首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim  In order to understand how ground squirrels ( Spermophilus beecheyi ) may respond to future environmental change, we investigated five biotic and environmental factors potentially responsible for explaining body-size variation in this species across California. We examined the concordance of spatial patterns with temporal body-size change since the last glacial maximum (LGM).
Location  California, western North America.
Methods  We quantified body size of modern populations of ground squirrels ( n  = 81) and used a model-selection approach to determine the best variables (sex, vegetation, number of congeners, temperature and/or precipitation) explaining geographical variation in body size among modern populations. We also quantified body size of one fossil population in northern California ( n  = 39) and compared temporal body-size change in S. beecheyi at this location since the LGM with model predictions.
Results  Body size of modern populations conformed to Bergmann's rule, with larger individuals in northern (wetter and cooler) portions of California. However, the models suggest that precipitation, rather than temperature or other variables, may best explain variation in body size across modern spatial gradients. Our conclusion is supported by the temporal data, demonstrating that the body size of S. beecheyi has increased in northern California since the LGM, concordant with precipitation but not temperature change in the region.
Main conclusions  Precipitation, rather than temperature, vegetation or number of congeneric species, was the main factor explaining both spatial and temporal patterns of body-size variation in S. beecheyi . The integration of space and time provides a powerful mechanism for predicting how local populations may respond to current and future climatic changes.  相似文献   

2.
Abstract Bergmann's rule is currently defined as a within-species tendency for increasing body size with increasing latitude or decreasing environmental temperature. This well-known ecogeographic pattern has been considered a general trend for all animals, yet support for Bergmann's rule has only been demonstrated for mammals and birds. Here we evaluate Bergmann's rule in two groups of reptiles: chelonians (turtles) and squamates (lizards and snakes). We perform both nonphylogenetic and phylogenetic analyses and show that chelonians follow Bergmann's rule (19 of 23 species increase in size with latitude; 14 of 15 species decrease in size with temperature), whereas squamates follow the converse to Bergmann's rule (61 of 83 species decrease in size with latitude; 40 of 56 species increase in size with temperature). Size patterns of chelonians are significant using both nonphylogenetic and phylogenetic methods, whereas only the nonphylogenetic analyses are significant for squamates. These trends are consistent among major groups of chelonians and squamates for which data are available. This is the first study to document the converse to Bergmann's rule in any major animal group as well as the first to show Bergmann's rule in a major group of ectotherms. The traditional explanation for Bergmann's rule is that larger endothermic individuals conserve heat better in cooler areas. However, our finding that at least one ectothermic group also follows Bergmann's rule suggests that additional factors may be important. Several alternative processes, such as selection for rapid heat gain in cooler areas, may be responsible for the converse to Bergmann's rule in squamates.  相似文献   

3.
In 1847, Karl Bergmann proposed that temperature gradients are the key to understanding geographic variation in the body sizes of warm-blooded animals. Yet both the geographic patterns of body-size variation and their underlying mechanisms remain controversial. Here, we conduct the first assemblage-level global examination of 'Bergmann's rule' within an entire animal class. We generate global maps of avian body size and demonstrate a general pattern of larger body sizes at high latitudes, conforming to Bergmann's rule. We also show, however, that median body size within assemblages is systematically large on islands and small in species-rich areas. Similarly, while spatial models show that temperature is the single strongest environmental correlate of body size, there are secondary correlations with resource availability and a strong pattern of decreasing body size with increasing species richness. Finally, our results suggest that geographic patterns of body size are caused both by adaptation within lineages, as invoked by Bergmann, and by taxonomic turnover among lineages. Taken together, these results indicate that while Bergmann's prediction based on physiological scaling is remarkably accurate, it is far from the full picture. Global patterns of body size in avian assemblages are driven by interactions between the physiological demands of the environment, resource availability, species richness and taxonomic turnover among lineages.  相似文献   

