共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure of rat mast cell protease II at 1.9-A resolution 总被引:14,自引:0,他引:14
The structure of rat mast cell protease II (RMCP II), a serine protease with chymotrypsin-like primary specificity, has been determined to a nominal resolution of 1.9 A by single isomorphous replacement, molecular replacement, and restrained crystallographic refinement to a final R-factor of 0.191. There are two independent molecules of RMCP II in the asymmetric unit of the crystal. The rms deviation from ideal bond lengths is 0.016 A and from ideal bond angles is 2.7 degrees. The overall structure of RMCP II is extremely similar to that of chymotrypsin, but the largest differences between the two structures are clustered around the active-site region in a manner which suggests that the unusual substrate specificity of RMCP II is due to these changes. Unlike chymotrypsin, RMCP II has a deep cleft around the active site. An insertion of three residues between residues 35 and 41 of chymotrypsin, combined with concerted changes in sequence and a deletion near residue 61, allows residues 35-41 of RMCP II to adopt a conformation not seen in any other serine protease. Additionally, the loss of the disulfide bridge between residues 191 and 220 of chymotrypsin leads to the formation of an additional substrate binding pocket that we propose to interact with the P3 side chain of bound substrate. RMCP II is a member of a homologous subclass of serine proteases that are expressed by mast cells, neutrophils, lymphocytes, and cytotoxic T-cells. Thus, the structure of RMCP II forms a basis for an explanation of the unusual properties of other members of this class. 相似文献
2.
The crystal structure of mercury-substituted poplar plastocyanin at 1.9-A resolution 总被引:1,自引:0,他引:1
The crystal structure of Hg(II)-plastocyanin has been determined and refined at a resolution of 1.9 A. The crystals were prepared by soaking crystals of Cu(II)-plastocyanin from poplar leaves (Populus nigra var. italica) in a solution of a mercuric salt. Replacement of the Cu(II) atom in plastocyanin by Hg(II) causes only minor changes in the geometry of the metal site, and there are few significant changes elsewhere in the molecule. It is concluded that, as in the case of the native protein, the geometry of the metal site is determined by the polypeptide. The weak metal-S(methionine) bond found in Cu(II)-plastocyanin remains weak in Hg(II)-plastocyanin. The "flip" of a proline side chain close to the metal site from a C gamma-exo conformation in Cu(II)-plastocyanin to a C gamma-endo conformation in Hg(II)-plastocyanin suggests that this region of the molecule is particularly flexible. Crystallographic evidence for the close similarity of the Hg(II)- and Cu(II)-plastocyanin structures was originally obtained from electron density difference maps at 2.5-A resolution. The refinement of the structure was begun with a set of atomic coordinates taken from the structure of Cu(II)-plastocyanin. A Hg(II) atom was substituted for the Cu(II) atom, and the side chains of 6 residues in the vicinity of the metal site were omitted. Three series of stereochemically restrained least-squares refinement calculations were interspersed with two stages of model adjustment followed by phase extension. Fifty-nine water molecules were located. The final structure has a crystallographic residual R = 0.16. 相似文献
3.
M J Eck M Ultsch E Rinderknecht A M de Vos S R Sprang 《The Journal of biological chemistry》1992,267(4):2119-2122
The three-dimensional structure of recombinant human lymphotoxin (residues 24-171 of the mature protein) has been determined by x-ray crystallography at 1.9-A resolution (Rcryst = 0.215 for I greater than 3 sigma (I)). Phases were derived by molecular replacement using tumor necrosis factor (TNF-alpha) as a search model. Like TNF-alpha, lymphotoxin (LT) folds to form a "jellyroll" beta-sheet sandwich. Three-fold related LT subunits form a trimer stabilized primarily by hydrophobic interactions. A cluster of 6 basic residues around the 3-fold axis may account for the acid lability of the trimer. Although the structural cores of TNF-alpha and LT are similar, insertions and deletions relative to TNF-alpha occur in loops at the "top" of the LT trimer and significantly alter the local structure and the overall shape trimer is highly conserved. The sites of two mutations (Asp-50 and Tyr-108) that abolish the cytotoxicity of LT are contained within poorly ordered loops of polypeptide chain that flank the cleft between neighboring subunits at the base of the molecule, suggesting that the receptor recognizes an intersubunit binding site. 相似文献
4.
5.
