首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pepin KM  Samuel MA  Wichman HA 《Genetics》2006,172(4):2047-2056
The relationship of genotype, fitness components, and fitness can be complicated by genetic effects such as pleiotropy and epistasis and by heterogeneous environments. However, because it is often difficult to measure genotype and fitness directly, fitness components are commonly used to estimate fitness without regard to genetic architecture. The small bacteriophage X174 enables direct evaluation of genetic and environmental effects on fitness components and fitness. We used 15 mutants to study mutation effects on attachment rate and fitness in six hosts. The mutants differed from our lab strain of X174 by only one or two amino acids in the major capsid protein (gpF, sites 101 and 102). The sites are variable in natural and experimentally evolved X174 populations and affect phage attachment rate. Within the limits of detection of our assays, all mutations were neutral or deleterious relative to the wild type; 11 mutants had decreased host range. While fitness was predictable from attachment rate in most cases, 3 mutants had rapid attachment but low fitness on most hosts. Thus, some mutations had a pleiotropic effect on a fitness component other than attachment rate. In addition, on one host most mutants had high attachment rate but decreased fitness, suggesting that pleiotropic effects also depended on host. The data highlight that even in this simple, well-characterized system, prediction of fitness from a fitness component depends on genetic architecture and environment.  相似文献   

2.
Ferris MT  Joyce P  Burch CL 《Genetics》2007,176(2):1013-1022
The ability of a virus population to colonize a novel host is predicted to depend on the equilibrium frequency of potential colonists (i.e., genotypes capable of infecting the novel host) in the source population. In this study, we investigated the determinants of the equilibrium frequency of potential colonists in the RNA bacteriophage 6. We isolated 40 spontaneous mutants capable of infecting a novel Pseudomonas syringae host and sequenced their host attachment genes to identify the responsible mutations. We observed 16 different mutations in the host attachment gene and used a new statistical approach to estimate that 39 additional mutations were missed by our screen. Phenotypic and fitness assays confirmed that the proximate mechanism underlying host range expansion was an increase in the ability to attach to the novel host and that acquisition of this ability most often imposed a cost for growth rate on two standard hosts. Considered in a population genetic framework, our data suggest that host range mutations should exist in phage populations at an equilibrium frequency (3 x 10(-4)) that exceeds the phage mutation rate by more than two orders of magnitude. Thus, colonization of novel hosts is unlikely to be limited by an inability to produce appropriate mutations.  相似文献   

3.
We describe a sensitive, internally controlled method for comparing the genetic adaptability and relative fitness of virus populations in constant or changing host environments. Certain monoclonal antibody-resistant mutants of vesicular stomatitis virus can compete equally during serial passages in mixtures with the parental wild-type clone from which they were derived. These genetically marked "surrogate wild-type" neutral mutants, when mixed with wild-type virus, allow reliable measurement of changes in virus fitness and of virus adaptation to different host environments. Quantitative fitness vector plots demonstrate graphically that even clones of an RNA virus are composed of complex variant populations (quasispecies). Variants of greater fitness (competitive replication ability) were selected within very few passages of virus clones in new host cells or animals. Even clones which were well adapted to BHK21 cells gained further fitness during repeated passages in BHK21 cells.  相似文献   

4.
It has recently been suggested that the expression of parasite virulence depends on host population density, such that infected hosts have a higher sensitivity to density, and thus reach their carrying capacity earlier than uninfected hosts. In this scenario, parasite-induced reduction in fitness (i.e., virulence) increases with host density. We tested this hypothesis experimentally, using outdoor mesocosm populations of Daphnia magna infected by the microsporidian Octosporea bayeri. Contrary to the prediction, virulence was independent of host density. In a competition experiment with initial prevalence of 50%, O. bayeri reduced the competitive ability of infected Daphnia within the asexual growth phase independent of initial host population density. In an additional experiment we set up populations with 100% and 0% prevalence and followed their population dynamics over the whole season. Consistent with the competition experiment, we found no difference in population dynamics within the asexual growth phase of the host, suggesting that infected hosts are not more sensitive to density than uninfected hosts. The additional experiment, however, included more than the initial growth phase as did the competition experiment. Eventually, after 100 days, 100% infected populations assumed a reduced carrying capacity compared to uninfected populations. We identify and discuss three reasons for the discrepancy between our experiment and the predictions.  相似文献   