4.
Geographical trends in body size are commonly interpreted in the framework of Bergmann's rule, which states that larger body sizes are found at higher latitudes. Here we demonstrate a negative association of body size with latitude among over-wintering warblers of the genus Phylloscopus as well as within a single species ( Phylloscopus trochiloides ) we were able to study in depth. We examine the role of resources in determining body size distributions. In mid-winter in India there are more large prey at southern sites (occupied by large-bodied warblers) than at a northern site (occupied by small-bodied warblers). Phylloscopus trochiloides is a relatively large species. The timing of its autumn migration is correlated with the withdrawal of the monsoon through India and its appearance on the breeding grounds in spring is correlated with the appearance of relatively large prey. We suggest that prey size and abundance are the main determinants of the spatial distributions of Phylloscopus warblers in winter. Cross-species associations of body size with both time of arrival on the breeding grounds and migration distance may also largely reflect the spatial and temporal distribution of prey. Resources are likely to be more important in determining both the strength and direction of latitudinal associations with body size than is currently appreciated, even in cases where Bergmann's rule is upheld.  相似文献   

5.
Fecundity selection predicts Bergmann's rule in syngnathid fishes   总被引:2,自引:2,他引:0  
The study of latitudinal increases in organismal body size (Bergmann's rule) predates even Darwin's evolutionary theory. While research has long concentrated on identifying general evolutionary explanations for this phenomenon, recent work suggests that different factors operating on local evolutionary timescales may be the cause of this widespread trend. Bergmann's rule explains body size variation in a diversity of warm-blooded organisms and there is increasing evidence that Bergmann's rule is also widespread in ectotherms. Bergmann's rule acts differentially in species of the Syngnathidae, a family of teleost fishes noted for extreme adaptations for male parental care. While variation in body size of polygamous Syngnathus pipefish is consistent with Bergmann's rule, body size is uncorrelated with latitude in monogamous Hippocampus seahorses. A study of populations of Syngnathus leptorhynchus along a natural latitudinal and thermal gradient indicates that increases in body size with latitude maintain the potential reproductive rate of males despite significant decreases in ambient temperatures. Polygyny is necessary in order to maximize male reproductive success in S. leptorhynchus , suggesting a possible a link between fecundity selection and Bergmann's rule in this species.  相似文献   

6.
Carnivores, biases and Bergmann's rule   总被引:3,自引:0,他引:3  
Studies of Bergmann's rule may encompass a non-random subsample of extant homeotherms. We examined patterns of correlation between skull length and geographical latitude in 44 species of carnivores in order to test the validity of Bergmann's rule in the Carnivora. Results were then compared to those of other studies. Significant positive correlation between skull length and latitude was found in 50% of carnivore species, while significant negative correlation was found in only 11% of species. These results indicate that the occurrence of Bergmann's rule in the Carnivora is less frequent than earlier published data suggest. Publication bias is not detected in published data. Therefore, previous studies of geographical size variation might be biased in favour of species known to follow Bergmann's rule.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 81 , 579–588.  相似文献   

7.
Seed dispersal is a fundamental process that is highly threatened by the rapid decline of large-bodied frugivores worldwide. The Brazilian Cerrado, the largest savanna in the world, represents an ideal site for investigating seed dispersal because of its biodiversity, environmental challenges, and knowledge shortfalls. We performed a systematic literature review to analyze the seed dispersal network in the Cerrado and the potential impacts of the defaunation of large-bodied frugivores on it. We considered network metrics, calculated the defaunation index of the frugivore assemblage, and compared traits among different fruit-sized plants and their respective dispersers in the network. We retrieved 1565 interactions involving 193 plant species and 270 animal species. Results show that the Cerrado seed dispersal network is slightly nested and considerably modular, dominated by small- to medium-sized generalist species, such as passerines, marsupials, and mesocarnivores. Nonetheless, large-bodied frugivores like the lowland tapir have a key role in the network due to their great foraging and network integration capacity. The Cerrado frugivore assemblage is moderately defaunated, with possible effects in its interactions with large-fruited plants. The Cerrado's defaunation and functional loss of large vertebrates deserve urgent attention to further understand the impacts on seed dispersal mechanisms and ecosystem functioning.  相似文献   