Three-dimensional structure of the ribonuclease T1 2'-GMP complex at 1.9-A resolution 总被引:2,自引:0,他引:2
R Arni U Heinemann R Tokuoka W Saenger 《The Journal of biological chemistry》1988,263(30):15358-15368
The complex formed between the enzyme ribonuclease T1 (EC 3.1.27.3) and its specific inhibitor 2'-guanylic acid (2'-GMP) has been refined to R = 0.180 using x-ray diffraction data to 1.9-A resolution. The protein molecule displays a compact fold; a 4.5 turn alpha-helix packed over an antiparallel beta-pleated sheet shields most of the hydrophobic interior of the protein against the solvent. The extended pleated sheet structure of ribonuclease T1 is composed of three long and four short strands building up a two-stranded minor beta-sheet near the amino terminus and a five-stranded major sheet in the interior of the protein molecule. In the complex with ribonuclease T1, the inhibitor 2'-guanylic acid adopts the syn-conformation and C2'-endo sugar pucker. Binding of the nucleotide is mainly achieved through amino acid residues 38-46 of the protein. The catalytically active amino acid residues of ribonuclease T1 (His40, Glu58, Arg77, and His92) are located within the major beta-sheet which, as evident from the analysis of atomic temperature factors, provides an environment of minimal local mobility. The geometry of the active site is consistent with a mechanism for phosphodiester hydrolysis where, in the transesterification step, His40 and/or Glu58 act as a general base toward the ribose 2'-hydroxyl group and His92, as a general acid, donates a proton to the leaving 5'-hydroxyl group. 相似文献
6.
The crystal structure of human plasminogen kringle 4 (PGK4) has been solved by molecular replacement using the bovine prothrombin kringle 1 (PTK1) structure as a model and refined by restrained least-squares methods to an R factor of 14.2% at 1.9-A resolution. The K4 structure is similar to that of PTK1, and an insertion of one residue at position 59 of the latter has minimal effect on the protein folding. The PGK4 structure is highly stabilized by an internal hydrophobic core and an extensive hydrogen-bonding network. Features new to this kringle include a cis peptide bond at Pro30 and the presence of two alternate, perpendicular, and equally occupied orientations for the Cys75 side chain. The K4 lysine-binding site consists of a hydrophobic trough formed by the Trp62 and Trp72 indole rings, with anionic (Asp55/Asp57) and cationic (Lys35/Arg71) charge pairs at either end. With the adjacent Asp5 and Arg32 residues, these result in triply charged anionic and cationic clusters (pH of crystals at 6.0), which, in addition to the unusually high accessibility of the Trp72 side chain, serve as an obvious marker of the binding site on the K4 surface. A complex intermolecular interaction occurs between the binding sites of symmetry-related molecules involving a highly ordered sulfate anion of solvation in which the Arg32 side chain of a neighboring kringle occupies the binding site. 相似文献
7.
Structure of yeast triosephosphate isomerase at 1.9-A resolution 总被引:14,自引:0,他引:14
The structure of yeast triosephosphate isomerase (TIM) has been solved at 3.0-A resolution and refined at 1.9-A resolution to an R factor of 21.0%. The final model consists of all non-hydrogen atoms in the polypeptide chain and 119 water molecules, a number of which are found in the interior of the protein. The structure of the active site clearly indicates that the carboxylate of the catalytic base, Glu 165, is involved in a hydrogen-bonding interaction with the hydroxyl of Ser 96. In addition, the interactions of the other active site residues, Lys 12 and His 95, are also discussed. For the first time in any TIM structure, the "flexible loop" has well-defined density; the conformation of the loop in this structure is stabilized by a crystal contact. Analysis of the subunit interface of this dimeric enzyme hints at the source of the specificity of one subunit for another and allows us to estimate an association constant of 10(14)-10(16) M-1 for the two monomers. The analysis also suggests that the interface may be a particularly good target for drug design. The conserved positions (20%) among sequences from 13 sources ranging on the evolutionary scale from Escherichia coli to humans reveal the intense pressure to maintain the active site structure. 相似文献
8.
