首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract A stainless steel cylinder filled with soil was flushed upstream with a H2/CO2/air mixture. The consequence was a strong enrichment of the aerobic, autotrophic hydrogen-oxidising microflora, which reached densities enabling them to oxidize 84.5 ml H2· dm−2· h−1 in the first 25-cm layer. H2 concentration profiles, hydrogen uptake activity and cell numbers correlated well with each other. Most of the organisms isolated were dinitrogen fixers. Thus, soils containing hydrogen-oxidising bacteria may act as a biological shield between H2-rich environments and air, and may be utilized as biofilters, e.g., in the waste-processing industry.  相似文献   

2.
3.
Neuropeptide Y (NPY) and NPY receptors are widely distributed in the CNS, including the retina, but the role of NPY in the retina is largely unknown. The aim of this study was to investigate whether NPY modulates intracellular calcium concentration ([Ca2+]i) changes in retinal neurons and identify the NPY receptors involved. As NPY decreased the [Ca2+]i amplitudes evoked by 30 mM KCl in only 50% of neurons analyzed, we divided them in two populations: NPY-non-responsive neurons (Δ2/Δ1 ≥ 0.80) and NPY-responsive neurons (Δ2/Δ1 < 0.80), being the Δ2/Δ1 the ratio between the amplitude of [Ca2+]i increase evoked by the second (Δ2) and the first (Δ1) stimuli of KCl. The NPY Y1/Y5, Y4, and Y5 receptor agonists (100 nM), but not the Y2 receptor agonist (300 nM), inhibited the [Ca2+]i increase induced by KCl. In addition, the inhibitory effect of NPY on evoked-[Ca2+]i changes was reduced in the presence of the Y1 or the Y5 receptor antagonists. In conclusion, NPY inhibits KCl-evoked [Ca2+]i increase in retinal neurons through the activation of NPY Y1, Y4, and Y5 receptors. This effect may be viewed as a potential neuroprotective mechanism of NPY against retinal neurodegeneration.  相似文献   

4.
The (C2H4+ H2(C2H2))/15N2 ratios of 15 clover- Rhizobium symbionts. soybean, and black medick symbionts were measured. Relative efficiency based on the C2H4 production and on 15N2 incorporation were compared, and in most symbionts there was little difference between the two measures of relative efficiency. Total measurable electron flux through nitrogenase during acetylene reduction and 15N2 incorporation were nearly equal for most symbionts studied. The relative efficiency and the (C2H4+ H2(C2H2))/15N2 ratio showed an inverse correlation. Use of this ratio appears preferable to use of the ratio of C2H2 reduction/N2 reduction. Some evolution of H2 was observed in the presence of C2H2.  相似文献   

5.
6.
The quantitative relationship between C2H2 reduction, H2 evolution and 15N2 fixation was investigated in excised root nodules from pea plants ( Pisum sativum L. cv. Bodil) grown under controlled conditions. The C2H2/N2 conversion factor varied from 3.31 to 5.12 between the 32nd and the 67th day after planting. After correction for H2 evolution in air, the factor (C2H2-H2)/N2 decreased to values near the theoretical value 3, or in one case to a value significantly ( P < 0.05) below 3. The proportion of the total electron flow through nitrogenase, which is not wasted in H2 production but used for N2 reduction, is often stated as the relative efficiency (1-H2/C2H2). This factor varied significantly ( P < 0.05) during the growth period. The actual allocation of electrons to H2 and N2, expressed as the H2/N2 ratio, was independent of plant age, however. This discrepancy and the observation that the (C2H2-H2)/N2 conversion factor tended to be lower than 3, suggests that the C2H2reduction assay underestimates the total electron flow through nitrogenase.  相似文献   

7.
Abstract A 16-channel fully automated microcomputer-based system was designed to measure the disappearance of NO?3 NO?2 and NH+4 simultaneously from uptake solutions. The analyses were done using high-performance liquid chromatography. Statistical procedures were used to generate transport kinetics and interactions amongst NO?3, NO?2 and NH+4 by intact wheat seedlings. The simultaneous analysis of NO?3, NO?2 and NH+4 at real-time; the accommodation of varying sampling intervals; the capability to study up to 16 experimental units in synchrony; and the analysis of the data with a microcomputer, make this a powerful system for studying transport kinetics and interactions.  相似文献   

