首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Most cell surface molecules are glycoproteins consisting of linear arrays of globular domains containing stretches of amino acid sequence with similarities to regions in other proteins. These conserved regions form the basis for the classification of proteins into superfamilies. Recombinant soluble forms of six leukocyte antigens belonging to the Ly-6 (CD59), scavenger receptor (CD5), and immunoglobulin (CD2, CD48, CD4, and Thy-1) superfamilies were expressed in the same Chinese hamster ovary cell line, thus providing an opportunity to examine the extent to which N-linked oligosaccharide processing might vary in a superfamily-, domain-, or protein-dependent manner in a given cell. While we found no evidence for superfamily-specific modifications of the glycans, marked differences were seen in the types of oligosaccharides attached to individual proteins within a given superfamily. The relative importance of local protein surface properties versus the overall tertiary structure of the molecules in directing this protein-specific variation was examined in the context of molecular models. These were constructed using the 3D structures of the proteins, glycan data from this study, and an oligosaccharide structural database. The results indicated that both the overall organization of the domains and the local protein structure can have a large bearing on site-specific glycan modification of cells in stasis. This level of control ensures that the surface of a single cell will display a diverse repertoire of glycans and precludes the presentation of multiple copies of a single oligosaccharide on the cell surface. The glycans invariably shield large regions of the protein surfaces although, for the glycoproteins examined here, these did not hinder the known active sites of the molecules. The models also indicated that sugars are likely to play a role in the packing of the native cell surface glycoproteins and to limit nonspecific protein-protein interactions. In addition, glycans located close to the cell membrane are likely to affect crucially the orientation of the glycoproteins to which they are attached.  相似文献   

3.
K P Kearse  D B Williams    A Singer 《The EMBO journal》1994,13(16):3678-3686
The alpha beta T-cell antigen receptor (TCR) is a multisubunit transmembrane complex composed of at least six different proteins (alpha, beta, gamma, delta, epsilon and zeta) that are assembled in the endoplasmic reticulum (ER). In this report we have examined the role of oligosaccharide processing on survival and assembly of nascent TCR proteins within the ER and their associations with molecular chaperone proteins important in TCR assembly. We found that treatment of BW5147 T cells with the glucosidase inhibitor castanospermine resulted in markedly accelerated degradation of nascent TCR alpha proteins with a half-life of approximately 20 min. Accelerated degradation was unique to TCR alpha proteins, as the stability of nascent TCR beta and CD3 gamma,epsilon chains was unaltered. Consistent with a requirement for glucose (Glc) trimming for survival of nascent TCR alpha proteins within the ER, we found that newly synthesized TCR alpha chains were innately unstable in the glucosidase II-deficient BW5147 mutant cell line PHAR2.7. In addition to destabilizing nascent TCR alpha proteins we found that persistence of Glc residues on core oligosaccharides markedly interfered with association of both TCR alpha and TCR beta glycoproteins with the molecular chaperone calnexin. Finally, using 2B4 T hybridoma cells in which TCR complexes are efficiently assembled, we found that rapid degradation of nascent TCR alpha proteins induced by impaired Glc trimming severely limits assembly of TCR alpha proteins with TCR beta proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Cope AP 《Arthritis research》2002,4(Z3):S197-S211
The strong association between specific alleles encoded within the MHC class II region and the development of rheumatoid arthritis (RA) has provided the best evidence to date that CD4+ T cells play a role in the pathogenesis of this chronic inflammatory disease. However, the unusual phenotype of synovial T cells, including their profound proliferative hyporesponsiveness to TCR ligation, has challenged the notion that T-cell effector responses are driven by cognate cartilage antigens in inflamed synovial joints. The hierarchy of T-cell dysfunction from peripheral blood to inflamed joint suggests that these defects are acquired through prolonged exposure to proinflammatory cytokines such as tumour necrosis factor (TNF)-alpha. Indeed, there are now compelling data to suggest that chronic cytokine activation may contribute substantially to the phenotype and effector function of synovial T cells. Studies reveal that chronic exposure of T cells to TNF uncouples TCR signal transduction pathways by impairing the assembly and stability of the TCR/CD3 complex at the cell surface. Despite this membrane-proximal effect, TNF selectively uncouples downstream signalling pathways, as is shown by the dramatic suppression of calcium signalling responses, while Ras/ERK activation is spared. On the basis of these data, it is proposed that T-cell survival and effector responses are driven by antigen-independent, cytokine-dependent mechanisms, and that therapeutic strategies that seek to restore T-cell homeostasis rather than further depress T-cell function should be explored in the future.  相似文献   

