首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of lysophosphatidic acid (LPA) on the shape and aggregation of human erythrocytes in autologous plasma was studied. The morphology of erythrocytes and their aggregates were studied by light microscopy. It is shown that the addition of plasma with a high LPA content to erythrocytes leads to a change of their shape: discocytes are transformed into echinocytes. There is practically no aggregation of erythrocytes in the form of rouleaux. At the same time, there is observed a strong aggregation of echinocytes. This is accompanied by the formation of microvesicles. The addition of normal blood plasma to echinocytes restores their shape and aggregation of red blood cells in the form of rouleaux. A possible mechanism of action of lysophosphatidic acid on erythrocytes is discussed.  相似文献   

2.
The influence of intracellular ATP level on the aggregation and fusion of human erythrocytes, induced by La3+ in the concentration range 20-330 microM was studied. The aggregation of intact red blood cells differs from that of cells with increased and decreased contents of ATP. Incubation of erythrocyte aggregates at 37 degrees C did not lead to cell fusion. At the same time, incubation of erythrocyte aggregates with decreased and increased ATP contents in the presence of La3+ induced a pronounced cell fusion.  相似文献   

3.
Satoh K  Yatomi Y  Kubota F  Ozaki Y 《Cytometry》2002,48(4):194-201
BACKGROUND: Although cross-talks between platelets and other blood cells are important in vivo, laboratory platelet aggregation tests have been performed mainly with the use of platelet-rich plasma (PRP) as samples. Methods that enable an efficient and sensitive detection of platelet aggregates in whole blood are being developed. METHODS: A flow cytometer equipped with an imaging device, the flow imaging cytometer 2 (FIC2), was used to detect platelet aggregates in whole blood. RESULTS: The FIC2 provides a resolution that is high enough to differentiate platelet aggregates from single platelets or other blood cells. Epinephrine elicited platelet aggregate formation in hirudin plus argatroban-treated whole blood, but not in PRP. The reconstitution study revealed that a small amount of adenosine diphosphate (ADP) from erythrocytes may play an important role in epinephrine-induced platelet aggregation (in whole blood), through mediation of P2Y1 receptors. When the inhibitory effect of beraprost, an antiplatelet agent, on platelet aggregation was assessed, analysis of whole blood samples with FIC2 proved to be the most sensitive among the methods available. CONCLUSIONS: FIC2 is a promising device for detection of platelet aggregates in whole blood, with wide basic and clinical applications.  相似文献   

4.
Malaria due to P. vivax (PV) is prevalent in many countries. The present work is aimed to determine the cell-cell interaction through formation of aggregates under dynamic conditions. Blood samples are obtained from patients (n=11) suffering from PV malaria, and the normal subjects (n=10) in test tubes containing citrate phosphate dextrose (10:1.4), as an anticoagulant. The signature analysis of infected erythrocytes shows significant alterations in their shape and membrane. For aggregation analysis, erythrocyte suspension in plasma at hematocrit 5%, was placed in a glass chamber and mounted vertically on the stage of the video-microscope system. The aggregate images thus acquired show erythrocytes adhering with each other to form mash-like structures. With increase in parasitaemia, the erythrocytes show hyper-aggregation compared to that of normal cells. By processing of the sequence of recorded images during sedimentation, the various aggregation parameters are obtained. These parameters show that the formed aggregates are compact which produce distinct changes in sedimentation pattern with significantly higher sedimentation velocity compared to that in healthy blood samples. These changes in malaria could partly be responsible for alteration in blood flow through microcirculatory system.  相似文献   

