首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The prothoracic gland (PG) has essential roles in synthesizing and secreting a steroid hormone called ecdysone that is critical for molting and metamorphosis of insects. However, little is known about the genes controlling ecdysteroidogenesis in the PG. To identify genes functioning in the PG of the silkworm, Bombyx mori, we used differential display PCR and focused on a cytochrome P450 gene designated Cyp307a1. Its expression level positively correlates with a change in the hemolymph ecdysteroid titer. In addition, Drosophila Cyp307a1 is encoded in the spook locus, one of the Halloween mutant family members showing a low ecdysone titer in vivo, suggesting that Cyp307a1 is involved in ecdysone synthesis. While Drosophila Cyp307a1 is expressed in the early embryos and adult ovaries, the expression is not observed in the PGs of embryos or third instar larvae. These results suggest a difference in the ecdysone synthesis pathways during larval development in these insects.  相似文献   

2.
The effect of xenobiotics (phenobarbital and atrazine) on the expression of Drosophila melanogaster CYP genes encoding cytochromes P450, a gene family generally associated with detoxification, was analyzed by DNA microarray hybridization and verified by real-time RT-PCR in adults of both sexes. Only a small subset of the 86 CYP genes was significantly induced by the xenobiotics. Eleven CYP genes and three glutathione S-transferases (GST) genes were significantly induced by phenobarbital, seven CYP and one GST gene were induced by atrazine. Cyp6d5, Cyp6w1, Cyp12d1 and the ecdysone-inducible Cyp6a2 were induced by both chemicals. The constitutive expression of several of the inducible genes (Cyp6a2, Cyp6a8, Cyp6d5, Cyp12d1) was higher in males than in females, and the induced level similar in both sexes. Thus, the level of induction was consistently higher in females than in males. The female-specific and hormonally regulated yolk protein genes were significantly induced by phenobarbital in males and repressed by atrazine in females. Our results suggest that the numerous CYP genes of Drosophila respond selectively to xenobiotics, providing the fly with an adaptive response to chemically adverse environments. The xenobiotic inducibility of some CYP genes previously associated with insecticide resistance in laboratory-selected strains (Cyp6a2, Cyp6a8, Cyp12d1) suggests that deregulation of P450 gene expression may be a facile way to achieve resistance. Our study also suggests that xenobiotic-induced changes in P450 levels can affect insect fitness by interfering with hormonally regulated networks.  相似文献   

3.
4.
In Drosophila melanogaster, the increased expression of Cyp6g1 results in resistance to chemically unrelated insecticides including DDT, neonicotinoids and insect growth regulator insecticides. To determine the insecticide resistance capacity of other D. melanogaster cytochrome P450s, we used the GAL4/UAS system to express individual P450s in the midgut, Malpighian tubules and fat body of transgenic flies. Drosophila over-expressing Cyp6g1, Cyp6g2, Cyp6t3, Cyp6a2, Cyp6a8, Cyp6a19, Cyp6a23 and Cyp12d1 were screened for resistance to four insecticides--DDT, nitenpyram, dicyclanil and diazinon. Increased survival on insecticides is detected for Cyp6g1 (DDT, nitenpyram and dicyclanil), Cyp6g2 (nitenpyram and diazinon) and Cyp12d1 (DDT and dicyclanil) over-expression lines. No increased survival on any insecticide was detected for flies over-expressing either Cyp6a2, Cyp6a8, Cyp6t3, Cyp6a19 or Cyp6a23.  相似文献   

5.
The sequencing of numerous insect genomes has revealed dynamic changes in the number and identity of cytochrome P450 genes in different insects. In the evolutionary sense, the rapid birth and death of many P450 genes is observed, with only a small number of P450 genes showing orthology between insects with sequenced genomes. It is likely that these conserved P450s function in conserved pathways. In this study, we demonstrate the P450 gene, Cyp301a1, present in all insect genomes sequenced to date, affects the formation of the adult cuticle in Drosophila melanogaster. A Cyp301a1 piggyBac insertion mutant and RNAi of Cyp301a1 both show a similar cuticle malformation phenotype, which can be reduced by 20-hydroxyecdysone, suggesting that Cyp301a1 is an important gene involved in the formation of the adult cuticle and may be involved in ecdysone regulation in this tissue.  相似文献   

