共查询到20条相似文献,搜索用时 15 毫秒
1.
Mechanism of Replication of φX174 Single-Stranded DNA IX. Requirement for the Escherichia coli dnaG Protein 总被引:3,自引:9,他引:3 下载免费PDF全文
Escherichia coli NY73, possessing a temperature-sensitive mutation in the dnaG locus, was rendered sensitive to bacteriophage phiX174 by P1 transduction. phiX174 reproduces in this strain at 30 C but not at 40 C. All three stages of phiX174 replication, parental replicative form (RF) synthesis, RF replication, and progeny single-stranded DNA synthesis, are thermolabile in this mutant. Competition-annealing data show that both plus- and minus-strand synthesis are equally inhibited after shift up to 40 C during RF replication. We conclude that the dnaG gene product is required for the synthesis of both strands of phiX RF during RF replication and of the complementary strand and viral progeny strands during stages I and III, respectively. 相似文献
2.
Identification of the Block in the Intracellular Replication of Single-Stranded DNA of Photodynamically Inactivated Bacteriophage φX174 下载免费PDF全文
(32)P-labeled single-stranded DNA phage phiX174 was photodynamically inactivated by irradiation in air with visible light in the presence of the acridine dye, proflavine sulfate. The inactivated phages could adsorb to the host cells but failed to lyse them. Formation of intracellular mature phages was almost completely inhibited. Photodynamic lesions in phiX174 DNA caused intracellular formation of defective double-stranded replicative form molecules which ultimately reverted to the single-stranded configuration. 相似文献
3.
Photodynamic Inactivation of Antigenic Determinants of Single-Stranded DNA Bacteriophage φX174 总被引:1,自引:1,他引:0 下载免费PDF全文
Bacteriophage phiX174 when photodynamically inactivated (i.e., when rendered unable to produce plaques as a result of exposure to visible light in air in the presence of proflavine) progressively lost their capacity to bind efficiently with homologous antiserum. Such loss of serum-blocking power was evident with heat-inactivated but not with UV-irradiated phage. The ability of the phages to adsorb to host cells, however, remained practically unaltered even after photodynamic inactivation. It thus appears that photodynamic damages in the so-called "jacket" component of the phiX174 coat proteins are partly responsible for the loss of plaque-forming ability, whereas the "spikes" are either poor antigens or insensitive to photodynamic treatment. 相似文献
4.
Greater Vulnerability of the Infecting Viral Strand of Replicative-Form Deoxyribonucleic Acid of Bacteriophage φX174 下载免费PDF全文
Four types of phiX-infected cells of Escherichia coli CR, a thymine-requiring strain of E. coli C, were prepared in which the parental replicative-form deoxyribonucleic acid (RF DNA) was labeled with same specific amounts of bromouracil in (i) both strands, (ii) only the infecting viral strand, (iii) only the complementary strand, and (iv) neither strand. The sensitivity of each type of infected cell toward irradiation by ultraviolet light, visible light, and X rays was measured. The results indicate that a certain amount of radiation damage in the infecting viral strand of the parental RF was more inhibitory to the production of progeny phage than when the damage was in the complementary strand. Similar conclusions were also drawn from "suicide" experiments of the phage-infected complexes containing (32)P of the same specific activity on either strand of the parental RF DNA. The results suggest that the beta decay occurring in the infecting viral strand was more effective in inactivating the plaque-forming ability of the complex. 相似文献
5.
Reactivation of Photoinactivated Single-Stranded DNA Bacteriophage φX174 by UV-Irradiated Escherichia coli Cells 下载免费PDF全文
Reactivation of single-stranded DNA phage, photodynamically inactivated in the presence of proflavine sulfate, by three isogenic Escherichia coli strains having different DNA repair capabilities has been studied. It was found that reactivation of photoinactivated phiX174 was possible only if the host cells were recombination proficient (recA(+)) and had been lightly irradiated with UV light prior to infection; the presence of the uvrA(+) gene was not essential. Only a small part of the proflavine-mediated photodynamic damage in phiX174 could be repaired in this fashion. Burst sizes of reactivated phages were, however, comparable to those of normal unirradiated phages. 相似文献
6.
7.
