首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Selection on pathogens tends to favour the evolution of growth and reproductive rates and a concomitant level of virulence (damage done to the host) that maximizes pathogen fitness. Yet, because hosts often pose varying selective environments to pathogens, one level of virulence may not be appropriate for all host types. Indeed, if a level of virulence confers high fitness to the pathogen in one host phenotype but low fitness in another host phenotype, alternative virulence strategies may be maintained in the pathogen population. Such strategies can occur either as polymorphism, where different strains of pathogen evolve specialized virulence strategies in different host phenotypes or as polyphenism, where pathogens facultatively express alternative virulence strategies depending on host phenotype. Polymorphism potentially leads to specialist pathogens capable of infecting a limited range of host phenotypes, whereas polyphenism potentially leads to generalist pathogens capable of infecting a wider range of hosts. Evaluating how variation among hosts affects virulence evolution can provide insight into pathogen diversity and is critical in determining how host pathogen interactions affect the phenotypic evolution of both hosts and pathogens.  相似文献   

2.
3.
Manipulation of rab GTPase function by intracellular bacterial pathogens.   总被引:1,自引:0,他引:1  
Intracellular bacterial pathogens have evolved highly specialized mechanisms to enter and survive within their eukaryotic hosts. In order to do this, bacterial pathogens need to avoid host cell degradation and obtain nutrients and biosynthetic precursors, as well as evade detection by the host immune system. To create an intracellular niche that is favorable for replication, some intracellular pathogens inhibit the maturation of the phagosome or exit the endocytic pathway by modifying the identity of their phagosome through the exploitation of host cell trafficking pathways. In eukaryotic cells, organelle identity is determined, in part, by the composition of active Rab GTPases on the membranes of each organelle. This review describes our current understanding of how selected bacterial pathogens regulate host trafficking pathways by the selective inclusion or retention of Rab GTPases on membranes of the vacuoles that they occupy in host cells during infection.  相似文献   

4.
《Trends in microbiology》2023,31(5):468-479
Apoptosis, necrosis, or autophagy are diverse types of regulated cell death (RCD), recognized as the strategies that host cells use to defend against pathogens such as viruses, bacteria, or fungi. Pathogens can induce or block different types of host cell RCD, promoting propagation or evading host immune surveillance. Ferroptosis is a newly identified RCD. Evidence has demonstrated how pathogens regulate ferroptosis to promote their replication, dissemination, and pathogenesis. However, the interaction between ferroptosis and pathogenic infections still needs to be completely elucidated. This review summarizes the advances in the interaction between pathogenic infections and host ferroptotic processes, focusing on the underlying mechanisms of how pathogens exploit ferroptosis, and discussing possible therapeutic measures against pathogen-associated diseases in a ferroptosis-dependent manner.  相似文献   

5.
Characterization of host-pathogen interactions is a fundamental approach in microbiological and immunological oriented disciplines. It is commonly accepted that host cells start to change their phenotype after engulfing pathogens. Techniques such as real time PCR or ELISA were used to characterize the genes encoding proteins that are associated either with pathogen elimination or immune escape mechanisms. Most of such studies were performed in vitro using primary host cells or cell lines. Consequently, the data generated with such approaches reflect the global RNA expression or protein amount recovered from all cells in culture. This is justified when all host cells harbor an equal amount of pathogens under experimental conditions. However, the uptake of pathogens by phagocytic cells is not synchronized. Consequently, there are host cells incorporating different amounts of pathogens that might result in distinct pathogen-induced protein biosynthesis. Therefore, we established a technique able to detect and quantify the number of pathogens in the corresponding host cells using immunofluorescence-based high throughput analysis. Paired with multicolor staining of molecules of interest it is now possible to analyze the infection profile of host cell populations and the corresponding phenotype of the host cells as a result of parasite load.  相似文献   

6.
方仁东  雷桂花  彭远义 《微生物学报》2017,57(10):1421-1433
炎症小体(Inflammasome)是细胞质中多种蛋白组装成的复合物,炎症小体的激活能活化半胱天冬酶-1(caspase-1),进而引起系列促炎细胞因子的成熟与分泌和诱导细胞焦亡。当病原体感染时,炎症小体的激活在宿主天然免疫应答中起重要作用。大量研究表明,多数情况下炎症小体对宿主起保护作用,仅少数情况下保护作用不明显或表现出有利于病原体生存的一面。在长期进化中,病原体也发展出逃避宿主炎症小体作用的策略。病原体可直接抑制炎症小体的激活或减弱炎症小体的作用。本文从病原体感染宿主中炎症小体的作用及病原体对宿主炎性症小体的逃避机制两方面对二者相互作用的最新研究进展进行综述。  相似文献   