8.
9.
Immediate export in leaves of C3‐C4 intermediates were compared with their C3 and C4 relatives within the Panicum and Flaveria genera. At 35 Pa CO2, photosynthesis and export were highest in C4 species in each genera. Within the Panicum, photosynthesis and export in ‘type I’ C3‐C4 intermediates were greater than those in C3 species. However, ‘type I’ C3‐C4 intermediates exported a similar proportion of newly fixed 14C as did C4 species. Within the Flaveria, ‘type II’ C3‐C4 intermediate species had the lowest export rather than the C3 species. At ambient CO2, immediate export was strongly correlated with photosynthesis. However, at 90 Pa CO2, when photosynthesis and immediate export increased in all C3 and C3‐C4 intermediate species, proportionally less C was exported in all photosynthetic types than that at ambient CO2. All species accumulated starch and sugars at both CO2 levels. There was no correlation between immediate export and the pattern of 14C‐labelling into sugars and starch among the photosynthetic types within each genus. However, during CO2 enrichment, C4Panicum species accumulated sugars above the level of sugars and starch normally made at ambient CO2, whereas the C4Flaveria species accumulated only additional starch.  相似文献   

10.
11.
IRON REQUIREMENTS OF C3 AND C4 PLANTS   总被引:1,自引:1,他引:0  
  相似文献   

12.
1 In a glasshouse experiment we studied the effect of raised CO2 concentration (720 p.p.m.) on CH4 emission at natural boreal peat temperatures using intact cores of boreal peat with living vascular plants and Sphagnum mosses. After the end of the growing season half of the cores were kept unnaturally warm (17–20 °C). The potential for CH4 production and oxidation was measured at the end of the emission experiment.
2 The vascular cores ('Sedge') consisted of a moss layer with sedges, and the moss cores (' Sphagnum ') of Sphagnum mosses (some sedge seedlings were removed by cutting). Methane efflux was 6–12 times higher from the Sedge cores than from the Sphagnum cores. The release of CH 4 from Sedge cores increased with increasing temperature of the peat and decreased with decreasing temperature. Methane efflux from Sphagnum cores was quite stable independent of the peat temperatures.
3 In both Sedge and Sphagnum samples, CO2 treatment doubled the potential CH4 production but had no effect on the potential CH4 oxidation. A raised concentration of CO2 increased CH4 efflux weakly and only at the highest peat temperatures (17–20 °C).
4 The results suggest that in cool regions, such as boreal wetlands, temperature would restrict decomposition of the extra substrates probably derived from enhanced primary production of mire vegetation under raised CO2 concentrations, and would thus retard any consequent increase in CH4 emission.  相似文献   

13.
Neurochemical studies were performed on synaptosomal membranes from cats with GM1 or GM2 gangliosidosis to examine possible mechanisms of neuronal dysfunction in these disorders. The basic hypothesis tested was that deficient ganglioside catabolism causes increased ganglioside content of synaptosomal plasma membrane which in turn disrupts normal function. Fluidity characteristics of synaptosomal membranes were examined using fluorescence polarization. Results showed markedly reduced membrane fluidity in both GM1 and GM2 gangliosidosis. These results were supported by a second study which revealed that isolated synaptosomal membranes of GM1 gangliosidosis cats had a 24-fold increase in total ganglioside content caused predominantly by excess GM1, a 2.3-fold increased cholesterol content, and a 1.4-fold increased phospholipid content. Finally, kinetic analysis of synaptosomal plasma membrane Na+,K+-ATPase from cats with GM1 gangliosidosis showed negligible differences in kinetic parameters compared with controls. Thus, the enzyme appeared protected from the global membrane changes in fluidity and composition. These observations provide evidence for a pathogenetic mechanism of neuronal dysfunction in the gangliosidoses while demonstrating protection of certain vital functional components, such as Na+,K+-ATPase.  相似文献   