5.
While much is known about the signalling pathways within lymphocytes that are triggered during activation, much less is known about how the various cell surface molecules on T cells initiate these events. To address this, we have focused on the primary interaction that drives T-cell activation, namely the binding of a particular T-cell receptor (TCR) to peptide-MHC ligands, and find a close correlation between biological activity and off-rate; that is, the most stimulatory TCR ligands have the slowest dissociation rates. In general, TCRs from multiple histocompatibility complex (MHC) class-II-restricted T cells have half-lives of 1-11s at 25 degrees C, a much narrower range than found with antibodies and suggesting a strong selection for an optimum dissociation rate. TCR ligands with even faster dissociation rates tend to be antagonists. To observe the effects of these different ligands in their physiological setting, we made gene fusions of various molecules with green fluorescent protein (GFP), transfected them into the relevant lymphocytes, and observed their movements during T-cell recognition using multicolour video microscopy. We find that clustering of CD3zeta-GFP and CD4-GFP on the Tcell occurs concomitantly or slightly before the first rise in calcium by the T cell, and that various GFP-labelled molecules on the B-cell side cluster shortly thereafter (ICAM-1, class II MHC, CD48), apparently driven byT-cell molecules. Most of this movement towards the interface is mediated by signals through the co-stimulatory receptors, CD28 and LFA-1, and involves myosin motors and the cortical actin cytoskeleton. Thus, we have proposed that the principal mechanism by which co-stimulation enhances T-cell responsiveness is by increasing the local density of T-cell activation molecules, their ligands and their attendant signalling apparatus. In collaboration with Michael Dustin and colleagues, we have also found that the formation and stability of the TCR-peptide-MHC cluster at the centre of the interaction cap between T and B cells is highly dependent on the dissociation rate of the TCR and its ligand. Thus, we are able to link this kinetic parameter to the formation of a cell surface structure that is linked to and probably causal with respect to T-cell activation.  相似文献   

6.
Plasma membrane glycoproteins of rat hepatocytes undergo a rapid terminal deglycosylation in that the terminal sugars of the oligosaccharide side chains are rapidly removed from the otherwise intact glycoproteins [Tauber, R., Park, C.S. & Reutter, W. (1983) Proc. Natl Acad. Sci. USA 80, 4026-4029]. The present paper demonstrates that this rapid intramolecular turnover of plasma membrane glycoproteins is not restricted to peripheral sugars but, in contrast to liver, in hepatoma the core sugars of the oligosaccharide chains are also involved. Intramolecular turnover was measured in Morris hepatoma 7777 in five plasma membrane glycoproteins with Mr of 85,000 (hgp85), 105,000 (hgp105), 115,000 (hgp115), 125,000 (hgp125), 175,000 (hgp175) (hgp = hepatoma glycoprotein) that were isolated and purified to homogeneity by concanavalin-A--Sepharose affinity chromatography and semipreparative SDS gel electrophoresis. Analysis of the carbohydrates of hgp85, hgp105, hgp115 and hgp125 revealed the presence of N-linked oligosaccharides containing L-fucose, D-galactose, D-mannose and N-acetyl-D-glucosamine, but only of trace amounts of N-acetyl-D-galactosamine; hgp175 additionally contained significant amounts of N-acetyl-D-galactosamine, indicating the presence of both N- and O-linked oligosaccharides. As shown by digestion with endoglucosaminidase H, the N-linked oligosaccharides of hgp105, hgp115, hgp125 and hgp175 were of the complex type, whereas hgp85 also contained oligosaccharides of the high-mannose type. Half-lives of the turnover of the oligosacharide chains and of the protein backbone of the five glycoproteins were measured in the plasma membrane in pulse-chase experiments in vivo, using L-[3H]fucose as a marker of terminal sugars, D-[3H]mannose as marker of a core sugar and L-[3H]leucine for labelling the protein backbone. Protein backbones of the five glycoproteins were degraded with individual half-lives ranging over 41-90 h with a mean of 66 h. Compared to the degradation of the polypeptide backbone, both the terminal sugar L-fucose and the core sugar D-mannose turned over with much shorter half-lives averaging about 20 h in the five glycoproteins. The data show that, conversely to liver, within plasma membrane glycoproteins of hepatoma not only peripheral sugars but also core sugars of the oligosaccharides are split off during the life-span of the protein backbone. It may therefore be assumed that this reprocessing of plasma membrane glycoproteins is sensitive to malignant transformation.  相似文献   