Polynucleotide Ligase and φX174 Single Strand Synthesis 总被引:8,自引:0,他引:8
A DNA ligase mutant of E. coli when infected with φX174 produces linear single strands which appear in an intracellular pool and in phage particles. The linear single strands, which are infectious in a spheroplast assay, seem to be a normal intermediate in progeny DNA synthesis. 相似文献
8.
Inhibition of Bacteriophage φX174 DNA Replication in dnaB Mutants of Escherichia coli C 总被引:2,自引:11,他引:2 下载免费PDF全文
Bacteriophage phiX174 DNA replication was examined in temperature-sensitive dnaB mutants of Escherichia coli C to determine which stages require the participation of the product of this host gene. The conversion of the infecting phage single-stranded DNA to the double-stranded replicative form (parental RF synthesis) is completely inhibited at the nonpermissive temperature (41 C) in two of the three dnaB mutants tested. The efficiency of phage eclipse and of phage DNA penetration of these mutant host cells at 41 C is the same as that of the parent host strain. The defect is most likely in the synthesis of the complementary strand DNA. The semiconservative replication of the double-stranded replicative form DNA (RF replication) is inhibited in all three host mutants after shifting from 30 to 41 C. Late in infection, the rate of progeny single-stranded phage DNA synthesis increases following shifts from 30 to 41 C. Approximately the same amounts of phage DNA and of infectious phage particles are made following the shift to 41 C as in the control left at 30 C. The simplest interpretation of our data is that the product of the host dnaB gene is required for phiX174 parental RF synthesis and RF replication, but is not directly involved in phage single-stranded DNA synthesis once it has begun. The possible significance of the synthesis of parental RF DNA at 41 C in one of the three mutants is discussed. 相似文献
9.
Process of Infection with Bacteriophage φX174: XXXIII. Templates for the Synthesis of Single-Stranded Deoxyribonucleic Acid 下载免费PDF全文
The origin of the templates for the synthesis of X174 progeny single-stranded deoxyribonucleic acid was studied by means of the mutagenic activity associated with the decay of incorporated 3H-labeled 5-cytosine. The results indicate that the single-strand synthesis occurs in an asymmetric semiconservative manner using as template the complementary strands of the pool of replicative from molecules accumulated during the eclipse period. These complementary strands are repeatedly used as templates, and there is no detectable preferential use of complementary strand templates made early in the eclipse versus those made late. 相似文献
10.
Keiichiro Nishimura Tohru Komano Hideaki Yamada Hiroshi Fukami 《Bioscience, biotechnology, and biochemistry》2013,77(6):843-847
Oxidized spermine and oxidized spermidine inhibited markedly the infectivity of the 6 m-urea treated φX174 particle, whereas they did not inactivate the infectivity of the untreated phage particle. They also markedly inhibited the infectivity of φX174 DNA, while φX174 RF I DNA was less sensitive to these reagents. These facts suggested that oxidized polyamines could react with phage DNA.The possible reasons of the insensitivity of phage φX174 particle and less sensitivity of φX174 RF I DNA to these reagents were discussed. 相似文献
11.
Replication of Bacteriophage φX174 DNA in a Temperature-Sensitive dnaC Mutant of Escherichia coli C 总被引:4,自引:12,他引:4 下载免费PDF全文
Bacteriophage phiX174 cannot grow in a temperature-sensitive dnaC mutant of Escherichia coli C at the nonpermissive temperature. The inability to grow is the result of inhibition of virus DNA synthesis. Parental replicative form synthesis is not temperature sensitive. Single-stranded virus DNA continues to be synthesized for at least 45 min after shifting to the nonpermissive temperature late in infection. In contrast, the replication of the replicative form terminates within 5 min after shifting to the nonpermissive temperature. 相似文献
12.
Replication of Bacteriophage φX174 DNA in a Temperature-Sensitive dnaE Mutant of Escherichia coli C 下载免费PDF全文
Bacteriophage phiX174 cannot grow in a temperature-sensitive dnaE (DNA polymerase III) mutant of Escherichia coli C at the nonpermissive temperature. The inability to grow is the result of inhibition of virus DNA synthesis. The synthesis of the parental replicative form is unaffected, but the replication of the replicative form and the synthesis of the single-stranded virus DNA are inhibited. 相似文献
13.