14.
Comparative ecophysiology of C3 and C4 plants   总被引:2,自引:3,他引:2  
Abstract. In this review we relate the physiological significance of C4 photosynthesis to plant performance in nature. We begin with an examination of the physiological consequences of the C4 pathway on photosynthesis, then discuss the ecophysiological performance of C4 plants in contrasting environments. We then compare the performance of C3 and C4 plants when they occur together in similar habitats, and finally discuss the distribution of C4 photosynthesis with respect to the physical environment, phylogeny, and life form.  相似文献   

15.
16.
Stomatal function mediates physiological trade‐offs associated with maintaining a favourable H2O balance in leaf tissues while acquiring CO2 as a photosynthetic substrate. The C3 and C4 species appear to have different patterns of stomatal response to changing light conditions, and variation in this behaviour may have played a role in the functional diversification of the different photosynthetic pathways. In the current study, we used gain analysis theory to characterize the stomatal conductance response to light intensity in nine different C3, C4 and C3‐C4 intermediate species Flaveria species. The response of stomatal conductance (gs) to a change in light intensity represents both a direct (related to a change in incident light intensity, I) and indirect (related to a change in intercellular CO2 concentration, Ci) response. The slope of the line relating the change in gs to Ci was steeper in C4 species, compared with C3 species, with C3‐C4 species having an intermediate response. This response reflects the greater relative contribution of the indirect versus direct component of the gs versus I response in the C4 species. The C3‐C4 species, Flaveria floridana, exhibited a C4‐like response whereas the C3‐C4 species, Flaveria sonorensis and Flaveria chloraefolia, exhibited C3‐like responses, similar to their hypothesized position along the evolutionary trajectory of the development of C4 photosynthesis. There was a positive correlation between the relative contribution of the indirect component of the gs versus I response and water use efficiency when evaluated across all species. Assuming that the C3‐C4 intermediate species reflect an evolutionary progression from fully expressed C3 ancestors, the results of the current study demonstrate an increase in the contribution of the indirect component of the gs versus I response as taxa evolve toward the C4 extreme. The greater relative contribution of the indirect component of the stomatal response occurs through both increases in the indirect stomatal components and through decreases in the direct. Increases in the magnitude of the indirect component may be related to the maintenance of higher water use efficiencies in the intermediate evolutionary stages, before the appearance of fully integrated C4 photosynthesis.  相似文献   

17.
Abstract: The presence of prostaglandins D2, E2, and F was demonstrated and their contents measured in various regions of postmortem human brain, pineal body, and pituitary by using specific radioimmunoassays and gas chromatography-mass spectrometry. The three prostaglandins were widely distributed in similar concentrations ranging from several hundred pg/g wet weight to about 40 ng/g wet weight. Prostaglandins D2 and E2 showed consistent and similar regional distributions in all six brains tested; amounts were high in pineal body, pituitary, olfactory bulb, and hypothalamus. On the other hand, prostaglandin F was distributed more evenly. Prosta- glandin D synthetase and prostaglandin E synthetase activities were found in cerebrum homogenate from a single subject and were recovered from the 100,000 × g supernatant. The presence of 1 m M glutathione, reduced form, markedly stimulated the activity of prostaglandin E synthetase, but did not affect prostaglandin D synthetase activity. Activity of 15-hydroxyprostaglandin dehydrogenase was found in the cerebrum homogenate and was partially purified. This enzyme required NADP as a cofactor and copurified with prostaglandin E 9-ketoreductase.  相似文献   

