首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The identification of chemokine receptors as HIV-1 coreceptors has focused research on developing strategies to prevent HIV-1 infection. We generated CCR2-01, a CCR2 receptor-specific monoclonal antibody that neither competes with the chemokine CCL2 for binding nor triggers signaling, but nonetheless blocks replication of monotropic (R5) and T-tropic (X4) HIV-1 strains. This effect is explained by the ability of CCR2-01 to induce oligomerization of CCR2 with the CCR5 or CXCR4 viral coreceptors. HIV-1 infection through CCR5 and CXCR4 receptors can thus be prevented in the absence of steric hindrance or receptor downregulation by acting in trans on a receptor that is rarely used by the virus to infect cells.  相似文献   

2.
Two receptors, CD4 and one of several chemokine receptors, are required for cellular HIV-1 infection, with CCR5 being the main coreceptor for macrophage-tropic strains. We have designed bifunctional fusion proteins, consisting of RANTES/CCL5 and a single-chain Fv Ab fragment against CD4 to simultaneously block CD4 and CCR5. The fusion proteins bind to both receptors, compete with RANTES/CCL5 binding, and induce down-modulation of CCR5 approximately 10 times more efficiently on CD4+ compared with CD8+ T cells. Moreover, after short incubation and subsequent washout, a significant down-modulation of CCR5 was only seen with the fusion proteins and only on CD4+ cells, but not with unmodified RANTES or on CD4- cells, indicating a preferential targeting of CCR5 on CD4+ T cells. The fusion proteins block M-tropic HIV infection more efficiently than RANTES/CCL5 and CD4 Abs alone or in combination. To our knowledge this is the first report of simultaneous blockade of an HIV-1 receptor and coreceptor with bifunctional inhibitors.  相似文献   

3.
Here we report that the N-pyridinylmethyl cyclam analog AMD3451 has antiviral activity against a wide variety of R5, R5/X4, and X4 strains of human immunodeficiency virus type 1 (HIV-1) and HIV-2 (50% inhibitory concentration [IC(50)] ranging from 1.2 to 26.5 microM) in various T-cell lines, CCR5- or CXCR4-transfected cells, peripheral blood mononuclear cells (PBMCs), and monocytes/macrophages. AMD3451 also inhibited R5, R5/X4, and X4 HIV-1 primary clinical isolates in PBMCs (IC(50), 1.8 to 7.3 microM). A PCR-based viral entry assay revealed that AMD3451 blocks R5 and X4 HIV-1 infection at the virus entry stage. AMD3451 dose-dependently inhibited the intracellular Ca(2+) signaling induced by the CXCR4 ligand CXCL12 in T-lymphocytic cells and in CXCR4-transfected cells, as well as the Ca(2+) flux induced by the CCR5 ligands CCL5, CCL3, and CCL4 in CCR5-transfected cells. The compound did not interfere with chemokine-induced Ca(2+) signaling through CCR1, CCR2, CCR3, CCR4, CCR6, CCR9, or CXCR3 and did not induce intracellular Ca(2+) signaling by itself at concentrations up to 400 microM. In freshly isolated monocytes, AMD3451 inhibited the Ca(2+) flux induced by CXCL12 and CCL4 but not that induced by CCL2, CCL3, CCL5, and CCL7. The CXCL12- and CCL3-induced chemotaxis was also dose-dependently inhibited by AMD3451. Furthermore, AMD3451 inhibited CXCL12- and CCL3L1-induced endocytosis in CXCR4- and CCR5-transfected cells. AMD3451, in contrast to the specific CXCR4 antagonist AMD3100, did not inhibit but enhanced the binding of several anti-CXCR4 monoclonal antibodies (such as clone 12G5) at the cell surface, pointing to a different interaction with CXCR4. AMD3451 is the first low-molecular-weight anti-HIV agent with selective HIV coreceptor, CCR5 and CXCR4, interaction.  相似文献   