7.
B and T lymphocyte attenuator (BTLA) is an important negative regulator of T-cell activation. T-cell activation involves partitioning of receptors into discrete membrane compartments known as lipid rafts and the formation of an immunological synapse (IS) between the T cell and antigen-presenting cell (APC). Here we show that after T-cell stimulation, BTLA co-clusters with the CD3zeta and is then involved in IS, as determined by a two-photon microscope. BTLA can interact with the phosphorylated form of T-cell receptor (TCR) within the lipid raft, which is associated with the T-cell signaling complex. Coligation of BTLA with the TCR significantly decreased the amount of phosphorylated TCR-related signal accumulation in the lipid raft during T-cell activation. These results suggest that BTLA functions to regulate T-cell signaling by controlling the phosphorylated form of TCRzeta accumulation in the lipid raft.  相似文献   

8.
T-cell development and the CD4-CD8 lineage decision   总被引:2,自引:0,他引:2  
Cell-fate decisions are controlled typically by conserved receptors that interact with co-evolved ligands. Therefore, the lineage-specific differentiation of immature CD4+ CD8+ T cells into CD4+ or CD8+ mature T cells is unusual in that it is regulated by clonally expressed, somatically generated T-cell receptors (TCRs) of unpredictable fine specificity. Yet, each mature T cell generally retains expression of the co-receptor molecule (CD4 or CD8) that has an MHC-binding property that matches that of its TCR. Two models were proposed initially to explain this remarkable outcome--'instruction' of lineage choice by initial signalling events or 'selection' after a stochastic fate decision that limits further development to cells with coordinated TCR and co-receptor specificities. Aspects of both models now appear to be correct; mistake-prone instruction of lineage choice precedes a subsequent selection step that filters out most incorrect decisions.  相似文献   

9.
Expression of the T‐cell receptor (TCR):CD3 complex is tightly regulated during T‐cell development. The mechanism and physiological role of this regulation are unclear. Here, we show that the TCR:CD3 complex is constitutively ubiquitylated in immature double positive (DP) thymocytes, but not mature single positive (SP) thymocytes or splenic T cells. This steady state, tonic CD3 monoubiquitylation is mediated by the CD3ε proline‐rich sequence, Lck, c‐Cbl, and SLAP, which collectively trigger the dynamin‐dependent downmodulation, lysosomal sequestration and degradation of surface TCR:CD3 complexes. Blocking this tonic ubiquitylation by mutating all the lysines in the CD3 cytoplasmic tails significantly upregulates TCR levels on DP thymocytes. Mimicking monoubiquitylation by expression of a CD3ζ‐monoubiquitin (monoUb) fusion molecule significantly reduces TCR levels on immature thymocytes. Moreover, modulating CD3 ubiquitylation alters immunological synapse (IS) formation and Erk phosphorylation, thereby shifting the signalling threshold for positive and negative selection, and regulatory T‐cell development. Thus, tonic TCR:CD3 ubiquitylation results in precise regulation of TCR expression on immature T cells, which is required to maintain the fidelity of T‐cell development.  相似文献   

10.
The maintenance of tolerance is likely to rely on the ability of a T cell to polarize surface molecules providing "help" to only specific APCs. The formation of a mature immunological synapse leads to concentration of the TCR at the APC interface. In this study, we show that the CD40-CD154 receptor-ligand pair is also highly concentrated into a central region of the synapse on mouse lymphocytes only after the formation of the TCR/CD3 c-SMAC. Concentration of this ligand was strictly dependent on TCR recognition, the binding of ICAM-1 to T cell integrins and the presence of an intact cytoskeleton in the T cells. This may provide a novel explanation for the specificity of T cell help directing the help signal to the site of Ag receptor signal. It may also serve as a site for these molecular aggregates to coassociate and/or internalize alongside other signaling receptors.  相似文献   