5.
Selfish genetic elements are vertically transmitted factors that spread by obtaining a transmission advantage relative to the rest of the genome of their host organism, often with a cost to overall host fitness. In many cases, conventional population genetics theory predicts them spreading through populations, reaching fixation and becoming undetectable or sometimes driving the population extinct. However, in several well studied systems, these genetic elements are known to persist at relatively low, stable frequencies. Recent research suggests that several processes might explain these observations, including population structure, intragenomic conflict and coevolution.  相似文献   

6.
Seasonal disease dynamics are common in nature, but their causes are often unknown. Our case study provides insight into the cyclic prevalence pattern of the horizontally and vertically transmitted microsporidium Octosporea bayeri in its Daphnia magna host. Data from several populations over a four year period revealed a regular prevalence increase during summer and a decrease over winter when hosts underwent diapause. Prevalence also decreased after summer diapause indicating that the decline is causally linked to diapause rather than to winter conditions. Experiments showed that host diapause itself can explain a certain proportion of the decline. The decline further depends on the environmental conditions during diapause: infected resting eggs suffered from higher mortality under experimental winter than under experimental summer diapause conditions. Investigating the mechanisms of prevalence increase after diapause, the parasite was found to survive winter outside its host, enabling horizontal infection of susceptible hosts in the following growing season. Allowing for horizontal transmission in experimental host populations resulted in a steep prevalence increase, while excluding it led to a pronounced decline. Thus, the apparent seasonality in O. bayeri prevalence is characterized by a decline during host diapause followed by horizontal spread of the parasite during the host's asexual growth phase.  相似文献   

7.
Wahl LM  Gerrish PJ  Saika-Voivod I 《Genetics》2002,162(2):961-971
Experimental evolution involves severe, periodic reductions in population size when fresh media are inoculated during serial transfer. These bottlenecks affect the dynamics of evolution, reducing the probability that a beneficial mutation will reach fixation. We quantify the impact of these bottlenecks on the evolutionary dynamics, for populations that grow exponentially between transfers and for populations in which growth is curbed by a resource-limited environment. We find that in both cases, mutations that survive bottlenecks are equally likely to occur, per unit time, at all times during the growth phase. We estimate the total fraction of beneficial mutations that are lost due to bottlenecks during experimental evolution protocols and derive the "optimal" dilution ratio, the ratio that maximizes the number of surviving beneficial mutations. Although more severe dilution ratios are often used in the literature, we find that a ratio of 0.1-0.2 minimizes the chances that rare beneficial mutations are lost. Finally, we provide a number of useful approximate results and illustrate our approach with applications to experimental evolution protocols in the literature.  相似文献   

8.
P. E. Gundel  J. A. Rudgers  C. M. Ghersa 《Oikos》2011,120(8):1121-1128
Variation exists in the frequency of obligate, vertically transmitted symbiotic organisms within and among host populations; however, these patterns have not been adequately explained by variable fitness effects of symbionts on their hosts. In this forum, we call attention to another equally important, but overlooked mechanism to maintain variation in the frequency of symbioses in nature: the rate of vertical transmission. On ecological time scales, vertical transmission can affect the equilibrium frequencies of symbionts in host populations, with potential consequences for population and community dynamics. In addition, vertical transmission has the potential to influence the evolution of symbiosis, by affecting the probability of fixation of symbiosis (and therefore the evolution of complexity) and by allowing hosts to sanction against costly symbionts. Here we use grass–epichloae symbioses as a model system to explore the causes and consequences of variation in vertical transmission rates. We identify critical points for symbiont transmission that emerge from considering the host growth cycle devoted to reproduction (asexual vs sexual) and the host capability to maintain homeostasis. We also use information on the process of transmission to predict the environmental factors that would most likely affect transmission rates. Altogether, we aim to highlight the vertical transmission rate as an important process for understanding the ecology and evolution of symbiosis, using grass–epichloae interactions as a case study.  相似文献   