6.
This study investigated the genotoxicity of Lapachol (LAP) evaluated by wing spot test of Drosophila melanogaster in the descendants from standard (ST) and high bioactivation (HB) crosses. This assay detects the loss of heterozygosity of marker genes expressed phenotypically on the fly's wings. Drosophila has extensive genetic homology to mammals, which makes it a suitable model organism for genotoxic investigations. Three-day-old larvae from ST crosses (females flr(3)/TM3, Bd(s) x males mwh/mwh), with basal levels of the cytochrome P450 and larvae of high metabolic bioactivity capacity (HB cross) (females ORR; flr(3)/TM3, Bd(s) x males mwh/mwh), were used. The results showed that LAP is a promutagen, exhibiting genotoxic activity in larvae from the HB cross. In other words, an increase in the frequency of spots is exclusive of individuals with a high level of the cytochrome P450. The results also indicate that recombinogenicity is the main genotoxic event induced by LAP.  相似文献   

7.
昆虫细胞色素P450研究的一些新进展   总被引:5,自引:0,他引:5  
报道了有关细胞色素P45 0研究的一些新发现。果蝇和冈比亚按蚊基因组测序的完成 ,使人类对昆虫P45 0的多样性有一完整的概念 ,已查明果蝇和冈比亚按蚊基因组中分别含有 90种和 1 1 1种P45 0基因。P45 0介导的果蝇对DDT的抗性被证明是Cyp6g1基因超量表达的结果。昆虫可以窃听植物分子信号 (水杨酸、茉莉酮酸 ) ,通过P45 0的诱导机制增强自身对植物防御物质的反防御能力。从分子水平上鉴定了 2个参与蜕皮素合成的线粒体P45 0基因。细胞色素P45 0在昆虫信息素降解中的作用得到鉴定。  相似文献   

8.
Insecticide resistance in laboratory selected Drosophila strains has been associated with upregulation of a range of different cytochrome P450s, however in recent field isolates of D. melanogaster resistance to DDT and other compounds is conferred by one P450 gene, Cyp6g1. Using microarray analysis of all Drosophila P450 genes, here we show that different P450 genes such as Cyp12d1 and Cyp6a8 can also be selected using DDT in the laboratory. We also show, however, that a homolog of Cyp6g1 is over-expressed in a field resistant strain of D. simulans. In order to determine why Cyp6g1 is so widely selected in the field we examine the pattern of cross-resistance of both resistant strains and transgenic flies over-expressing Cyp6g1 alone. We show that all three DDT selected P450s can confer resistance to the neonicotinoid imidacloprid but that Cyp6a8 confers no cross-resistance to malathion. Transgenic flies over-expressing Cyp6g1 also show cross-resistance to other neonicotinoids such as acetamiprid and nitenpyram. We suggest that the broad level of cross-resistance shown by Cyp6g1 may have facilitated its selection as a resistance gene in natural Drosophila populations.  相似文献   

9.
10.
11.
A cDNA clone for rat hepatic cytochrome P450 2c (gene product IIC11) was isolated and used to study the sex specificity, expression during development, and hormonal regulation of the mRNA encoding this protein in rat liver. P450 2c mRNA levels were about 16-fold higher in males than in females and were only slightly increased in male rats after administration of phenobarbital, a drug that dramatically raises the levels of mRNAs encoding several other members of the P450 II family. In contrast to the mRNA encoding P450 f (gene product IIC7), which increases gradually over the first 6 weeks of life, P450 2c mRNA showed a dramatic increase at puberty, between 4.5-5.5 weeks of life. The roles of sex steroids and GH in controlling this male-specific, developmentally regulated mRNA were then examined. A dependence on adult androgen was demonstrated by the 2- to 4-fold decrease in P-450 2c mRNA levels after castration of adult male rats and their restoration to normal by administration of the synthetic androgen methyltrienolone. Prolonged treatment (15 days) of ovariectomized female rats with this androgen also increased the levels of P450 2c mRNA and its encoded testosterone 16 alpha-hydroxylase to those of intact males. In male rats treated with estradiol valerate, mRNAs for P450 2c and alpha 2u-globulin, a major male-specific hepatic secretory protein that is under complex hormonal control, fell to negligible levels. None of these hormonal perturbations had a detectable effect on the levels of PB-1 (gene product IIC6) mRNA, which is not expressed in a sex-dependent manner.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
AA (arachidonic acid) hydroxylation to 20-HETE (20-hydroxyeicosatetraenoic acid) influences renal vascular and tubular function. To identify the CYP (cytochrome P450) isoforms catalysing this reaction in the mouse kidney, we analysed the substrate specificity of Cyp4a10, 4a12a, 4a12b and 4a14 and determined sex- and strain-specific expressions. All recombinant enzymes showed high lauric acid hydroxylase activities. Cyp4a12a and Cyp4a12b efficiently hydroxylated AA to 20-HETE with V(max) values of approx. 10 nmol x nmol(-1) x min(-1) and K(m) values of 20-40 microM. 20-Carboxyeicosatetraenoic acid occurred as a secondary metabolite. AA hydroxylase activities were approx. 25-75-fold lower with Cyp4a10 and not detectable with Cyp4a14. Cyp4a12a and Cyp4a12b also efficiently converted EPA (eicosapentaenoic acid) into 19/20-OH- and 17,18-epoxy-EPA. In male mice, renal microsomal AA hydroxylase activities ranged between approx. 100 (NMRI), 45-55 (FVB/N, 129 Sv/J and Balb/c) and 25 pmol x min(-1) x mg(-1) (C57BL/6). The activities correlated with differences in Cyp4a12a protein and mRNA levels. Treatment with 5alpha-dihydrotestosterone induced both 20-HETE production and Cyp4a12a expression more than 4-fold in male C57BL/6 mice. All female mice showed low AA hydroxylase activities (15-25 pmol x min(-1) x mg(-1)) and very low Cyp4a12a mRNA and protein levels, but high Cyp4a10 and Cyp4a14 expression. Renal Cyp4a12b mRNA expression was almost undetectable in both sexes of all strains. Thus Cyp4a12a is the predominant 20-HETE synthase in the mouse kidney. Cyp4a12a expression determines the sex- and strain-specific differences in 20-HETE generation and may explain sex and strain differences in the susceptibility to hypertension and target organ damage.  相似文献   