11.
Lateral compartmentalization of membrane proteins into microdomains regulates signal transduction; however, structural determinants are incompletely understood. Membrane glycoproteins bind galectins in proportion to the number (i.e. NX(S/T) sites) and degree of GlcNAc branching within attached N-glycans, forming a molecular lattice that negatively regulates T cell function and autoimmunity. We find that in resting T cells, partition of CD45 inside and T cell receptor (TCR)/CD4-Lck/Zap-70 outside microdomains is positively and negatively regulated by the galectin lattice and actin cytoskeleton, respectively. In the absence of TCR ligands, the galectin lattice counteracts F-actin to retain CD45 in microdomains while concurrently blocking TCR/CD4-Lck/Zap-70 partition to microdomains by preventing a conformational change in the TCR that recruits Nck/Wiscott Aldrich Syndrome (WASp)/SLP76/F-actin/CD4 to TCR. The counterbalancing activities of the galectin lattice and actin cytoskeleton negatively and positively regulate Lck activity in resting cells and CD45 versus TCR clustering and signaling at the early immune synapse, respectively. Microdomain-localized CD45 inactivates Lck and inhibits TCR signaling at the early immune synapse. Thus, the galectin lattice and actin cytoskeleton interact on opposing sides of the plasma membrane to control microdomain structure and function, coupling basal growth signaling with thresholds to activation.  相似文献   

12.
The T cell receptor (TCR) is a disulfide-linked heterodimer consisting of both complex and high-mannose types of N-linked oligosaccharides. The objective of the present investigation was to examine the effect of altered oligosaccharide structure on the expression and function of the TCR. Human mononuclear lymphocytes (MNL) were treated with castanospermine (CAST) or swainsonine (SW), inhibitors of glucosidase I or mannosidase II, respectively. Treatment with these inhibitors does not prevent glycosylation, but results in synthesis of glycoproteins with high-mannose or hybrid types of oligosaccharides. Treatment of MNL with CAST (1000-10 microM) or SW (100-1 microM) for up to 72 hr had no effect on cell surface expression of of the TCR. SW potentiated Con A-induced T cell proliferation without effecting anti-CD3 (OKT3) or alloantigen-induced proliferation. CAST had no effect on Con A, anti-CD3, or alloantigen-induced T cell proliferation. The T cell proliferative response to Con A in the presence of SW was completely eliminated in the presence of monoclonal anti-TCR antibodies. Monoclonal anti-CD2, -CD3, -CD4, -CD8, or isotypic control monoclonal antibodies had no effect on SW enhancement of T cell proliferation. SW treatment potentiated Con A-induced MNL expression of both the alpha and beta subunits of the IL 2R. This effect was also specifically blocked by anti-TCR monoclonal antibodies. These results demonstrate that selective changes in the glycosylation state of the TCR complex can alter mitogen recognition and subsequent cellular activation.  相似文献   

13.
Midguts of the malaria-transmitting mosquito, Anopheles stephensi, were homogenized and microvillar membranes prepared by calcium precipitation and differential centrifugation. Oligosaccharides present on the microvillar glycoproteins were identified by lectin blotting before and after in vitro and in situ treatments with endo- and exo-glycosidases. Twenty-eight glycoproteins expressed a structurally restricted range of terminal sugars and oligosaccharide linkages. Twenty-three glycoproteins expressed oligomannose and/or hybrid N-linked oligosaccharides, some with alpha1-6 linked fucose as a core residue. Complex-type N-linked oligosaccharides on eight glycoproteins all possessed terminal N-acetylglucosamine, and alpha- and beta-linked N-acetylgalactosamine. Eight glycoproteins expressed O-linked oligosaccharides all containing N-acetylgalactosamine with or without further substitutions of fucose and/or galactose. Galactosebeta1-3/4/6N-acetylglucosamine-, sialic acidalpha2-3/6galactose-, fucosealpha1-2galactose- and galactosealpha1-3galactose- were not detected. Terminal alpha-linked N-acetylgalactosamine residues on N-linked oligosaccharides are described for the first time in insects. The nature and function of these midgut glycoproteins have yet to be identified, but the oligosaccharide side chains are candidate receptors for ookinete binding and candidate targets for transmission blocking strategies.  相似文献   