4.
The chemokine receptor CCR5 is an attractive target for HIV-1 drug development, as individuals whose cells lack surface CCR5 expression are highly resistant to HIV-1 infection. CCR5 ligands, such as CCL5/RANTES, effectively inhibit HIV-1 infection by competing for binding opportunities to the CCR5 and inducing its internalization. However, the inherent proinflammatory activity of the chemotactic response of CCR5 ligands has limited their clinical use. In this study, we found that a novel small molecule, functionally selective CCR5 agonist, 2,2-dichloro-1-(triphenylphosphonio)vinyl formamide perchlorate (YM-370749), down-modulates CCR5 from the cell surface without inducing a chemotactic response and inhibits HIV-1 replication. In molecular docking studies of YM-370749 and a three-dimensional model of CCR5 based on the rhodopsin crystal structure as well as binding and functional studies using various CCR5 mutants, the amino acid residues necessary for interaction with YM-370749 were marked. These results provide a structural basis for understanding the activation mechanism of CCR5 and for designing functionally selective agonists as a novel class of anti-HIV-1 agents.  相似文献   

5.
CC chemokine receptor 5 (CCR5) is a G-protein-coupled receptor for the chemokines CCL3, -4, and -5 and a coreceptor for entry of R5-tropic strains of human immunodeficiency virus type 1 (HIV-1) into CD4(+) T-cells. We investigated the mechanisms whereby nonpeptidic, low molecular weight CCR5 ligands block HIV-1 entry and infection. Displacement binding assays and dissociation kinetics demonstrated that two of these molecules, i.e. TAK779 and maraviroc (MVC), inhibit CCL3 and the HIV-1 envelope glycoprotein gp120 binding to CCR5 by a noncompetitive and allosteric mechanism, supporting the view that they bind to regions of CCR5 distinct from the gp120- and CCL3-binding sites. We observed that TAK779 and MVC are full and weak inverse agonists for CCR5, respectively, indicating that they stabilize distinct CCR5 conformations with impaired abilities to activate G-proteins. Dissociation of [(125)I]CCL3 from CCR5 was accelerated by TAK779, to a lesser extent by MVC, and by GTP analogs, suggesting that inverse agonism contributes to allosteric inhibition of the chemokine binding to CCR5. TAK779 and MVC also promote dissociation of [(35)S]gp120 from CCR5 with an efficiency that correlates with their ability to act as inverse agonists. Displacement experiments revealed that affinities of MVC and TAK779 for the [(35)S]gp120-binding receptors are in the same range (IC(50) ~6.4 versus 22 nm), although we found that MVC is 100-fold more potent than TAK779 for inhibiting HIV infection. This suggests that allosteric CCR5 inhibitors not only act by blocking gp120 binding but also alter distinct steps of CCR5 usage in the course of HIV infection.  相似文献   

6.
Maraviroc is a nonpeptidic small molecule human immunodeficiency virus type 1 (HIV-1) entry inhibitor that has just entered the therapeutic arsenal for the treatment of patients. We recently demonstrated that maraviroc binding to the HIV-1 coreceptor, CC chemokine receptor 5 (CCR5), prevents it from binding the chemokine CCL3 and the viral envelope glycoprotein gp120 by an allosteric mechanism. However, incomplete knowledge of ligand-binding sites and the lack of CCR5 crystal structures have hampered an in-depth molecular understanding of how the inhibitor works. Here, we addressed these issues by combining site-directed mutagenesis (SDM) with homology modeling and docking. Six crystal structures of G-protein-coupled receptors were compared for their suitability for CCR5 modeling. All CCR5 models had equally good geometry, but that built from the recently reported dimeric structure of the other HIV-1 coreceptor CXCR4 bound to the peptide CVX15 (Protein Data Bank code 3OE0) best agreed with the SDM data and discriminated CCR5 from non-CCR5 binders in a virtual screening approach. SDM and automated docking predicted that maraviroc inserts deeply in CCR5 transmembrane cavity where it can occupy three different binding sites, whereas CCL3 and gp120 lie on distinct yet overlapped regions of the CCR5 extracellular loop 2. Data suggesting that the transmembrane cavity remains accessible for maraviroc in CCL3-bound and gp120-bound CCR5 help explain our previous observation that the inhibitor enhances dissociation of preformed ligand-CCR5 complexes. Finally, we identified residues in the predicted CCR5 dimer interface that are mandatory for gp120 binding, suggesting that receptor dimerization might represent a target for new CCR5 entry inhibitors.  相似文献   