7.
Pathogens that colonize or infect the human body have to face varying oxygen concentrations within different organs. Inflammation itself promotes oxygen consumption within affected tissues and creates a low oxygen environment. As a consequence, pathogens and the host immune system have to adapt to rapid changes in oxygen availability. Here we summarize recent findings on the adaptation of pathogens, host defense mechanisms and treatment strategies against intracellular pathogens in a low oxygen environment.  相似文献   

8.
Microbial access to host nutrients is a fundamental aspect of infectious diseases. Pathogens face complex dynamic nutritional host microenvironments that change with increasing inflammation and local hypoxia. Since the host can actively limit microbial access to nutrient supply, pathogens have evolved various metabolic adaptations to successfully exploit available host nutrients for proliferation. Recent studies have unraveled an emerging paradigm that we propose to designate as ‘nutritional virulence’. This paradigm is based on specific virulence mechanisms that target major host biosynthetic and degradation pathways (proteasomes, autophagy and lysosomes) or nutrient‐rich sources, such as glutathione, to enhance host supply of limiting nutrients, such as cysteine. Although Cys is the most limiting cellular amino acid, it is a metabolically favourable source of carbon and energy for various pathogens that are auxotrophic for Cys but utilize idiosyncratic nutritional virulence strategies to generate a gratuitous supply of host Cys. Therefore, proliferation of some intracellular pathogens is restricted by a host nutritional rheostat regulated by certain limiting amino acids, and pathogens have evolved idiosyncratic strategies to short circuit the host nutritional rheostat. Deciphering mechanisms of microbial ‘nutritional virulence’ and metabolism in vivo will facilitate identification of novel microbialand host targets for treatment and prevention of infectious diseases. Host–pathogen synchronization of amino acid auxotrophy indicates that this nutritional synchronization has been a major driving force in the evolution of many intracellular bacterial pathogens.  相似文献   

9.
In natural systems, host species are often co-infected by multiple pathogen species, and recent work has suggested that many pathogens can infect a wide range of host species. An important question therefore is what determines the host range of a pathogen and the community of pathogens found within a given host species. Using primates as a model, we show that infectious diseases are more often shared between species that are closely related and inhabit the same geographical region. We find that host relatedness is the best overall predictor of whether two host species share the same pathogens. A higher frequency of pathogen host shifts between close relatives or inheritance of pathogens from a common ancestor may explain this result. For viruses, geographical overlap among neighbouring primate hosts is more important in determining host range. We suggest this is because rapid evolution within viral lineages allows host jumps across larger evolutionary distances. We also show that the phylogenetic pattern of pathogen sharing with humans is the same as that between wild primates. For humans, this means we share a higher proportion of pathogens with the great apes, including chimpanzees and gorillas, because these species are our closest relatives.  相似文献   

10.
Common themes in microbial pathogenicity revisited.   总被引:22,自引:0,他引:22       下载免费PDF全文
Bacterial pathogens employ a number of genetic strategies to cause infection and, occasionally, disease in their hosts. Many of these virulence factors and their regulatory elements can be divided into a smaller number of groups based on the conservation of similar mechanisms. These common themes are found throughout bacterial virulence factors. For example, there are only a few general types of toxins, despite a large number of host targets. Similarly, there are only a few conserved ways to build the bacterial pilus and nonpilus adhesins used by pathogens to adhere to host substrates. Bacterial entry into host cells (invasion) is a complex mechanism. However, several common invasion themes exist in diverse microorganisms. Similarly, once inside a host cell, pathogens have a limited number of ways to ensure their survival, whether remaining within a host vacuole or by escaping into the cytoplasm. Avoidance of the host immune defenses is key to the success of a pathogen. Several common themes again are employed, including antigenic variation, camouflage by binding host molecules, and enzymatic degradation of host immune components. Most virulence factors are found on the bacterial surface or secreted into their immediate environment, yet virulence factors operate through a relatively small number of microbial secretion systems. The expression of bacterial pathogenicity is dependent upon complex regulatory circuits. However, pathogens use only a small number of biochemical families to express distinct functional factors at the appropriate time that causes infection. Finally, virulence factors maintained on mobile genetic elements and pathogenicity islands ensure that new strains of pathogens evolve constantly. Comprehension of these common themes in microbial pathogenicity is critical to the understanding and study of bacterial virulence mechanisms and to the development of new "anti-virulence" agents, which are so desperately needed to replace antibiotics.  相似文献   