Crystal structure of low-molecular-weight protein tyrosine phosphatase from Mycobacterium tuberculosis at 1.9-A resolution 下载免费PDF全文
Madhurantakam C Rajakumara E Mazumdar PA Saha B Mitra D Wiker HG Sankaranarayanan R Das AK 《Journal of bacteriology》2005,187(6):2175-2181
The low-molecular-weight protein tyrosine phosphatase (LMWPTPase) belongs to a distinctive class of phosphotyrosine phosphatases widely distributed among prokaryotes and eukaryotes. We report here the crystal structure of LMWPTPase of microbial origin, the first of its kind from Mycobacterium tuberculosis. The structure was determined to be two crystal forms at 1.9- and 2.5-A resolutions. These structural forms are compared with those of the LMWPTPases of eukaryotes. Though the overall structure resembles that of the eukaryotic LMWPTPases, there are significant changes around the active site and the protein tyrosine phosphatase (PTP) loop. The variable loop forming the wall of the crevice leading to the active site is conformationally unchanged from that of mammalian LMWPTPase; however, differences are observed in the residues involved, suggesting that they have a role in influencing different substrate specificities. The single amino acid substitution (Leu12Thr [underlined below]) in the consensus sequence of the PTP loop, CTGNICRS, has a major role in the stabilization of the PTP loop, unlike what occurs in mammalian LMWPTPases. A chloride ion and a glycerol molecule were modeled in the active site where the chloride ion interacts in a manner similar to that of phosphate with the main chain nitrogens of the PTP loop. This structural study, in addition to identifying specific mycobacterial features, may also form the basis for exploring the mechanism of the substrate specificities of bacterial LMWPTPases. 相似文献
9.
A Messerschmidt R Ladenstein R Huber M Bolognesi L Avigliano R Petruzzelli A Rossi A Finazzi-Agró 《Journal of molecular biology》1992,224(1):179-205
The crystal structure of the fully oxidized form of ascorbate oxidase (EC 1.10.3.3) from Zucchini has been refined at 1.90 A (1 A = 0.1 nm) resolution, using an energy-restrained least-squares refinement procedure. The refined model, which includes 8764 protein atoms, 9 copper atoms and 970 solvent molecules, has a crystallographic R-factor of 20.3% for 85,252 reflections between 8 and 1.90 A resolution. The root-mean-square deviation in bond lengths and bond angles from ideal values is 0.011 A and 2.99 degrees, respectively. The subunits of 552 residues (70,000 Mr) are arranged as tetramers with D2 symmetry. One of the dyads is realized by the crystallographic axis parallel to the c-axis giving one dimer in the asymmetric unit. The dimer related about this crystallographic axis is suggested as the dimer present in solution. Asn92 is the attachment site for one of the two N-linked sugar moieties, which has defined electron density for the N-linked N-acetyl-glucosamine ring. Each subunit is built up by three domains arranged sequentially on the polypeptide chain and tightly associated in space. The folding of all three domains is of a similar beta-barrel type and related to plastocyanin and azurin. An analysis of intra- and intertetramer hydrogen bond and van der Waals interactions is presented. Each subunit has four copper atoms bound as mononuclear and trinuclear species. The mononuclear copper has two histidine, a cysteine and a methionine ligand and represents the type-1 copper. It is located in domain 3. The bond lengths of the type-1 copper centre are comparable to the values for oxidized plastocyanin. The trinuclear cluster has eight histidine ligands symmetrically supplied from domain 1 and 3. It may be subdivided into a pair of copper atoms with histidine ligands whose ligating N-atoms (5 NE2 atoms and one ND1 atom) are arranged trigonal prismatic. The pair is the putative type-3 copper. The remaining copper has two histidine ligands and is the putative spectroscopic type-2 copper. Two oxygen atoms are bound to the trinuclear species as OH- or O2- and bridging the putative type-3 copper pair and as OH- or H2O bound to the putative type-2 copper trans to the copper pair. The bond lengths within the trinuclear copper site are similar to comparable binuclear model compounds. The putative binding site for the reducing substrate is close to the type-1 copper.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
10.
M H le Du P Marchot P E Bougis J C Fontecilla-Camps 《The Journal of biological chemistry》1992,267(31):22122-22130
The crystal structure of fasciculin 1, a potent acetylcholinesterase inhibitor from green mamba snake venom, has been solved by the multiple isomorphous replacement method complemented with anomalous scattering and subsequently refined at 1.9-A resolution. The overall structure of fasciculin is similar to those of the short alpha-neurotoxins and cardiotoxins, with a dense core rich in disulfide bridges and three long loops disposed as the central fingers of a hand. A comparison of these three prototypic toxin types shows that fasciculin 1 has structural features that are intermediate between those of the other two molecules. Its core region, which can be defined as a continuous stretch of conserved residues, is very similar to that of erabutoxin b, whereas the orientation of its long loops resembles that of cardiotoxin VII4. This result introduces a new element in the study of phylogenetic relationships of snake toxins and suggests that, after divergency from an ancestral gene, convergent evolution may have played an important factor in the evolution of these proteins. In fasciculin 1, several arginine and lysine residues are well ordered and relatively exposed to the solvent medium and may play a role in the binding to the peripheral site of acetylcholinesterases. 相似文献
11.