9.
1. The ideal conditions for a parasite are typically found with its preferred host. However, prior to transmission to a naïve host and successful infection, a parasite may have to withstand extrinsic environmental conditions. Some parasites have adapted to time away from hosts, for example, by co-opting vectors or by having drought-resistant growth stages. However, other parasites may have no obvious adaptations to persist during prolonged transmission cycles. Consequently, the environment may detrimentally impact parasite fitness and ultimately epidemiology. 2. Here, we investigate the impact of nectar-realistic sugar concentrations on the ability of the trypanosome parasite Crithidia bombi, which may be transmitted between conspecifics at flowers, to infect its bumblebee host Bombus terrestris and to reproduce during the infection (parasitaemia). Our results show, following 30 min exposure to our experimental nectars that as sugar concentration increases, infection prevalence and parasitaemia decrease. This is likely due to the increased osmotic stress C. bombi experiences in high sugar, aqueous environments. 3. Consequently, if C. bombi transmission is facilitated by nectar or a high-sugar environment, it may have a negative impact on parasite fitness.  相似文献   

10.
In order to analyze the microevolutionary processes in host-associated microorganisms, we simulated the dynamics of rhizobia populations composed of a parental strain and its mutants possessing the altered fitness within "plant-soil" system. The population dynamics was presented as a series of cycles (each one involves "soil-->rhizosphere-->nodules-->soil" succession) described using recurrent equations. For representing the selection and mutation pressures, we used a universal approach based on calculating the shifts in the genetic ratios of competing bacterial genotypes within the particular habitats and across several habitats. Analysis of the model demonstrated that a balanced polymorphism may be established in rhizobia population: mutants with an improved fitness do not supplant completely the parental strain while mutants with a decreased fitness may be maintained stably. This polymorphism is caused by a rescue of low-fitted genotypes via negative frequency-dependent selection (FDS) that is implemented during inoculation of nodules and balances the Darwinian selection that occurs during multiplication or extinction of bacteria at different habitats. The most diverse populations are formed if the rhizobia are equally successful in soil and nodules, while a marked preference for any of these habitats results in the decrease of diversity. Our simulation suggests that FDS can maintain the mutualistic rhizobia-legume interactions under the stress conditions deleterious for surviving the bacterial strains capable for intensive N2 fixation. Genetic consequences of releasing the modified rhizobia strains may be addressed using the presented model.  相似文献   

11.
Novella IS  Dutta RN  Wilke CO 《Journal of virology》2008,82(24):12589-12590
We explored the relationship between fitness change and population size during transmission in vesicular stomatitis populations of very high fitness. The results show a linear correlation between the logarithm of the critical bottleneck size (population size at which there are no significant fitness changes after 20 passages) and the initial fitness of the population. In addition, limits to fitness increases during large-population passages of very-high-fitness strains were abolished by increasing the population size during transmission, indicating that beneficial variation is still available in these populations.  相似文献   

12.
Among 82 epiphytic fitness mutants of a Pseudomonas syringae pv. syringae strain that were characterized in a previous study, 4 mutants were particularly intolerant of the stresses associated with dry leaf surfaces. These four mutants each exhibited distinctive behaviors when inoculated onto and into plant leaves. For example, while none showed measurable growth on dry potato leaf surfaces, they grew to different population sizes in the intercellular spaces of bean leaves and on dry bean leaf surfaces, and one mutant appeared incapable of growth in both environments although it grew well on moist bean leaves. The presence of the parental strain did not influence the survival of the mutants immediately following exposure of leaves to dry, high-light incubation conditions, suggesting that the reduced survival of the mutants did not result from an inability to produce extracellular factors in planta. On moist bean leaves that were colonized by either a mutant or the wild type, the proportion of the total epiphytic population that was located in sites protected from a surface sterilant was smaller for the mutants than for the wild type, indicating that the mutants were reduced in their ability to locate, multiply in, and/or survive in such protected sites. This reduced ability was only one of possibly several factors contributing to the reduced epiphytic fitness of each mutant. Their reduced fitness was not specific to the host plant bean, since they also exhibited reduced fitness on the nonhost plant potato; the functions altered in these strains are thus of interest for their contribution to the general fitness of bacterial epiphytes.  相似文献   