7.
Human immunodeficiency virus type 1 (HIV-1) entry into CD4(+) cells requires the chemokine receptors CCR5 or CXCR4 as co-fusion receptors. We have previously demonstrated that chemokine receptors are capable of cross-regulating the functions of each other and, thus, affecting cellular responsiveness at the site of infection. To investigate the effects of chemokine receptor cross-regulation in HIV-1 infection, monocytes and MAGIC5 and rat basophilic leukemia (RBL-2H3) cell lines co-expressing the interleukin-8 (IL-8 or CXCL8) receptor CXCR1 and either CCR5 (ACCR5) or CXCR4 (ACXCR4) were generated. IL-8 activation of CXCR1, but not the IL-8 receptor CXCR2, cross-phosphorylated CCR5 and CXCR4 and cross-desensitized their responsiveness to RANTES (regulated on activation normal T cell expressed and secreted) (CCL5) and stromal derived factor (SDF-1 or CXCL12), respectively. CXCR1 activation internalized CCR5 but not CXCR4 despite cross-phosphorylation of both. IL-8 pretreatment also inhibited CCR5- but not CXCR4-mediated virus entry into MAGIC5 cells. A tail-deleted mutant of CXCR1, DeltaCXCR1, produced greater signals upon activation (Ca(2+) mobilization and phosphoinositide hydrolysis) and cross-internalized CXCR4, inhibiting HIV-1 entry. The protein kinase C inhibitor staurosporine prevented phosphorylation and internalization of the receptors by CXCR1 activation. Taken together, these results indicate that chemokine receptor-mediated HIV-1 cell infection is blocked by receptor internalization but not desensitization alone. Thus, activation of chemokine receptors unrelated to CCR5 and CXCR4 may play a cross-regulatory role in the infection and propagation of HIV-1. Since DeltaCXCR1, but not CXCR1, cross-internalized and cross-inhibited HIV-1 infection to CXCR4, the data indicate the importance of the signal strength of a receptor and, as a consequence, protein kinase C activation in the suppression of HIV-1 infection by cross-receptor-mediated internalization.  相似文献   

8.
CCR5 binds the chemokines CCL3, CCL4, and CCL5 and is the major coreceptor for HIV-1 entry into target cells. Chemokines are supposed to form a natural barrier against human immunodeficiency virus, type 1 (HIV-1) infection. However, we showed that their antiviral activity is limited by CCR5 adopting low-chemokine affinity conformations at the cell surface. Here, we investigated whether a pool of CCR5 that is not stabilized by chemokines could represent a target for inhibiting HIV infection. We exploited the characteristics of the chemokine analog PSC-RANTES (N-α-(n-nonanoyl)-des-Ser(1)-[l-thioprolyl(2), l-cyclohexylglycyl(3)]-RANTES(4-68)), which displays potent anti-HIV-1 activity. We show that native chemokines fail to prevent high-affinity binding of PSC-RANTES, analog-mediated calcium release (in desensitization assays), and analog-mediated CCR5 internalization. These results indicate that a pool of spare CCR5 may bind PSC-RANTES but not native chemokines. Improved recognition of CCR5 by PSC-RANTES may explain why the analog promotes higher amounts of β-arrestin 2·CCR5 complexes, thereby increasing CCR5 down-regulation and HIV-1 inhibition. Together, these results highlight that spare CCR5, which might permit HIV-1 to escape from chemokines, should be targeted for efficient viral blockade.  相似文献   

9.
Activated lymphocytes synthesize and secrete substantial amounts of the beta-chemokines macrophage inflammatory protein (MIP)-1 alpha/CCL3 and MIP-1 beta/CCL4, both of which inhibit infection of cells with human immunodeficiency virus type 1 (HIV-1). The native form of MIP-1 beta secreted by activated human peripheral blood lymphocytes (MIP-1 beta(3-69)) lacks the two NH(2)-terminal amino acids of the full-length protein. This truncated form of MIP-1 beta has now been affinity-purified from the culture supernatant of such cells, and its structure has been confirmed by mass spectrometry. Functional studies of the purified protein revealed that MIP-1 beta(3-69) retains the abilities to induce down-modulation of surface expression of the chemokine receptor CCR5 and to inhibit the CCR5-mediated entry of HIV-1 in T cells. Characterization of the chemokine receptor specificity of MIP-1 beta(3-69) showed that the truncated protein not only shares the ability of intact MIP-1 beta to induce Ca(2+) signaling through CCR5, but unlike the full-length protein, it also triggers a Ca(2+) response via CCR1 and CCR2b. These results demonstrate that NH(2)-terminally truncated MIP-1 beta functions as a chemokine agonist with expanded receptor reactivity, which may represent an important mechanism for regulation of immune cell recruitment during inflammatory and antiviral responses.  相似文献   