8.
The negative relationship between temperature and geographical variation in body size, or Bergmann's rule, is among the most thoroughly studied ecogeographical rules, yet the pattern and process underlying it remain controversial. Bergmann's original observations were of body size clines among endotherms, but in the last 50 years there has been increasing recognition that both Bergmann's rule and its reverse occur in many ectotherm taxa. A new study of syngnathid fish by Wilson (2009 ) in this issue of Molecular Ecology sheds light on intriguing alternative mechanisms that may explain variation in the direction of body size clines across taxa. Wilson shows that Bergmann's rule is found in pipefish of the genus Syngnathus , but not in seahorses of the genus Hippocampus . His results suggest that polygamy in pipefish allows fecundity selection to favour large size at low temperatures, compensating for increases in brooding time.  相似文献   

9.
Variation in body size and sexual size dimorphism(SSD) can have important consequences for animal ecology, behavior, population dynamics and the evolution of life-history traits. Organisms are expected to be larger in colder climate(i.e., Bergmann's rule) and SSD varies with body size(i.e., Rensch's rule). However, the underlying mechanisms are still elusive. The plateau brown frog(Rana kukunoris), a medium-sized anuran species with femalebiased SSD, is endemic to the Qinghai-Tibetan Plateau(QTP). From 1797 m(Maoxiang'ping) to 3453 m(Heihe'qiao) in the eastern margin of the QTP, we surveyed 10 populations of R. kukunoris and collected phalanges and snout vent length(SVL) data for 258 adult individuals(199 males versus 59 females). Based on these data, we explored how body size and SSD varying along the altitudinal gradient and examined the corresponding effects of temperature. We found body size to be larger at higher altitude for males but not for females, with likely effects from the temperature on the variation in male body size. Sex differences in growth rates may be the main cause of the variation in SSD. Our results suggested that only males follow the Bergmann's rule and variation in SSD of R. kukunoris do not support the Rensch's rule and its inverse. Therefore, the variations of body size can be different between sexes and the applicability of both Bergmann's rule and Rensch's rule should depend on species and environment where they live.  相似文献   

10.
Across animal species, body size and clutch size often form part of a suite of associated life history traits, exemplified by the "fast-slow continuum" in mammals. Across the parasitoid Hymenoptera however, a major axis of life history variation is the development mode of the larva (koinobiosis versus idiobiosis), and body size and clutch size do not seem to form clear associations with this major axis. Here we use a large comparative data set and the latest phylogenetic information to explore hypotheses that might explain the variation in body size and clutch size across species in parasitoids. We find evidence for three novel evolutionary correlations: changes in the stage of host attacked by the parasitoid (i.e. egg, larva, pupa) significantly predict changes in both body size and clutch size, whilst in gregarious species changes to higher latitudes are associated with reduced clutch size. We also find a number of hypothesized cross-species (phenotypic) associations that, however, we cannot demonstrate are the result of evolutionary correlations: large bodied species in our data tend to lay small clutches; koinobionts are larger than idiobionts attacking the same host stage; tropical species are smaller than temperate species (Bergmann's rule). Our results provide support for theoretical models of trait evolution in parasitoids, whilst the associations between latitude and life history may help explain why species richness in the family Ichneumonidae peaks at intermediate latitudes. Our results also show the continuing value of phylogenetically-based comparative analyses and demonstrate that recent work on parasitoid phylogenetics has produced significant benefits for our understanding of life history evolution.  相似文献   

11.
Bergmann's and Rensch's rules describe common large-scale patterns of body size variation, but their underlying causes remain elusive. Bergmann's rule states that organisms are larger at higher latitudes (or in colder climates). Rensch's rule states that male body size varies (or evolutionarily diverges) more than female body size among species, resulting in slopes greater than one when male size is regressed on female size. We use published studies of sex-specific latitudinal body size clines in vertebrates and invertebrates to investigate patterns equivalent to Rensch's rule among populations within species and to evaluate their possible relation to Bergmann's rule. Consistent with previous studies, we found a continuum of Bergmann (larger at higher latitudes: 58 species) and converse Bergmann body size clines (larger at lower latitudes: 40 species). Ignoring latitude, male size was more variable than female size in only 55 of 98 species, suggesting that intraspecific variation in sexual size dimorphism does not generally conform to Rensch's rule. In contrast, in a significant majority of species (66 of 98) male latitudinal body size clines were steeper than those of females. This pattern is consistent with a latitudinal version of Rensch's rule, and suggests that some factor that varies systematically with latitude is responsible for producing Rensch's rule among populations within species. Identifying the underlying mechanisms will require studies quantifying latitudinal variation in sex-specific natural and sexual selection on body size.  相似文献   

