. 相似文献