10.
Chemokine receptors CCR5 and CXCR4 are the major coreceptors of HIV-1 infection and also play fundamental roles in leukocyte trafficking, metastasis, angiogenesis, and embyogenesis. Here, we show that transfection of CCR5 into CXCR4 and CD4 expressing 3T3 cells enhances the cell surface level of CXCR4. In CCR5 high expressing cells, cell surface level of CXCR4 was incompletely modulated in the presence of the CXCR4 ligand CXCL12/SDF-1alpha. CCR5 was resistant to ligand-dependent modulation with the CCR5 ligand CCL5/RANTES. Confocal laser microscopy revealed that CCR5 was colocalized with CXCR4 on the cell surface. In CD4 expressing CCR5 and CXCR4 double positive NIH 3T3 cells, immunoprecipitation followed by Western blot analysis revealed that CCR5 was associated with CXCR4 and CD4. CXCR4 and CCR5 were not co-immunoprecipitated in cells expressing CCR5 and CXCR4 but without CD4 expression. Compared to NIH 3T3CD4 cells expressing CXCR4, the entry of an HIV-1 X4 isolate (HCF) into NIH 3T3CD4 expressing both CXCR4 and CCR5 was reduced. Our data indicate that chemokine receptors interact with each other, which may modulate chemokine-chemokine receptor interactions and HIV-1 coreceptor functions.  相似文献   

11.
Mucosae-associated epithelial chemokine (MEC or CCL28) binds to CCR3 and CCR10 and recruits IgA-secreting plasma cells (IgA-ASCs) in the mucosal lamina propria. The ability of this chemokine to enhance migration of IgA-ASCs to mucosal sites was assessed in a mouse immunization model using HIV-1(IIIB) Virus-like particles (VLPs). Mice receiving either HIV-1(IIIB) VLPs alone, CCL28 alone, or the irrelevant CCL19 chemokine were used as controls. Results showed a significantly increased CCR3 and CCR10 expression on CD19(+) splenocytes of HIV-1(IIIB) VPL-CCL28-treated mice. HIV-1 Env-specific IFN-γ, IL-4 and IL-5 production, total IgA, anti-Env IgA as well as gastro-intestinal mucosal IgA-secreting plasma cells were also significantly augmented in these mice. Notably, sera and vaginal secretions from HIV-1(IIIB) VLP-CCL28-treated mice exhibited an enhanced neutralizing activity against both a HIV-1/B-subtype laboratory strain and a heterologous HIV-1/C-subtype primary isolate. These data suggest that CCL28 could be useful in enhancing the IgA immune response that will likely play a pivotal role in prophylactic HIV vaccines.  相似文献   

12.
The chemokine receptor CCR5 is the most important entry coreceptor for HIV-1 in vivo. Its chemokine ligands, including CCL3L1, efficiently inhibit infection by receptor blockade and downmodulation. However, in Nature Immunology, Dolan et al. (2007) present a large human-cohorts study that identifies entry-independent, CCR5-CCL3L1-dependent effects on cell-mediated immunity as a strong correlate of pathogenesis and point to additional influences of the CCR5-CCL3L1 axis on disease progression through undefined mechanisms.  相似文献   

13.
《Cytokine》2007,37(5-6):237-244
Airway epithelial inflammation associated with emphysema, chronic bronchitis, chronic obstructive pulmonary disease (COPD) and asthma is regulated in part by alveolar type II cell chemokine signaling. Data suggest that resident lung cells use CCR3, CCR5 and CCR2 chemokine receptor/ligand systems to regulate the profile of leukocytes recruited in disease-associated inflammatory conditions. Thus studies were designed to test whether alveolar type II cells possess a Th1-activated CCR5-ligand system that modulates the Th2-activated CCR3/eotaxin-2 (CCL24), eotaxin-3 (CCL26) chemokine systems. The A549 alveolar type II epithelial-like cell culture model was used to demonstrate that alveolar type II cells constitutively express CCR5 which may be upregulated by MIP-1α (CCL3) whose expression was induced by the Th1 cytokines IL-1β and IFN-γ. Selective down-regulation of CCL26, but not CCL24, was observed in CCL3 and IL-4/CCL3 stimulated cells. Down-regulation was reversed by anti-CCR5 neutralizing antibody treatment. Thus, one mechanism through which Th1-activated CCCR5/ligand pathways modulate Th2-activated CCR3/ligand pathways is the differential down-regulation of CCL26 expression. Results suggest that the CCR3 and CCR5 receptor/ligand signaling pathways may be important targets for development of novel mechanism-based adjunctive therapies designed to abrogate the chronic inflammation associated with airway diseases.  相似文献   