18.
The effect of environmental factors on the post-illumination burst of CO2 (PIB) and O2 inhibition of apparent photosynthesis (APS) in wheat (Triticum aestivum L.) was studied in an open gas exchange system utilizing the mathematics of non-steady-state systems. Two components of inhibition by O2 are suggested: one is caused by photorespiration as measured from the maximum rate of the PIB, and the second is direct inhibition as taken as APS2%O2— (APSx%O2+ PIBx%O2) where X is the oxygen concentration. A primary PIB which occurred from 16–28 s after the darkening of the foliage was attributed to photorespiration. No primary PIB was observed at 2% O2. At a CO2 concentration of 100 μ/1 in the atmosphere (about 2.5 μM based on leaf intercellular concentration) and at 30°C and 145 nE/cm2 nE/cm2·s, APS decreased curve-linearly with increasing O2 and reached an O2 compensation point of 560 μM (48% by volume), above which there was a net loss of CO2 in the light. The PIB increased with increasing O2 and became saturated at about 500 μM O2 but decreased above 900 μM O2. Direct inhibition of photosynthesis by O2 increased with increasing O2 concentration. Decreasing CO2 concentration had an effect on the magnitude of the PIB similar to that of increasing O2. At 30°C and 21% O2, the PIB increased with decreasing CO2 down to the CO2 compensation point (I) of 1.4 μM (47 μM/l). Below Γ, both PIB and CO2 evolution into the air in the light (at 21% O2) increased and then decreased at CO2 below 0.8 μM. The ratio of the PIB to APS2% o O2 increased linearly with increasing O2/CO2 ratio where O2 was held constant at 21% and CO2 was varied from 1.4 to 8.5 μM, while direct inhibition of photosynthesis expressed as a proportion of APS2%O2 remained constant over this range. At low CO2 concentration photorespiration as estimated by the PIB is the major part of O2 photosynthesis, while at atmospheric CO2 levels, direct inhibition is the major component. The PIB and APS at 2% and 21% O2 increased hyperbolically with increasing irradiance and all became light-saturated at about 65 nE/cm2 s. The percentage total O2 inhibition of photosynthesis remained constant with increasing irradiance as did the relative contribution of direct O2 inhibition or photorespiration (PIB) to total O2 inhibition. The PIB and APS at 21% O2 had similar temperature optima of 30°C when experimental conditions were adjusted to provide a constant internal O2/CO2 solubility ratio at varying temperatures. However, with a constant external CO2 concentration, the temperature optimum for the PIB shifted upward to 35°C while that for APS at 21% O2 remained at 30°C, which may be due to an increased O2/CO2 concentration in the leaf with increasing temperature.  相似文献   

19.
The role of a recently identified K+ATP channel in preventing H2O2 formation was examined in isolated pea stem mitochondria. The succinate-dependent H2O2 formation was progressively inhibited, when mitochondria were resuspended in media containing increasing concentration of KCl (from 0.05 to 0.15  M ). This inhibition was linked to a partial dissipation of the transmembrane electrical potential (ΔΨ) induced by KCl. Conversely, the malate plus glutamate-dependent H2O2 formation was not influenced. The succinate-sustained H2O2 generation was also unaffected by nigericin (a H+/K+ exchanger), but completely prevented by valinomycin (a K+ ionophore). In addition, cyclosporin A (a K+ATP channel opener) inhibited this H2O2 formation, while ATP (an inhibitor of the channel opening) slightly increased it. The inhibitory effect of ATP was strongly stimulated in the presence of atractylate (an inhibitor of the adenine nucleotide translocase), thus suggesting that the receptor for ATP on the K+ channel faces the intermembrane space. Finally, the succinate-dependent H2O2 formation was partially prevented by phenylarsine oxide (a thiol oxidant).  相似文献   

20.
The relation between light-induced electron transport with NO3?, NO2? or CO2 as acceptors, ATP pools and transients in dark-light-dark transitions, and phosphate uptake was examined in phosphorus-starved cells of Scenedesmus obtusiusculus Chod. Net O2 evolution at saturating light was around 6 μmol × (mg chlorophyll × h)?1 in the absence of any acceptor, but reached average rates of 21, 65 and 145 μmol × (mg chlorophyll × h)?1 upon additions of 5 mM KNO3, KNO2 and KHCO3, respectively. The apparent rate of photophosphorylation in transition experiments was only a few percent of the rate calculated from CO2-dependent O2 evolution. Blocking non-cyclic electron transport with DCMU inhibited phosphate assimilation, but acceleration of non-cyclic electron flow by addition of NO3? or NO2? did not stimulate phosphate assimilation as compared to the situation without an acceptor. A functional non-cyclic system might primarily be needed for an efficient shuttle transfer of ATP from the chloroplast to the cytoplasm. An inhibition of the non-cyclic system due to lack of reducible substrates accelerates the cyclic system and thus indicates a regulation mechanism between the two systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号