5.
S Swarnamani  M Singh 《Biorheology》1989,26(4):847-862
Aggregation of erythrocytes is studied as function of time during their sedimentation process under the gravitational field. The method is based on ultrasonic scattering from the various blood samples in presence and absence of inhomogeneous magnetic field (IMF) and dextran 70 (10%). The experimental arrangement is consisting of ultrasonic transmitter and receiver probes placed in mutually perpendicular direction intersecting at the sampling volume of blood located at the centre of the blood column. The temporal kinetic process is represented in terms of histograms of amplitudes and number of scattering fluctuations related to the size and motion of aggregates. The results show that the application of IMF influences the aggregation and sedimentation of erythrocytes. The aggregates thus formed sediment faster than that of control sample. The aggregate formation and their movements in presence of dextran 70 are slower than that of normal blood which may be attributed to the enhanced suspending medium viscosity and their interaction with erythrocytes.  相似文献   

6.
The effect of the cryoprotectants DMSO and PEG-1500 as well as freezing-thawing on the proteins of the canine erythrocyte membrane-cytoskeleton complex was studied using the cross-linking agent diamide. It was shown that the intensity of disturbances in the protein network structure correlated with the increased SH-group accessibility for oxidative bridging by this compound and accordingly, enhanced formation of high-molecular-weight protein aggregates. The maximum level of diamide-induced aggregability was revealed upon freezing of erythrocytes in liquid nitrogen without cryoprotectant. Electrophoretic analysis of the ghosts of erythrocytes incubated with cryoprotectants showed a significant increase in the aggregation level only for the cells in the polymer solution. After the freezing-thawing cycle, the diamide-induced protein aggregability in erythrocytes cryopreserved with PEG-1500 strongly increased; when DMSO was used for cell protection, the aggregation was much less pronounced than in the unprotected cells. One can suppose that the exocellular cryoprotectant PEG-1500, as distinct from the endocellular cryoprotectant DMSO, is unable to provide for preservation of the structure of the membrane-cytoskeleton protein complex at a level necessary for the maintenance of cell integrity after the return to physiological conditions.  相似文献   

7.
Effect of pH on the velocity of erythrocyte aggregation   总被引:1,自引:0,他引:1  
N Maeda  M Seike  Y Suzuki  T Shiga 《Biorheology》1988,25(1-2):25-30
The effect of pH on the velocity of aggregation of human erythrocytes was quantitatively examined with a rheoscope combined with a video-camera, an image analyzer and a computer, in relation to the morphological changes of erythrocytes and their aggregates. (i) With increasing pH of the medium, the velocity of erythrocyte aggregation increased. (ii) The rouleaux formed at high pH were longer in shape and more stable against the increase of shear rate than those formed at low pH. (iii) With increasing pH, the diameter of erythrocyte increased, the (maximum) thickness decreased, and the cell volume decreased. The pH dependency of erythrocyte aggregation may be mainly due to the morphological change of erythrocytes, and partly due to the changes of erythrocyte deformability and of interaction with macromolecules.  相似文献   

8.
Lipid peroxidation which occurs in blood serum under ultraviolet irradiation was studied. The products of these reaction suppress ADP-induced aggregation of native platelets. The rouleaux-forming capacity increased after UV-irradiation of plasma and serum albumin. Under UV-irradiation the aggregates of albumin molecules are supposed to form the aggregates of albumin molecules which bind the erythrocytes in rouleaux.  相似文献   

9.
Pressure can restrain the heat-induced aggregation and dissociate the heat-induced aggregates. We investigated the aggregation-preventing pressure effect and the aggregates-dissociating pressure effect to characterize the heat-induced aggregation of equine serum albumin (ESA) by Fourier transform infrared spectroscopy. The results suggest that the alpha-helical structure collapses at the beginning of heat-induced aggregation, then the rearrangement of structure from partially unfolded structure to the intermolecular beta-sheet takes place through the activated state. We determined the activation volume for the heat-induced aggregation (DeltaV( not equal)=+92+/-8 ml mol(-1)) and the partial molar volume difference between native state and heat-induced aggregates (DeltaV(N-->HA)=+32 ml mol(-1)). This positive partial molar volume difference suggests that the heat-induced aggregates have larger internal voids than the native structure. Moreover, the positive volume change implies that the formation of the intermolecular beta-sheet is unfavorable under high pressure. We also determined the free energy profile of ESA. This energy profile explains the restriction of the formation of heat-induced aggregates by pressure. These results explain the structural differences between heat-induced aggregates with intermolecular beta-sheet and pressure-induced aggregates without intermolecular beta-sheet.  相似文献   