14.
Epstein–Barr virus (EBV) is a paradigm for human tumor viruses: it is the first virus recognized to cause cancer in people; it causes both lymphomas and carcinomas; yet these tumors arise infrequently given that most people in the world are infected with the virus. EBV is maintained extrachromosomally in infected normal and tumor cells. Eighty-four percent of these viral plasmids replicate each S phase, are licensed, require a single viral protein for their synthesis, and can use two functionally distinct origins of DNA replication, oriP, and Raji ori. Eighty-eight percent of newly synthesized plasmids are segregated faithfully to the daughter cells. Infectious viral particles are not synthesized under these conditions of latent infection. This plasmid replication is consistent with survival of EBV’s host cells. Rare cells in an infected population either spontaneously or following exogenous induction support EBV’s lytic cycle, which is lethal for the cell. In this case, the viral DNA replicates 100-fold or more, uses a third kind of viral origin of DNA replication, oriLyt, and many viral proteins. Here we shall describe the three modes of EBV’s replication as a function of the viral origins used and the viral and cellular proteins that mediate the DNA synthesis from these origins focusing, where practical, on recent advances in our understanding. 相似文献
15.
16.
Bacteriophage phiX174 is unable to replicate in Escherichia coli t3 at the restrictive temperature. However, if progeny phage synthesis is initiated at the permissive temperature, it will continue after a shift to the restrictive temperature. 相似文献
17.
Linear DNAs have been prepared from phiX phage and from phiX RF II (double-stranded circular form of phiX DNA, formed during infection and nicked in one or both strands) molecules derived from infection at the restrictive temperature of Escherichia coli ts7, a host mutant with a temperature-sensitive DNA ligase activity. The linear DNA from these phages can be circularized by annealing with fragments of phiX RF DNA produced by the Haemophilus influenzae restriction nuclease. The circularization experiment indicated that the site of breakage of the linear phage DNAs is not unique nor confined to a particular region of the genome. These linear DNAs were less than 0.1% as infective as circular phage DNA. The linear, positive strand of late RF II DNA, however, is uniquely nicked in the region of the phiX genome corresponding to cistron A. Although a low level of infectivity is associated with the linear DNA derived from late RF II, this infectivity appears to be a result of the association of linear positive and linear negative strands during the infectivity assay. 相似文献
18.
?X174 DNA synthesis as well as phage production was inhibited by rifampicin when added in early phase of infection. Rifampicin did not inhibit the formation of parental duplex replicative-form, RF, and it inhibited the synthesis of progeny RF under conditions where protein synthesis was not necessary to be synthesized continuously. In addition, replication of parental RF into progeny RF was inhibited by rifampicin under conditions where a high concentration of chloramphenicol did not affect the replication. Consequently, it could be concluded that RNA synthesis other than that required for protein synthesis was necessary for both the initiation and continuation of RF replication. 相似文献
19.
20.
Observing organisms that evolve in response to strong selection over very short time scales allows the determination of the molecular mechanisms underlying adaptation. Although dissecting these molecular mechanisms is expensive and time-consuming, general patterns can be detected from repeated experiments, illuminating the biological processes involved in evolutionary adaptation. The bacteriophage φX174 was grown for 50 days in replicate chemostats under two culture conditions: Escherichia coli C as host growing at 37°C and Salmonella typhimurium as host growing at 43.5°C. After 50 days, greater than 20 substitutions per chemostat had risen to detectable levels. Of the 97 substitutions, four occurred in all four chemostats, five arose in both culture conditions, eight arose in only the high temperature S. typhimurium chemostats, and seven arose only in the E. coli chemostats. The remaining substitutions were detected only in a single chemostat, however, almost half of these have been seen in other similar experiments. Our findings support previous studies that host recognition and capsid stability are two biological processes that are modified during adaptation to novel hosts and high temperature. Based upon the substitutions shared across both environments, it is apparent that genome replication and packaging are also affected during adaptation to the chemostat environment, rather than to temperature or host per se. This environment is characterized by a large number of phage and very few hosts, leading to competition among phage within the host. We conclude from these results that adaptation to a high density environment selects for changes in genome replication at both protein and DNA sequence levels. 相似文献