13.
Members of several bacterial lineages are known only as symbionts of insects and move among hosts through maternal transmission. Such vertical transfer promotes strong fidelity within these associations, favoring the evolution of microbially mediated effects that improve host fitness. However, phylogenetic evidence indicates occasional horizontal transfer among different insect species, suggesting that some microbial symbionts retain a generalized ability to infect multiple hosts. Here we examine the abilities of three vertically transmitted bacteria from the Gammaproteobacteria to infect and spread within a novel host species, the pea aphid, Acyrthosiphon pisum. Using microinjection, we transferred symbionts from three species of natural aphid hosts into a common host background, comparing transmission efficiencies between novel symbionts and those naturally infecting A. pisum. We also examined the fitness effects of two novel symbionts to determine whether they should persist under natural selection acting at the host level. Our results reveal that these heritable bacteria vary in their capacities to utilize A. pisum as a host. One of three novel symbionts failed to undergo efficient maternal transmission in A. pisum, and one of the two efficiently transmitted bacteria depressed aphid growth rates. Although these findings reveal that negative fitness effects and low transmission efficiency can prevent the establishment of a new infection following horizontal transmission, they also indicate that some symbionts can overcome these obstacles, accounting for their widespread distributions across aphids and related insects.  相似文献   

14.
Genetic variability is a hallmark of RNA virus populations. However, transmission to a new host often results in a marked decrease in population diversity. This genetic bottlenecking is observed during hepatitis C virus (HCV) transmission and can arise via a selective sweep or through the founder effect. To model HCV transmission, we utilized chimeric SCID/Alb-uPA mice with transplanted human hepatocytes and infected them with a human serum HCV inoculum. E1E2 glycoprotein gene sequences in the donor inoculum and recipient mice were determined following single-genome amplification (SGA). In independent experiments, using mice with liver cells grafted from different sources, an E1E2 variant undetectable in the source inoculum was selected for during transmission. Bayesian coalescent analyses indicated that this variant arose in the inoculum pretransmission. Transmitted variants that established initial infection harbored key substitutions in E1E2 outside HVR1. Notably, all posttransmission E1E2s had lost a potential N-linked glycosylation site (PNGS) in E2. In lentiviral pseudoparticle assays, the major posttransmission E1E2 variant conferred an increased capacity for entry compared to the major variant present in the inoculum. Together, these data demonstrate that increased envelope glycoprotein fitness can drive selective outgrowth of minor variants posttransmission and that loss of a PNGS is integral to this improved phenotype. Mathematical modeling of the dynamics of competing HCV variants indicated that relatively modest differences in glycoprotein fitness can result in marked shifts in virus population composition. Overall, these data provide important insights into the dynamics and selection of HCV populations during transmission.  相似文献   

15.
Wolbachia is a widespread group of intracellular bacteria commonly found in arthropods. In many insect species, Wolbachia induce a cytoplasmic mating incompatibility (CI). If different Wolbachia infections occur in the same host species, bidirectional CI is often induced. Bidirectional CI acts as a postzygotic isolation mechanism if parapatric host populations are infected with different Wolbachia strains. Therefore, it has been suggested that Wolbachia could promote speciation in their hosts. In this article we investigate theoretically whether Wolbachia-induced bidirectional CI selects for premating isolation and therefore reinforces genetic divergence between parapatric host populations. To achieve this we combined models for Wolbachia dynamics with a well-studied reinforcement model. This new model allows us to compare the effect of bidirectional CI on the evolution of female mating preferences with a situation in which postzygotic isolation is caused by nuclear genetic incompatibilities (NI). We distinguish between nuclear incompatibilities caused by two loci with epistatic interactions, and a single locus with incompatibility among heterozygotes in the diploid phase. Our main findings are: (1) bidirectional CI and single locus NI select for premating isolation with a higher speed and for a wider parameter range than epistatic NI; (2) under certain parameter values, runaway sexual selection leads to the increase of an introduced female preference allele and fixation of its preferred male trait allele in both populations, whereas under others it leads to divergence in the two populations in preference and trait alleles; and (3) bidirectional CI and single locus NI can stably persist up to migration rates that are two times higher than seen for epistatic NI. The latter finding is important because the speed with which mutants at the preference locus spread increases exponentially with the migration rate. In summary, our results show that bidirectional CI selects for rapid premating isolation and so generally support the view that Wolbachia can promote speciation in their hosts.  相似文献   