10.
Misfolding and misassembly of proteins are major problems in the biotechnology industry, in biochemical research, and in human disease. Here we describe a novel approach for reversing aggregation and increasing refolding by application of hydrostatic pressure. Using P22 tailspike protein as a model system, intermediates along the aggregation pathway were identified and quantitated by size-exclusion high-performance liquid chromatography (HPLC). Tailspike aggregates were subjected to hydrostatic pressures of 2.4 kbar (35,000 psi). This treatment dissociated the tailspike aggregates and resulted in increased formation of native trimers once pressure was released. Tailspike trimers refolded at these pressures were fully active for formation of infectious viral particles. This technique can facilitate conversion of aggregates to native proteins without addition of chaotropic agents, changes in buffer, or large-scale dilution of reagents required for traditional refolding methods. Our results also indicate that one or more intermediates at the junction between the folding and aggregation pathways is pressure sensitive. This finding supports the hypothesis that specific determinants of recognition exist for protein aggregation, and that these determinants are similar to those involved in folding to the native state. An increased understanding of this specificity should lead to improved refolding methods.  相似文献   

11.
In experiments of Wistar male rats, changes are studied of erythrocyte hematological, biochemical (activitities of transport ATPases), and rheological properties (capability for aggregation and deformability) 7 days after bloodletting of 12-15 % of the total blood mass. It has been shown that alongside with an elevation of erythrocyte volume and of the number of immature cells - reticulocytes, there was a statistically significant increase of Na,K-ATPase and Ca-ATPase activities in the whole erythrocytes and their membrane preparations - ghosts, the increment of activity in the case of Na,K-ATPase being essentially higher in the whole cells. This indicates the appearance of an enzyme activator inside the erythrocytes. There are also revealed a decrease of firmness of erythrocyte aggregates, a deceleration of spontaneous aggregation, and an increase of index of erythrocyte deformability. The conclusion is made that changes of erythrocyte rheological properties are interconnected with changes of the Na,K-ATPase activity and are directed to optimization of blood circulation in large vessels and capillary network.  相似文献   

12.
In experiments on Wistar male rats, changes are studied of erythrocyte hematological, biochemical (activities of transport ATPases), and rheological properties (capability for aggregation and deformability) 7 days after bloodletting of 12–15% of the total blood mass. It has been shown that alongside with an elevation of erythrocyte volume and of the number of immature cells—reticulocytes, there was a statistically significant increase of Na,K-ATPase and Ca-ATPase activities in the whole erythrocytes and in their membrane preparations—ghosts, the increment of activity in the case of Na,K-ATPase being essentially higher in the whole cells. This indicates the appearance of an enzyme activator inside the erythrocytes. There are also revealed a decrease of firmness of erythrocyte aggregates, a deceleration of spontaneous aggregation, and an increase of index of erythrocyte deformability. The conclusion is made that changes of erythrocyte rheological properties are interconnected with changes of the Na,K-ATPase activity and are aimed at optimization of blood circulation in large vessels and capillary network.  相似文献   

13.
The aggregation (especially the 'rouleau' formation) of human erythrocytes induced by polysaccharide and polyglutamic acid was quantitatively examined by using a low-shear rheoscope combined with a television image analyzer and a computer. (1) The morphological characteristics of rouleaux induced by these macromolecules are presented. (2) Polysaccharides with high molecular weights of 70 400 and 494 000 and poly(glutamic acids) with weights of 50 000 and 66 000 formed the rouleaux (then the three-dimensional aggregates). But polysaccharides with the low molecular weights of 10 300 and 42 500 and poly(glutamic acids) with weights of 8000 and 20 000 did not. The dependences of the velocity of rouleau formation on the macromolecule concentration and on the shear rate are shown. (3) The erythrocyte aggregation induced by high-molecular-weight polysaccharides was inhibited by low-molecular-weight polysaccharides and glucose, but was not affected by low-molecular-weight poly(glutamic acids). (4) The aggregation induced by high-molecular-weight poly(glutamic acids) was inhibited by poly(glutamic acid) with a molecular weight of 8000, but was accelerated by that of 20 000. The poly(glutamic acid)-induced aggregation was not affected by low-molecular-weight polysaccharides. (5) The stereochemical structure-dependent interaction (or the mode of bridging) of macromolecules with erythrocytes was stressed for the mechanism of erythrocyte aggregation.  相似文献   