13.
We have reported recently the identification and characterization of the last three mitochondrial cytochrome P450 enzymes (CYP) controlling the biosynthesis of 20-hydroxyecdysone, the molting hormone of insects. These are encoded by the following genes: disembodied (dib, Cyp302a1, the 22-hydroxylase); shadow (sad, Cyp315a1, the 2-hydroxylase); and shade (shd, Cyp314a1, the 20-hydroxylase). Employing similar gene identification and transfection techniques and subsequent biochemical analysis of the expressed enzymatic activity, we report the identity of the Drosophila gene phantom (phm), located at 17D1 of the X chromosome, as encoding the microsomal 25-hydroxylase (Cyp306a1). Similar analysis following differential display-based gene identification has also resulted in the characterization of the corresponding 25-hydroxylase gene in Bombyx mori. Confirmation of 2,22,25-trideoxyecdysone (3beta,5beta-ketodiol) conversion to 2,22-dideoxyecdysone (3beta,5beta-ketotriol) mediated by either Phm enzyme employed LC, MS and definitive NMR analysis. In situ developmental gene analysis, in addition to northern, western and RT-PCR techniques during Drosophila embryonic, larval and adult development, are consistent with this identification. That is, strong expression of phm is restricted to the prothoracic gland cells of the Drosophila larval ring gland, where it undergoes dramatic changes in expression, and in the adult ovary, but also in the embryonic epidermis. During the last larval-larval transition in Bombyx, a similar expression pattern in the prothoracic gland is observed, but as in Drosophila, slight expression is also present in other tissues, suggesting a possible additional role for the phantom enzyme.  相似文献   

14.
Ecdysteroids mediate a wide variety of developmental and physiological events in insects. In the postembryonic development of insects, ecdysone is synthesized in the prothoracic gland (PG). Although many studies have revealed the biochemical and physiological properties of the enzymes for ecdysteroid biosynthesis, most of the molecular identities of these enzymes have not been elucidated. Here we describe an uncharacterized cytochrome P450 gene, designated Cyp306a1, that is essential for ecdysteroid biosynthesis in the PGs of the silkworm Bombyx mori and fruit fly Drosophila melanogaster. Using the microarray technique for analyzing gene expression profiles in PG cells during Bombyx development, we identified two PG-specific P450 genes whose temporal expression patterns are correlated with changes in ecdysteroid titer during development. Amino acid sequence analysis showed that one of the Bombyx P450 genes belongs to the CYP306A1 subfamily. The temporal and spatial expression pattern of the Drosophila Cyp306a1 homolog is essentially the same as that of Bombyx Cyp306a1. We also found that Drosophila Cyp306a1 is disrupted in the phantom (phm) mutant, known also as the Halloween mutant. The morphological defects and decreased expression of ecdysone-inducible genes in phm suggest that this mutant cannot produce a high titer of ecdysone. Finally we demonstrate that S2 cells transfected with Cyp306a1 convert ketodiol to ketotriol via carbon 25 hydroxylation. These results strongly suggest that CYP306A1 functions as a carbon 25 hydroxylase and has an essential role in ecdysteroid biosynthesis during insect development.  相似文献   