14.
Leu-CAMs (CD11/CD18) consisting of LFA-1, Mac-1, and p150/95 are leukocyte cell surface glycoproteins that are involved in various leukocyte functions. The asparagine-linked sugar chains were released as oligosaccharides from Leu-CAMs by hydrazinolysis. About 12 mol of sugar chains was released from 1 mol of Leu-CAMs. These sugar chains were converted to radioactive oligosaccharides by reduction with sodium borotritide and separated into neutral and acidic fractions by paper electrophoresis. All of the acidic oligosaccharides were converted to neutral ones by digestion with sialidase, indicating that they are sialyl derivatives. The neutral and sialdase-treated acidic oligosaccharides were fractionated by chromatography on lectin columns followed by Bio-Gel P-4 column chromatography. Structural studies of each oligosaccharide by sequential exo- and endoglycosidase digestion and by methylation analysis revealed that Leu-CAMs contain mainly high mannose type and high molecular weight complex type sugar chains. The latter sugar chains were of bi-, tri-, and tetraantennary complex types with the Gal beta 1----4(Fuc alpha 1----3)GlcNAc beta 1----and/or the Gal beta 1----3GlcNAc beta 1----groups together with the Gal beta 1----4GlcNAc group in their outer-chain moieties. In addition to these sugar chains, a small amount of monoantennary complex type and hybrid type sugar chains was found in Leu-CAMs. Furthermore, analysis of the asparagine-linked sugar chains released from the beta-subunit of Leu-CAMs by a series of lectin chromatography showed that subunit-specific glycosylation is not observed between the alpha- and beta-subunits of Leu-CAMs.  相似文献   

15.
CD28 is one of the most important co-stimulatory receptors necessary for full T lymphocyte activation. By binding its cognate ligands, B7.1/CD80 or B7.2/CD86, expressed on the surface of professional antigen presenting cells (APC), CD28 initiates several signalling cascades, which qualitatively and quantitatively support T cell receptor (TCR) signalling. More recent data evidenced that human CD28 can also act as a TCR-independent signalling unit, by delivering specific signals, which regulate the expression of pro-inflammatory cytokine/chemokines. Despite the enormous progresses made in identifying the mechanisms and molecules involved in CD28 signalling properties, much remains to be elucidated, especially in the light of the functional differences observed between human and mouse CD28. In this review we provide an overview of the current mechanisms and molecules through which CD28 support TCR signalling and highlight recent findings on the specific signalling motifs that regulate the unique pro-inflammatory activity of human CD28.  相似文献   

16.
In order to test the hypothesis that cell wall glycoproteins of Candida albicans contained non-mannan oligosaccharides, the sugar composition of cell wall extracts and fractions of cell wall extracts was examined by means of fluorophore-assisted carbohydrate electrophoresis (FACE). In addition to the expected mannose, glucose, and N-acetyl-glucosamine, this analysis showed the presence of galactose, N-acetyl-galactosamine, fucose, and sialic acid and two unknown sugars. These sugars are also associated with complex oligosaccharides of mammalian glycoproteins. Presence of fucosylated cell wall components was further demonstrated by lectin-blotting analysis of cell wall extracts. Besides their structural role, complex carbohydrate structures on the surface of C. albicans may represent additional motifs through which interactions of this fungus with host cells and tissues could be established.  相似文献   

17.
A newly isolated T-cell line (CB1) derived from a T-acute lymphoblastic leukaemia (T-ALL) patient contained cells (40% of total) which did not express the CD45 phosphotyrosine phosphatase. The cells were sorted into CD45- and CD45+ populations and shown to be clonal in origin. T-cell receptor (TCR) cross-linking or coligation of the TCR with its CD4/CD8 co-receptors induced tyrosine phosphorylation and calcium signals in CD45+ but not in CD45- cells. Unexpectedly, whole cell p56lck and p59fyn tyrosine kinase activities were not reduced in CD45- compared to CD45+ cells. A novel technique was therefore developed to isolated specific pools of aggregated receptors expressed at the cell surface, together with their associated tyrosine kinases. Using this technique it was shown that cell surface CD4-p56lck kinase activity was 78% lower in CD45- than in CD45+ cells. Phosphorylation of TCR zeta- and gamma-chains occurred in TCR immunocomplexes from CD45+ but not CD45- cells, despite comparable levels of p59fyn and TCR proteins. Furthermore, TCR-associated tyrosine kinase activity towards an exogenous substrate was 84% lower in CD45- than in CD45+ cells. Addition of recombinant p59fyn to TCR immunocomplexes isolated from CD45-cells restored the phosphorylation of the TCR zeta- and gamma-chains. Our results demonstrate that CD45 selectively regulates the pools of p59fyn and p56lck kinases which are associated with the TCR and CD4 at the cell surface. Activation by CD45 of these receptor-associated kinase pools correlates with the ability of the TCR and its coreceptors to couple to intracellular signalling pathways.  相似文献   