14.
Smeller L  Rubens P  Heremans K 《Biochemistry》1999,38(12):3816-3820
This work demonstrates that pressure-induced partially unfolded states play a very important role in the aggregation of proteins. The high-pressure unfolding of horse heart metmyoglobin results in an intermediate form that shows a strong tendency to aggregate after pressure release. These aggregates are similar to those that are usually observed upon temperature denaturation. Infrared spectra in the amide I region indicate the formation of an intermolecular antiparallel beta-sheet stabilized by hydrogen bonding. The formation of the aggregates is temperature-dependent. Below 30 degrees C, no aggregation is taking place as seen from the infrared spectra. At 45 and 60 degrees C, two types of aggregates are formed: one that can be dissociated by moderate pressures and one that is pressure-insensitive. When precompressed at 5 degrees C, temperature-induced aggregation takes place at lower temperature (38 degrees C) than without pressure pretreatment (74 degrees C).  相似文献   

15.
16.
Perfluorocarbon (PFC) emulsions used as artificial oxygen carriers lack colloid osmotic pressure (COP) and must be administered with colloid‐based plasma expanders (PEs). Although PFC emulsions have been widely studied, there is limited information about PFC emulsion interaction with PEs and blood. Their interaction forms aggregates due to electrostatic and rheological phenomena, and change blood rheology and blood flow. This study analyzes the effects of the interaction between PFC emulsions with blood in the presence of clinically‐used PEs. The rheological behavior of the mixtures was analyzed in vitro in parallel with in vivo analysis of blood flow in the microcirculation using intravital microscopy, when PEs were administered in a clinically relevant scenario. The interaction between the PFC emulsion and PE with blood produced PFC droplets and red blood cell (RBCs) aggregation and increased blood viscosity in a shear dependent fashion. The PFC droplets formed aggregates when mixed with PEs containing electrolytes, and the aggregation increased with the electrolyte concentration. Mixtures of PFC with PEs that produced PFC aggregates also induced RCBs aggregation when mixed with blood, increasing blood viscosity at low shear rates. The more viscous suspension at low shear rates produced a blunted blood flow velocity profile in vivo compared to nonaggregating mixtures of PFC and PEs. For the PEs evaluated, human serum albumin produced minimal to undetectable aggregation. PFC and PEs interaction with blood can affect sections of the microcirculation with low shear rates (e.g., arterioles, venules, and pulmonary circulation) when used in a clinical setting, because persistent aggregates could cause capillary occlusion, decreased perfusion, pulmonary emboli or focal ischemia. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:796–807, 2013  相似文献   

17.
Under the action of supplemental calcium, H6 mouse embryonal carcinoma cell aggregates undergo compaction, a morphological phenomenon similar to mouse embryonic compaction. Formation of various types of cell junctions, especially gap junctions, is associated with compaction of the embryo and we sought to analyze the pattern of junction formation during aggregation and compaction of H6 cells. At 24 hr of aggregation, gap junctions were abundant in both uncompacted and compacted aggregates but quantitative analysis of freeze fracture replicas of these junctions showed a 20-fold increase in the size of the largest gap junctions in compacted aggregates. Such a difference in size could even be detected at 12 hr of aggregation. Tight junctions were not normally formed in 12 hr aggregates but initial stages of tight junction formation could be noticed in 12 hr compacted aggregates. More definitive tight junctions and desmosomes were evident only after 48 hr of aggregation. Thus we have observed that both uncompacted and compacted aggregates can form gap junctions at similar frequencies, suggesting that cell flattening, which contributes to the compacted morphology, is not a requisite for gap junctions. Likewise, generation of the compacted morphology seems to be independent of gap junction formation. This supports the idea that compaction in embryonal carcinoma cells results from calcium-induced cell flattening, probably through the mobilization of cytoskeletal elements. Calcium-dependent features of H6 cell aggregation and compaction enables the independent analysis of separate steps in compaction.  相似文献   