Ricagno S Grolle S Bringer-Meyer S Sahm H Lindqvist Y Schneider G 《Biochimica et biophysica acta》2004,1698(1):37-44
1-Deoxy-d-xylulose-5-phosphate reductoisomerase (DXR) is the second enzyme in the non-mevalonate pathway of isoprenoid biosynthesis. The structure of the apo-form of this enzyme from Zymomonas mobilis has been solved and refined to 1.9-A resolution, and that of a binary complex with the co-substrate NADPH to 2.7-A resolution. The subunit of DXR consists of three domains. Residues 1-150 form the NADPH binding domain, which is a variant of the typical dinucleotide-binding fold. The second domain comprises a four-stranded mixed beta-sheet, with three helices flanking the sheet. Most of the putative active site residues are located on this domain. The C-terminal domain (residues 300-386) folds into a four-helix bundle. In solution and in the crystal, the enzyme forms a homo-dimer. The interface between the two monomers is formed predominantly by extension of the sheet in the second domain. The adenosine phosphate moiety of NADPH binds to the nucleotide-binding fold in the canonical way. The adenine ring interacts with the loop after beta1 and with the loops between alpha2 and beta2 and alpha5 and beta5. The nicotinamide ring is disordered in crystals of this binary complex. Comparisons to Escherichia coli DXR show that the two enzymes are very similar in structure, and that the active site architecture is highly conserved. However, there are differences in the recognition of the adenine ring of NADPH in the two enzymes. 相似文献
12.
The crystal structure of the homodimeric serine carboxypeptidase II from wheat (CPDW-II, M(r) 120K) has been determined and fully refined at 2.2-A resolution to a standard crystallographic R factor of 16.9% using synchrotron data collected at the Brookhaven National Laboratory. The model has an rms deviation from ideal bond lengths of 0.018 A and from bond angles of 2.8 degrees. The model supports the general conclusions of an earlier study at 3.5-A resolution and will form the basis for investigation into substrate binding and mechanistic studies. The enzyme has an alpha + beta fold, consisting of a central 11-stranded beta-sheet with a total of 15 helices on either side. The enzyme, like other serine proteinases, contains a "catalytic triad" Ser146-His397-Asp338 and a presumed "oxyanion hole" consisting of the backbone amides of Tyr147 and Gly53. The carboxylate of Asp338 and imidazole of His397 are not coplanar in contrast to the other serine proteinases. A comparison of the active site features of the three families of serine proteinases suggests that the "catalytic triad" should actually be regarded as two diads, a His-Asp diad and a His-Ser diad, and that the relative orientation of one diad with respect to the other is not particularly important. Four active site residues (52, 53, 65, and 146) have unfavorable backbone conformations but have well-defined electron density, suggesting that there is some strain in the active site region. The binding of the free amino acid arginine has been analyzed by difference Fourier methods, locating the binding site for the C-terminal carboxylate of the leaving group. The carboxylate makes hydrogen bonds to Glu145, Asn51, and the amide of Gly52. The carboxylate of Glu145 also makes a hydrogen bond with that of Glu65, suggesting that one or both may be protonated. Thus, the loss of peptidase activity at pH > 7 may in part be due to deprotonation of Glu145. The active site does not reveal exposed peptide amides and carbonyl oxygen atoms that could interact with substrate in an extended beta-sheet fashion. The fold of the polypeptide backbone is completely different than that of trypsin or subtilisin, suggesting that this is a third example of convergent molecular evolution to a common enzymatic activity. Furthermore, it is suggested that the active site sequence motif "G-X-S-X-G/A", often considered the hallmark of serine peptidase or esterase activity, is fortuitous and not the result of divergent evolution.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
13.