14.
Abonyo BO  Lebby KD  Tonry JH  Ahmad M  Heiman AS 《Cytokine》2006,36(5-6):237-244
Airway epithelial inflammation associated with emphysema, chronic bronchitis, chronic obstructive pulmonary disease (COPD) and asthma is regulated in part by alveolar type II cell chemokine signaling. Data suggest that resident lung cells use CCR3, CCR5 and CCR2 chemokine receptor/ligand systems to regulate the profile of leukocytes recruited in disease-associated inflammatory conditions. Thus studies were designed to test whether alveolar type II cells possess a Th1-activated CCR5-ligand system that modulates the Th2-activated CCR3/eotaxin-2 (CCL24), eotaxin-3 (CCL26) chemokine systems. The A549 alveolar type II epithelial-like cell culture model was used to demonstrate that alveolar type II cells constitutively express CCR5 which may be upregulated by MIP-1alpha (CCL3) whose expression was induced by the Th1 cytokines IL-1beta and IFN-gamma. Selective down-regulation of CCL26, but not CCL24, was observed in CCL3 and IL-4/CCL3 stimulated cells. Down-regulation was reversed by anti-CCR5 neutralizing antibody treatment. Thus, one mechanism through which Th1-activated CCCR5/ligand pathways modulate Th2-activated CCR3/ligand pathways is the differential down-regulation of CCL26 expression. Results suggest that the CCR3 and CCR5 receptor/ligand signaling pathways may be important targets for development of novel mechanism-based adjunctive therapies designed to abrogate the chronic inflammation associated with airway diseases.  相似文献   

15.
CCR5 is the major HIV-1 entry coreceptor. RANTES/CCL5 analogs are more potent inhibitors of infection than native chemokines; one class activates and internalizes CCR5, one neither activates nor internalizes, and a third partially internalizes without activation. Here we show that mutations in CCR5 transmembrane domains differentially impact the activity of these three inhibitor classes, suggesting that the transmembrane region of CCR5, a key interaction site for inhibitors, is a sensitive molecular switch, modulating receptor activity.  相似文献   

16.
CCL4 and CCL4L1 are two CC chemokine genes located at chromosome 17q21 whose mature proteins differ at only a single amino acid. Abundant functional information exists for CCL4, however, CCL4L1 has only recently been recognized as a distinct gene, thus information describing it is wanting. The CCL4L1 protein was synthesized in Escherichia coli and compared with the CCL4 protein. Competitive binding studies using HEK-293/CCR5 cells produced comparable EC50 values for the two proteins. Similarly, chemotaxis assays with cells expressing CCR1, CCR3, or CCR5 revealed no substantial differences. CCL4L1 was somewhat more effective at inhibiting HIV-1 replication in PBMCs than was CCL4, however the difference was not statistically significant. These data combined with the observation of individual variation in CCL4L1 gene copy number [Eur. J. Immunol. 32 (2002) 3016, Genomics 83 (2004) 735] support the contention that the CCL4 and CCL4L1 proteins have redundant functions.  相似文献   

17.
CCL5 (RANTES (regulated on activation normal T cell expressed and secreted)) and its cognate receptor, CCR5, have been implicated in T cell activation. CCL5 binding to glycosaminoglycans (GAGs) on the cell surface or in extracellular matrix sequesters CCL5, thereby immobilizing CCL5 to provide the directional signal. In two CCR5-expressing human T cell lines, PM1.CCR5 and MOLT4.CCR5, and in human peripheral blood-derived T cells, micromolar concentrations of CCL5 induce apoptosis. CCL5-induced cell death involves the cytosolic release of cytochrome c, the activation of caspase-9 and caspase-3, and poly(ADP-ribose) polymerase cleavage. CCL5-induced apoptosis is CCR5-dependent, since native PM1 and MOLT4 cells lacking CCR5 expression are resistant to CCL5-induced cell death. Furthermore, we implicate tyrosine 339 as a critical residue involved in CCL5-induced apoptosis, since PM1 cells expressing a tyrosine mutant receptor, CCR5Y339F, do not undergo apoptosis. We show that CCL5-CCR5-mediated apoptosis is dependent on cell surface GAG binding. The addition of exogenous heparin and chondroitin sulfate and GAG digestion from the cell surface protect cells from apoptosis. Moreover, the non-GAG binding variant, (44AANA47)-CCL5, fails to induce apoptosis. To address the role of aggregation in CCL5-mediated apoptosis, nonaggregating CCL5 mutant E66S, which forms dimers, and E26A, which form tetramers at micromolar concentrations, were utilized. Unlike native CCL5, the E66S mutant fails to induce apoptosis, suggesting that tetramers are the minimal higher ordered CCL5 aggregates required for CCL5-induced apoptosis. Viewed altogether, these data suggest that CCL5-GAG binding and CCL5 aggregation are important for CCL5 activity in T cells, specifically in the context of CCR5-mediated apoptosis.  相似文献   