15.
The effects of exogenous hormone treatment on the expression of cytochromes P450 2C7 and P450 2C11 were studied in neonatally gonadectomized and sham-operated male and female rats. Hepatic levels of cytochrome P450 2C7 were found to be two- to threefold higher in intact adult female versus male rats. Neonatal gonadectomy resulted in a reversal of the relative cytochrome P450 2C7 levels in male and female animals at maturity. Expression of this isozyme was restored in ovariectomized females by estradiol treatment. Furthermore, neonatal and/or pubertal administration of estradiol to intact male rats induced cytochrome P450 2C7 to adult female levels. On the other hand, administration of testosterone at all times examined had no effect in intact female rats, but decreased cytochrome P450 2C7 to normal levels in neonatally castrated males treated during adulthood. Neonatal testosterone treatment also increased hepatic cytochrome P450 2C7 content in both ovariectomized females and intact males. These results indicate that estrogen is required for full expression of cytochrome P450 2C7 while the effect of testosterone is ambiguous. In comparison, neonatal gonadectomy of male rats abolished the adult expression of cytochrome P450 2C11. Normal levels were restored only by treatment with testosterone during adulthood. Neonatal testosterone treatment did not induce cytochrome P450 2C11 levels in gonadectomized rats of either sex. In contrast, neonatal estrogen treatment suppressed cytochrome P450 2C11 expression in intact adult male rats to the same extent as neonatal castration. These results indicate that androgen exposure during the adult, and not the neonatal, phase is essential for full expression of cytochrome P450 2C11.  相似文献   

16.
17.
Yellow perch (Perca flavescens) exhibits an estrogen-stimulated sexual size dimorphism (SSD) wherein females grow faster and larger than males. To aid in the examination of this phenomenon, the cDNA sequences encoding estrogen receptor-alpha (esr1), estrogen receptor-betaa (esr2a) and ovarian aromatase (cyp19a1a) for the teleost yellow perch were obtained. Several tissues were analyzed from both male and female adult yellow perch for sex-specific tissue expression. The full length cDNAs of yellow perch esr1, esr2a and cyp19a1a consist of 3052 bp, 2462 bp and 1859 bp with open reading frames encoding putative proteins of 576 amino acids, 555 amino acids and 518 amino acids, respectively. Esr1 and esr2a expression was highest in female ovary and liver tissues with low to moderate expression in other tissues. Esr2a showed a more global tissue expression pattern than esr1, particularly in males but also in females. Cyp19a1a expression was highest in both male and female spleen tissue and oocytes with moderate expression in male pituitary and gill tissue. Cyp19a1a expression was moderately high in female liver tissue with undetectable expression in male liver tissue, suggesting its involvement in sexually dimorphic growth. These sequences are valuable molecular tools that can be used in future studies investigating estrogen mechanisms and actions, such as SSD, in yellow perch.  相似文献   

18.
19.
The hepatic metabolism of steroid hormones and of xenobiotics frequently depends on the expression of the sex-specific isoforms of cytochrome P-450 and on differences in sex hormones. Following biochemical, immunological and molecular biological investigations, it was shown that in adult rat liver there exist at least four male-specific and one female-specific isoforms of cytochrome P-450. The designation of these sex-specific genes is IIC11, IIIA2, IIC13 and IIA2 in males, and IIC12 in females. The irreversible programming of the expression of these isoforms of cytochrome P-450 in adulthood occurs during the perinatal period of life, and is named enzyme imprinting. One of the main factors that regulates the expression of the sex-specific isoforms of cytochrome P-450 is the level of androgens in the blood. Castration of adult rats decreased the level of the male isoforms of cytochrome P-450 and the activity of the monooxygenase enzyme system that remained higher than in intact females. The mechanism of enzyme imprinting can be explained as follows: neonatal androgens program the secretion of hypothalamic hormones, somatostatin and growth-hormone-releasing factor. These factors determine the type of growth hormone secretion in adult rats, and this controls the type of sex-specific isoforms of cytochrome P-450 expressed in adulthood. Metabolic regulation similar to that outlined above was shown to occur for several metabolism-dependent chemical carcinogens. Such a pathway may explain the different sensitivity displayed by male and female rats to treatment with these carcinogenic agents. One possible way of modulating the expression of some isoforms of cytochrome P-450 in adult rats is by treating neonates with specific xenobiotics that change the constitutive expression of neonatal androgens. It appears that this enzyme imprinting plays an important role in determining the individual sensitivity to the carcinogenic effects of chemicals.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号