Refined crystal structure of carboxypeptidase A at 1.54 A resolution 总被引:19,自引:0,他引:19
The crystal structure of bovine carboxypeptidase A (Cox) has been refined at 1.54 A resolution using the restrained least-squares algorithm of Hendrickson & Konnert (1981). The crystallographic R factor (formula; see text) for structure factors calculated from the final model is 0.190. Bond lengths and bond angles in the carboxypeptidase A model have root-mean-square deviations from ideal values of 0.025 A and 3.6 degrees, respectively. Four examples of a reverse turn like structure (the "Asx" turn) requiring an aspartic acid or asparagine residue are observed in this structure. The Asx turn has the same number of atoms as a reverse turn, but only one peptide bond, and the hydrogen bond that closes the turn is between the Asx side-chain CO group and a main-chain NH group. The distributions of CO-N and NH-O hydrogen bond angles in the alpha-helices and beta-sheet structures of carboxypeptidase A are centered about 156 degrees. A total of 192 water molecules per molecule of enzyme are included in the final model. Unlike the hydrogen bonding geometry observed in the secondary structure of the enzyme, the CO-O(wat) hydrogen bond angle is distributed about 131 degrees, indicating the role of the lone pair electrons of the carbonyl oxygen in the hydrogen bond interaction. Twenty four solvent molecules are observed buried within the protein. Several of these waters are organized into hydrogen-bonded chains containing up to five waters. The average temperature factor for atoms in carboxypeptidase A is 8 A2, and varies from 5 A2 in the center of the protein, to over 30 A2 at the surface. 相似文献
14.
Li X Liu X Lou Z Duan X Wu H Liu Y Rao Z 《Protein science : a publication of the Protein Society》2004,13(11):2845-2851
Human coactosin-like protein (CLP) shares high homology with coactosin, a filamentous (F)-actin binding protein, and interacts with 5LO and F-actin. As a tumor antigen, CLP is overexpressed in tumor tissue cells or cell lines, and the encoded epitopes can be recognized by cellular and humoral immune systems. To gain a better understanding of its various functions and interactions with related proteins, the crystal structure of CLP expressed in Escherichia coli has been determined to 1.9 A resolution. The structure features a central beta-sheet surrounded by helices, with two very tight hydrophobic cores on each side of the sheet. CLP belongs to the actin depolymerizing protein superfamily, and is similar to yeast cofilin and actophilin. Based on our structural analysis, we observed that CLP forms a polymer along the crystallographic b axis with the exact same repeat distance as F-actin. A model for the CLP polymer and F-actin binding has therefore been proposed. 相似文献
15.
D R Breiter M R Kanost M M Benning G Wesenberg J H Law M A Wells I Rayment H M Holden 《Biochemistry》1991,30(3):603-608
The three-dimensional structure of an apolipoprotein isolated from the African migratory locust Locusta migratoria has been determined by X-ray analysis to a resolution of 2.5 A. The overall molecular architecture of this protein consists of five long alpha-helices connected by short loops. As predicted from amino acid sequence analyses, these helices are distinctly amphiphilic with the hydrophobic residues pointing in toward the interior of the protein and the hydrophilic side chains facing outward. The molecule falls into the general category of up-and-down alpha-helical bundles as previously observed, for example, in cytochrome c'. Although the structure shows the presence of five long amphiphilic alpha-helices, the alpha-helical moment and hydrophobicity of the entire molecule fall into the range found for normal globular proteins. Thus, in order for the amphiphilic helices to play a role in the binding of the protein to a lipid surface, there must be a structural reorganization of the protein which exposes the hydrophobic interior to the lipid surface. The three-dimensional motif of this apolipoprotein is compatible with a model in which the molecule binds to the lipid surface via a relatively nonpolar end and then spreads on the surface in such a way as to cause the hydrophobic side chains of the helices to come in contact with the lipid surface, the charged and polar residues to remain in contact with water, and the overall helical motif of the protein to be maintained. 相似文献
16.
Crystal structure of ubiquitous toxin from barley alpha-hordothionin (alpha-HT) has been determined at 1.9A resolution by X-ray crystallography. The primary sequence as well as the NMR solution structure of alpha-HT firmly established that alpha-HT belongs to a family of membrane active plant toxins-thionins. Since alpha-HT crystallized in a space group (P4(1)2(1)2) that is different from the space group (I422) of previously determined alpha(1)- and beta-purothionins, and visocotoxin A3, therefore, it provided independent information on protein-protein interactions that may be relevant to the toxin mechanism. The structure of alpha-HT not only confirms overall architectural features (crambin fold) but also provides an additional confirmation of the role for crucial solute molecules, that were postulated to be directly involved in the mechanism of toxicity for thionins. 相似文献
17.
Structure of wheat serine carboxypeptidase II at 3.5-A resolution. A new class of serine proteinase 总被引:7,自引:0,他引:7
The structure of serine carboxypeptidase II from wheat bran has been determined to 3.5-A resolution by multiple isomorphous replacement, solvent flattening, and crystallographic refinement. The amino acid sequence has been fit to the electron density map and the model refined to a conventional crystallographic R factor of 20.9%. The molecule is an alpha + beta protein and contains a "catalytic triad" (Asp338, His397, and Ser146) similar in arrangement to those in chymotrypsin and subtilisin. The -fold of the polypeptide backbone is, however, completely different from those enzymes. This suggests that this is a third example of convergent evolution to a common enzymatic mechanism. The -fold is, on the other hand, surprisingly similar to that of the zinc proteinase carboxypeptidase A. 相似文献
18.