18.
Galectin-1 induces apoptosis of human thymocytes and activated T cells by an unknown mechanism. Apoptosis is a novel function for a mammalian lectin; moreover, given the ubiquitous distribution of the oligosaccharide ligand recognized by galectin-1, it is not clear how susceptibility to and signaling by galectin-1 is regulated. We have determined that galectin-1 binds to a restricted set of T cell surface glycoproteins, and that only CD45, CD43, and CD7 appear to directly participate in galectin-1-induced apoptosis. To determine whether these specific glycoproteins interact cooperatively or independently to deliver the galectin-1 death signal, we examined the cell surface localization of CD45, CD43, CD7, and CD3 after galectin-1 binding to human T cell lines and human thymocytes. We found that galectin-1 binding resulted in a dramatic redistribution of these glycoproteins into segregated membrane microdomains on the cell surface. CD45 and CD3 colocalized on large islands on apoptotic blebs protruding from the cell surface. These islands also included externalized phosphatidylserine. In addition, the exposure of phosphatidylserine on the surface of galectin-1-treated cells occurred very rapidly. CD7 and CD43 colocalized in small patches away from the membrane blebs, which excluded externalized phosphatidylserine. Receptor segregation was not seen on cells that did not die in response to galectin-1, including mature thymocytes, suggesting that spatial redistribution of receptors into specific microdomains is required for triggering apoptosis.  相似文献   

19.
Adoptive therapy of malignant diseases with tumor-specific cytotoxic T cells showed remarkable efficacy in recent trials. Repetitive T cell receptor (TCR) engagement of target antigen, however, inevitably ends up in hypo-responsive cells with terminally differentiated KLRG-1(+) CD57(+) CD7(-) phenotype limiting their therapeutic efficacy. We here revealed that hypo-responsiveness of CMV-specific late-stage CD8(+) T cells is due to reduced TCR synapse formation compared to younger cells. Membrane anchoring of TCR components contributes to T cell hypo-responsiveness since dislocation of galectin-3 from the synapse by swainsonine restored both TCR synapse formation and T cell response. Transgenic expression of a CD3-zeta signaling chimeric antigen receptor (CAR) recovered hypo-responsive T cells to full effector functions indicating that the defect is restricted to TCR membrane components while synapse formation of the transgenic CAR was not blocked. CAR engineered late-stage T cells released cytokines and mediated redirected cytotoxicity as efficiently as younger effector T cells. Our data provide a rationale for TCR independent, CAR mediated activation in the adoptive cell therapy to avoid hypo-responsiveness of late-stage T cells upon repetitive antigen encounter.  相似文献   

20.
Reichner  JS; Helgemo  SL; Hart  GW 《Glycobiology》1998,8(12):1173-1182
The ability of particular cell surface glycoproteins to recycle and become exposed to individual Golgi enzymes has been demonstrated. This study was designed to determine whether endocytic trafficking includes significant reentry into the overall oligosaccharide processing pathway. The Lec1 mutant of Chinese hamster ovary (CHO) cells lack N - acetylglucosaminyltransferase I (GlcNAc-TI) activity resulting in surface expression of incompletely processed Man5GlcNAc2 N -linked oligosaccharides. An oligosaccharide tracer was created by exoglycosylation of cell surface glycoproteins with purified porcine GlcNAc-TI and UDP-[3H]GlcNAc. Upon reculturing, all cell surface glycoproteins that acquired [3H]GlcNAc were acted upon by intracellular mannosidase II, the next enzyme in the Golgi processing pathway of complex N -linked oligosaccharides (t1/2= 3-4 h). That all radiolabeled cell surface glycoproteins were included in this endocytic pathway indicates a common intracellular compartment into which endocytosed cell surface glycoproteins return. Significantly, no evidence was found for continued oligosaccharide processing consistent with transit through the latter cisternae of the Golgi apparatus. These data indicate that, although recycling plasma membrane glycoproteins can be reexposed to individual Golgi-derived enzymes, significant reentry into the overall contiguous processing pathway is not evident.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号