16.
Microbiota play a central role in the functioning of multicellular life, yet understanding their inheritance during host evolutionary history remains an important challenge. Symbiotic microorganisms are either acquired from the environment during the life of the host (i.e. environmental acquisition), transmitted across generations with a faithful association with their hosts (i.e. strict vertical transmission), or transmitted with occasional host switches (i.e. vertical transmission with horizontal switches). These different modes of inheritance affect microbes’ diversification, which at the two extremes can be independent from that of their associated host or follow host diversification. The few existing quantitative tools for investigating the inheritance of symbiotic organisms rely on cophylogenetic approaches, which require knowledge of both host and symbiont phylogenies, and are therefore often not well adapted to DNA metabarcoding microbial data. Here, we develop a model‐based framework for identifying vertically transmitted microbial taxa. We consider a model for the evolution of microbial sequences on a fixed host phylogeny that includes vertical transmission and horizontal host switches. This model allows estimating the number of host switches and testing for strict vertical transmission and independent evolution. We test our approach using simulations. Finally, we illustrate our framework on gut microbiota high‐throughput sequencing data of the family Hominidae and identify several microbial taxonomic units, including fibrolytic bacteria involved in carbohydrate digestion, that tend to be vertically transmitted.  相似文献   

17.
Random Tn5 mutagenesis was used to identify genes ir. Pseudomonas syringae which contribute to epiphytic fitness. Mutants were selected on the basis of deficiencies in epiphytic growth or survival on plants rather than deficiencies in predetermined phenotypes exhibited in culture. A sample freezing procedure was used to measure the population sizes of 5,300 mutants of P. syringae exposed to alternating wet and dry conditions on bean leaves in growth chambers. Eighty-two mutants exhibited reduced population sizes. Of these mutants, over half exhibited a reduced ability to survive the stresses associated with dry leaves, while others grew more slowly or attained reduced stationary-phase population sizes on leaves. While some epiphytic fitness mutants were altered in phenotypes that could be measured in culture, many mutants were not altered in any in vitro phenotype examined. Only three of the epiphytic fitness mutants were auxotrophs, and none had catabolic deficiencies for any of 31 organic compounds tested. Other mutants that exhibited reductions in one or more of the following were identified: motility, osmotolerance, desiccation tolerance, growth rate in batch culture, and extracellular polysaccharide production. All of the mutants retained the abilities to produce disease symptoms on the compatible host plant, bean, to incite a hypersensitive response on the non-host plant, tobacco, and to produce a fluorescent pyoverdine siderophore.  相似文献   

18.
Studies of invertebrate immune defence often measure genetic variation either for the fitness cost of infection or for the ability of the host to clear the parasite. These studies assume that variation in measures of resistance is related to variation in fitness costs of infection. To test this assumption, we infected strains of the fruit fly, Drosophila melanogaster, with a pathogenic bacterium. We then measured the correlation between host bacterial load and the ability to survive infection. Despite the presence of genotypic variation for both traits, bacterial load and survival post-infection were not correlated. Our results support previous arguments that individual measures of immune function and the host's ability to survive infection may be decoupled. In light of these results, we suggest that the difference between tolerance and resistance to infection, a distinction commonly found in the plant literature, may also be of value in studies of invertebrate immunity.  相似文献   

19.
Virulence factors generally enhance a pathogen's fitness and thereby foster transmission. However, most studies of pathogen fitness have been performed by averaging the phenotypes over large populations. Here, we have analyzed the fitness costs of virulence factor expression by Salmonella enterica subspecies I serovar Typhimurium in simple culture experiments. The type III secretion system ttss-1, a cardinal virulence factor for eliciting Salmonella diarrhea, is expressed by just a fraction of the S. Typhimurium population, yielding a mixture of cells that either express ttss-1 (TTSS-1(+) phenotype) or not (TTSS-1(-) phenotype). Here, we studied in vitro the TTSS-1(+) phenotype at the single cell level using fluorescent protein reporters. The regulator hilA controlled the fraction of TTSS-1+ individuals and their ttss-1 expression level. Strikingly, cells of the TTSS-1(+) phenotype grew slower than cells of the TTSS-1(-) phenotype. The growth retardation was at least partially attributable to the expression of TTSS-1 effector and/or translocon proteins. In spite of this growth penalty, the TTSS-1(+) subpopulation increased from <10% to approx. 60% during the late logarithmic growth phase of an LB batch culture. This was attributable to an increasing initiation rate of ttss-1 expression, in response to environmental cues accumulating during this growth phase, as shown by experimental data and mathematical modeling. Finally, hilA and hilD mutants, which form only fast-growing TTSS-1(-) cells, outcompeted wild type S. Typhimurium in mixed cultures. Our data demonstrated that virulence factor expression imposes a growth penalty in a non-host environment. This raises important questions about compensating mechanisms during host infection which ensure successful propagation of the genotype.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号