11.
Pathogens that infect multiple hosts are commonly transmitted by vectors, and their transmission rate is often thought to depend on the proportion of hosts or vectors infected (i.e., frequency dependence). A model of a two-host, one-pathogen system with frequency-dependent transmission is used to investigate how sharing a pathogen with an alternative host influences pathogen-mediated extinction. The results show that if there is frequency-dependent transmission, a host can be rescued from pathogen-mediated extinction by the presence of a second host with which it shares a pathogen. The study provides an important conceptual counterexample to the idea that shared pathogens necessarily result in apparent competition by showing that shared pathogens can mediate apparent mutualism. We distinguish two types of dilution effect (pathogen reduction with increasing host diversity), each resulting from different underlying pathogen transmission processes and host density effects. These results have important consequences for understanding the role of pathogens in species interactions and in maintaining host species diversity.  相似文献   

12.
Bacterial pathogens have evolved by combinations of gene acquisition, deletion, and modification, which increases their fitness. Additionally, bacteria are able to evolve in "quantum leaps" via the ability to promiscuously acquire new genes. Many bacterial pathogens - especially Gram-negative enteric pathogens - have evolved mechanisms by which to subvert signal transduction pathways of eukaryotic cells by expressing genes that mimic or regulate host protein factors involved in a variety of signaling cascades. This results in the ability to cause diseases ranging from tumor formation in plants to gastroenteritis and bubonic plague. Here, we present recent advances on mechanisms of bacterial pathogen evolution, including specific signaling cascades targeted by their virulence genes with an emphasis on the ubiquitin modification system, Rho GTPase regulators, cytoskeletal modulators, and host innate immunity. We also comment briefly on evolution of host defense mechanisms in place that limit disease caused by bacterial pathogens.  相似文献   

13.
The host ranges of plant pathogens and herbivores are phylogenetically constrained, so that closely related plant species are more likely to share pests and pathogens. Here we conducted a reanalysis of data from published experimental studies to test whether the severity of host-enemy interactions follows a similar phylogenetic signal. The impact of herbivores and pathogens on their host plants declined steadily with phylogenetic distance from the most severely affected focal hosts. The steepness of this phylogenetic signal was similar to that previously measured for binary-response host ranges. Enemy behavior and development showed similar, but weaker phylogenetic signal, with oviposition and growth rates declining with evolutionary distance from optimal hosts. Phylogenetic distance is an informative surrogate for estimating the likely impacts of a pest or pathogen on potential plant hosts, and may be particularly useful in early assessing risk from emergent plant pests, where critical decisions must be made with incomplete host records.  相似文献   

14.
Finlay BB  McFadden G 《Cell》2006,124(4):767-782
Multicellular organisms possess very sophisticated defense mechanisms that are designed to effectively counter the continual microbial insult of the environment within the vertebrate host. However, successful microbial pathogens have in turn evolved complex and efficient methods to overcome innate and adaptive immune mechanisms, which can result in disease or chronic infections. Although the various virulence strategies used by viral and bacterial pathogens are numerous, there are several general mechanisms that are used to subvert and exploit immune systems that are shared between these diverse microbial pathogens. The success of each pathogen is directly dependant on its ability to mount an effective anti-immune response within the infected host, which can ultimately result in acute disease, chronic infection, or pathogen clearance. In this review, we highlight and compare some of the many molecular mechanisms that bacterial and viral pathogens use to evade host immune defenses.  相似文献   