Previous crystallographic studies have shown that human hemoglobin A can adopt two stable quaternary structures, one for deoxyhemoglobin (the T-state) and one for liganded hemoglobin (the R-state). In this paper we report our finding of a second quaternary structure (the R2-state) for liganded hemoglobin A. The magnitudes of the spatial differences between the R- and R2-states are as large as those between the R- and T-states. Of particular interest are the structural changes that occur as a result of R-T and R-R2 transitions at the so-called "switch" region of the critical alpha 1 beta 2 interface. In the R-state, His-97 beta 2 is positioned between Thr-38 alpha 1 and Thr-41 alpha 1, whereas in transition to the T-state His 97 beta 2 must "jump" a turn in the alpha 1 C helix to form nonpolar contacts with Thr-41 alpha 1 and Pro-44 alpha 1. This facet of the R-T transition presents a major steric barrier to the quaternary structure change. In the R2-state, His-97 beta 2 simply rotates away from threonines 38 alpha 1 and 41 alpha 1, breaking contact with these residues and allowing water access to the center of the alpha 1 beta 2 interface. With the switch region in an open position in the R2-state, His-97 beta 2 should be able to move by Thr-41 alpha 1 and make the transition to the T-state with a steric barrier that is less than that for the R-T transition. Thus the R2-state may function as a stable intermediate along a R-R2-T pathway. The T-, R-, and R2-states must coexist in solution. That is, the fact that these states can be crystallized implies that they are all energetically accessible structures. What remains to be determined are the T-to-R, T-to-R2, and R-to-R2 equilibrium constants for hemoglobin under various solution conditions and ligation states. Although this may prove to be difficult, we discuss previously published results which indicate that low concentrations of inorganic anions or low pH may favor the R2-state and at least one alpha 1 beta 2 interface mutation stabilizes a quaternary structure that is very similar to the R2-state. 相似文献
19.
Nolasco DO Canduri F Pereira JH Cortinóz JR Palma MS Oliveira JS Basso LA de Azevedo WF Santos DS 《Biochemical and biophysical research communications》2004,324(2):789-794
Even being a bacterial purine nucleoside phosphorylase (PNP), which normally shows hexameric folding, the Mycobacterium tuberculosis PNP (MtPNP) resembles the mammalian trimeric structure. The crystal structure of the MtPNP apoenzyme was solved at 1.9 A resolution. The present work describes the first structure of MtPNP in complex with phosphate. In order to develop new insights into the rational drug design, conformational changes were profoundly analyzed and discussed. Comparisons over the binding sites were specially studied to improve the discussion about the selectivity of potential new drugs. 相似文献
20.
The crystal and molecular structure of a triacylglyceride lipase (EC 3.1.1.3) from the fungus Rhizomucor miehei was analyzed using X-ray single crystal diffraction data to 1.9 A resolution. The structure was refined to an R-factor of 0.169 for all available data. The details of the molecular architecture and the crystal structure of the enzyme are described. A single polypeptide chain of 269 residues is folded into a rather unusual singly wound beta-sheet domain with predominantly parallel strands, connected by a variety of hairpins, loops and helical segments. All the loops are right-handed, creating an uncommon situation in which the central sheet is asymmetric in that all the connecting fragments are located on one side of the sheet. A single N-terminal alpha-helix provides the support for the other, distal, side of the sheet. Three disulfide bonds (residues 29-268, 40-43, 235-244) stabilize the molecule. There are four cis peptide bonds, all of which precede proline residues. In all, 230 ordered water molecules have been identified; 12 of them have a distinct internal character. The catalytic center of the enzyme is made up of a constellation of three residues (His257, Asp203 and Ser144) similar in structure and function to the analogous (but not homologous) triad found in both of the known families of serine proteinases. The fourth residue in this system equivalent to Thr/Ser in proteinases), hydrogen bonded to Asp, is Tyr260. The catalytic site is concealed under a short amphipatic helix (residues 85 to 91), which acts as "lid", opening the active site when the enzyme is adsorbed at the oil-water interface. In the native enzyme the "lid" is held in place by hydrophobic interactions. 相似文献