18.
The O2 sensor that triggers hypoxic pulmonary vasoconstriction may be sensitive not only to alveolar hypoxia but also to hypoxia in mixed venous blood. A specific test of the blood contribution would be to lower mixed venous PO2 (PvO2), which can be accomplished by increasing hemoglobin-O2 affinity. When we exchanged transfused rats with cyanate-treated erythrocytes [PO2 at 50% hemoglobin saturation (P50) = 21 Torr] or with Créteil erythrocytes (P50 = 13.1 Torr), we lowered PvO2 from 39 +/- 5 to 25 +/- 4 and to 14 +/- 4 Torr, respectively, without altering arterial blood gases or hemoglobin concentration. Right ventricular systolic pressure increased from 32 +/- 2 to 36 +/- 3 Torr with cyanate erythrocytes and to 44 +/- 5 Torr with Créteil erythrocytes. Cardiac output was unchanged. Control exchange transfusions with normal rat or 2,3-diphosphoglycerate-enriched human erythrocytes had no effect on PvO2 or right ventricular pressure. Alveolar hypoxia plus high O2 affinity blood caused a greater increase in right ventricular systolic pressure than either stimulus alone. We concluded that PvO2 is an important determinant of pulmonary vascular tone in the rat.  相似文献   

19.
The process of platelet aggregation as detected by turbidity changes in the platelet aggregometer was studied relative to light scattering by large particles. For latex beads a plot of light scattering intensity/unit mass versus particle size gave increased light scattering intensity for small particle sizes but decreased scattering at large particle size. This behavior is predicted by Rayleigh-Gans theory. These results were related to the platelet aggregometer, an optical instrument used to measure the association of small particles (monomeric platelets) to large particles (platelet aggregates). Formalin-fixed platelets do not show changes in light transmission due to energy-requiring processes, such as shape change, so that turbidity changes in the presence of aggregating agents could be attributed to a change in platelet aggregation state. Small platelet aggregates showed increased turbidity compared to a similar mass of monomeric platelets. In fact, very large platelet aggregates that were visible to the unaided eye were needed to produce a decrease in light scattering intensity. Thus, turbidity can either increase or decrease with platelet aggregation depending on the size of the aggregates. Studies of platelet aggregation that show no initial increase in turbidity must be characterized by dominance of large platelet aggregates and monomeric platelets.  相似文献   

20.
Pseudomonas aeruginosa strain PAO1 grew with the detergent sodium dodecyl sulfate (SDS). The growth started with the formation of macroscopic cell aggregates which consisted of respiring cells embedded in an extracellular matrix composed of acidic polysaccharides and DNA. Damaged and uncultivable cells accumulated in these aggregates compared to those cells that remained suspended. We investigated the response of suspended cells to SDS under different conditions. At high energy supply, the cells responded with a decrease in optical density and in viable counts, release of protein and DNA, and formation of macroscopic aggregates. This response was not observed if the energy supply was reduced by inhibiting respiration with KCN, or if cells not induced for SDS degradation were exposed to SDS. Exposure to SDS caused cell lysis without aggregation if cells were completely deprived of energy, either by applying anoxic conditions, by addition of CCCP, or by addition of KCN to a mutant defective in cyanide-insensitive respiration. Aggregated cells showed a more than 100-fold higher survival rate after exposure to SDS plus CCCP than suspended cells. Our results demonstrate that cell aggregation is an energy-dependent response of P. aeruginosa to detergent stress which might serve as a survival strategy during growth with SDS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号