15.
Infection by enteric bacterial pathogens activates pathogen recognition receptors, leading to innate responses that promote host defence. While responses that promote host 'resistance' to infection, through the release of antimicrobial mediators, or the recruitment of inflammatory cells aimed at clearing the infection are best known, recent studies have begun to identify additional innate driven responses that instead promote intestinal tissue repair and host survival. Described as infection 'tolerance' responses, we and others have primarily studied these responses in the Citrobacter rodentium infection model. In this review we discuss the impact of innate resistance mechanisms on host defence, and describe how 'tolerance' responses act primarily on the intestinal epithelium, triggering epithelial cell proliferation, repair or promoting barrier function. Resistance and tolerance responses appear to work together, with tolerance repairing the tissue injury caused by resistance driven inflammation. Tolerance responses fit a pattern where innate immunity and inflammation are tightly regulated in the gastrointestinal tract. Moreover, tolerance may have developed due to the successful subversion and avoidance of host resistance by enteric bacterial pathogens. Further studies are needed to clarify the contribution of different pathogen recognition receptors to tolerance and resistance responses against bacterial pathogens, in the gut or in other host tissues.  相似文献   

16.
In the arms race of host-microbe co-evolution, successful microbial pathogens have evolved ingenious ways to evade host immune responses. In this Review, we focus on 'crosstalk manipulation' - the microbial strategies that instigate, subvert or disrupt the molecular signalling crosstalk between receptors of the innate immune system. This proactive interference undermines host defences and contributes to microbial adaptive fitness and persistent infections. Understanding how pathogens exploit host receptor crosstalk mechanisms and infiltrate the host signalling network is essential for developing interventions to redirect the host response and achieve protective immunity.  相似文献   

17.
Nonhost resistance to plant pathogens can be constitutive or induced by microbes. Successful pathogens suppress microbe-induced plant defences by delivering appropriate effectors, which are apparently not sufficiently effective on nonhost plant species, as can be concluded from the strong host specificity of many biotroph plant pathogens. Such effectors act on particular plant targets, such as promoters or motifs in expressed sequences. Despite much progress in the elucidation of the molecular aspects of nonhost resistance to plant pathogens, very little is known about the genes that determine whether effectors can or cannot suppress the basal defence. In hosts they can, in nonhosts they cannot. The targets determining the host status of plants can be identified in inheritance studies. Recent reports have indicated that nonhost resistance is inherited polygenically, and exhibits strong similarity and association with the basal resistance of plants to adapted pathogens.  相似文献   

18.
Microorganisms grow as members of microbial communities in unique niches, such as the mucosal surfaces of the human body. These microbial communities, containing both commensals and opportunistic pathogens, serve to keep individual pathogens 'in check' through a variety of mechanisms and complex interactions, both between the microorganisms themselves and the microorganisms and the host. Recent studies shed new light on the diversity of microorganisms that form the human microbial communities and the interactions these microbial communities have with the host to stimulate immune responses. This occurs through their recognition by dendritic cells or their ability to induce differential cytokine and defensin profiles. The differential induction of defensins by commensals and pathogens and the ability of the induced defensins to interact with the antigens from these microorganisms may attenuate proinflammatory signaling and trigger adaptive immune responses to microbial antigens in a multistep process. Such an activity may be a mechanism that the host uses to sense what is on its mucosal surfaces, as well as to differentiate among commensals and pathogens.  相似文献   

19.
人类时常暴露于充满各种致病菌的环境中,这些致病菌与人体细胞或组织之间存在多种相互作用。在相互作用的过程中,细菌通过调节自身毒性、侵袭性等致病性,以适应宿主环境并生存下来,同样,宿主细胞也会通过调动自身的免疫系统来抵抗致病菌的入侵。然而,大多数研究者主要聚焦于致病菌sRNA (small RNA, sRNA)自身生理功能的研究,致病菌与宿主相互作用的认识仍然处于起步阶段。因此,如何使用高灵敏性、高分辨率的方法研究致病菌与宿主之间的相互作用成为当前研究面临的一大难题。本文综合国内外相关研究,概述了目前研究致病菌与宿主相互作用常用的技术方法及实验流程,提高对其机制原理的理解,为致病菌sRNA-宿主靶标的相关研究提供技术参考。  相似文献   

20.
共生菌与昆虫的免疫   总被引:1,自引:1,他引:0  
共生菌可通过产生抗菌物质、调控宿主免疫相关基因和微生物种间竞争作用等方式保护昆虫宿主免受病原体的侵染。为维持共生关系,昆虫进化出精细的调控机制避免对共生菌的过激免疫应答,共生菌通过免疫识别信号多态性或化学拟态来降低或躲避宿主免疫系统对自身的伤害。本文在分析共生菌对宿主免疫的功能及其机制的基础上,探讨宿主对免疫应答的精准调控以及共生体系的协同进化,以期为共生菌对宿主免疫影响的深入研究提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号