18.
The CC chemokine receptor 6 (CCR6) is selectively expressed on memory T cells, B cells, and dendritic cells and appears to be involved in the initiation of a memory immune response. The only chemokine ligand for CCR6 is CCL20/MIP-3. In the present study, we attempted to define the extracellular domains (ECDs) of CCR6 responsible for CCL20/MIP-3 binding using a domain-swapping approach in which the ECDs of CCR6 were substituted with the corresponding CCR5 domains to generate various CCR6/CCR5 chimeras. These chimeras were tested for receptor expression, ligand binding, and functional activity as evaluated by calcium flux and chemotaxis. All chimeras showed respectable surface expression; however only one, substituted with extracellular loop 1 from CCR5, showed reduced functional activity. The general failure of functionality of the CCR6/CCR5 chimeras may imply that characteristics of each ECD are critical for coordination among all the ECDs of CCR6. Additionally, of interest, a chimera containing all of the ECDs from CCR5 in the context of CCR6 neither responded to CCR5 ligands nor served as a coreceptor for macrophage-tropic HIV-1. These results suggest that not only ECDs but also transmembrane and intracellular domains of CCR5 are involved in both ligand binding and coreceptor activity.  相似文献   

19.
The proliferative capacity of cancer cells is regulated by factors intrinsic to cancer cells and by secreted factors in the microenvironment. Here, we investigated the proto-oncogenic potential of the chemokine receptor, CCR5, in MCF-7 breast cancer cell lines. At physiological levels, CCL5, a ligand for CCR5, enhanced MCF-7.CCR5 proliferation. Treatment with the mTOR inhibitor, rapamycin, inhibited this CCL5-inducible proliferation. Because mTOR directly modulates mRNA translation, we investigated whether CCL5 activation of CCR5 leads to increased translation. CCL5 induced the formation of the eIF4F translation initiation complex through an mTOR-dependent process. Indeed, CCL5 initiated mRNA translation, shown by an increase in high-molecular-weight polysomes. Specifically, we show that CCL5 mediated a rapid up-regulation of protein expression for cyclin D1, c-Myc and Dad-1, without affecting their mRNA levels. Taken together, we describe a mechanism by which CCL5 influences translation of rapamycin-sensitive mRNAs, thereby providing CCR5-positive breast cancer cells with a proliferative advantage.  相似文献   

20.
Human memory CD4(+) T cells respond better to inflammatory CCLs/CC chemokines, CCL3 and CCL5, than naive CD4(+) T cells. We analyzed the regulatory mechanism underlying this difference. Memory and naive CD4(+) T cells expressed similarly high levels of CCR1; however, CCR5 was only expressed in memory CD4(+) T cells at low levels. Experiments using mAbs to block chemokine receptors revealed that CCR1 functioned as a major receptor for the binding of CCL5 in memory and naive CD4(+) T cells as well as the ligand-induced chemotaxis in memory CD4(+) T cells. Stimulation of memory CD4(+) T cells with CCL5 activated protein tyrosine kinase-dependent cascades, which were significantly blocked by anti-CCR1 mAb, whereas this stimulation failed to induce these events in naive CD4(+) T cells. Intracellular expressions of regulator of G protein signaling 3 and 4 were only detected in naive CD4(+) T cells. Pretreatment of cell membrane fractions from memory and naive CD4(+) T cells with GTP-gamma S inhibited CCL5 binding, indicating the involvement of G proteins in the interaction of CCL5 and its receptor(s). In contrast, CCL5 enhanced the GTP binding to G(i alpha) and G(q alpha) in memory CD4(+) T cells, but not in naive CD4(+) T cells. Thus, a failure of the ligand-induced activation of CCR1-mediated downstream signaling event as well as a deficiency of CCR5 expression may be involved in the hyporesponsiveness of naive CD4(+) T cells to CCL3 and CCL5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号