12.
Amphibians do not follow Bergmann's rule   总被引:1,自引:0,他引:1  
The tendency for organisms to be larger in cooler climates (Bergmann's rule) is widely observed in endotherms, and has been reputed to apply to some ectotherms including amphibians. However, recent reports provide conflicting support for the pattern, questioning whether Bergmann's clines are generally present in amphibians. In this study, we measured 96,996 adult Plethodon from 3974 populations to test for the presence of Bergmann's clines in these salamanders. Only three Plethodon species exhibited a significant negative correlation between body size and temperature consistent with Bergmann's rule, whereas 37 of 40 species did not display a pattern consistent with this prediction. Further, a phylogenetic comparative analysis found no relationship between body size and temperature among species. A meta-analysis combining our data with the available data for other amphibian species revealed no support for Bergmann's rule at the genus (Plethodon), order (Caudata), or class (Amphibia) levels. Our findings strongly suggest that negative thermal body size clines are not common in amphibians, and we conclude that Bergmann's rule is not generally applicable to these taxa. Thus, evolutionary explanations of Bergmann's clines in other tetrapods need not account for unique life-history attributes of amphibians.  相似文献   

13.
Aim  We examine the effect of island area on body dimensions in a single species of primate endemic to Southeast Asia, the long-tailed macaque ( Macaca fascicularis ). In addition, we test Allen's rule and a within-species or intraspecific equivalent of Bergmann's rule (i.e. Rensch's rule) to evaluate body size and shape evolution in this sample of insular macaques.
Location  The Sunda Shelf islands of Southeast Asia.
Methods  Body size measurements of insular macaques gathered from the literature were analysed relative to island area, latitude, maximum altitude, isolation from the mainland and other islands, and various climatic variables using linear regression.
Results  We found no statistically significant relationship between island area and body length or head length in our sample of insular long-tailed macaques. Tail length correlated negatively with island area. Head length and body length exhibited increases corresponding to increasing latitude, a finding seemingly consistent with the expression of Bergmann's rule within a single species. These variables, however, were not correlated with temperature, indicating that Bergmann's rule is not in effect. Tail length was not correlated with either temperature or increasing latitude, contrary to that predicted by Allen's rule.
Main conclusions  The island rule dictating that body size will covary with island area does not apply to this particular species of primate. Our study is consistent with results presented in the literature by demonstrating that skull and body length in insular long-tailed macaques do not, strictly speaking, conform to Rensch's rule. Unlike previous studies, however, our findings suggest that tail-length variation in insular macaques does not support Allen's rule.  相似文献   

14.
Hu J  Xie F  Li C  Jiang J 《PloS one》2011,6(5):e19817
Quantifying spatial patterns of species richness is a core problem in biodiversity theory. Spiny frogs of the subfamily Painae (Anura: Dicroglossidae) are widespread, but endemic to Asia. Using spiny frog distribution and body size data, and a digital elevation model data set we explored altitudinal patterns of spiny frog richness and quantified the effect of area on the richness pattern over a large altitudinal gradient from 0-5000 m a.s.l. We also tested two hypotheses: (i) the Rapoport's altitudinal effect is valid for the Painae, and (ii) Bergmann's clines are present in spiny frogs. The species richness of Painae across four different altitudinal band widths (100 m, 200 m, 300 m and 400 m) all showed hump-shaped patterns along altitudinal gradient. The altitudinal changes in species richness of the Paini and Quasipaini tribes further confirmed this finding, while the peak of Quasipaini species richness occurred at lower elevations than the maxima of Paini. The area did not explain a significant amount of variation in total, nor Paini species richness, but it did explain variation in Quasipaini. Five distinct groups across altitudinal gradient were found. Species altitudinal ranges did not expand with an increase in the midpoints of altitudinal ranges. A significant negative correlation between body size and elevation was exhibited. Our findings demonstrate that Rapoport's altitudinal rule is not a compulsory attribute of spiny frogs and also suggest that Bergmann's rule is not generally applicable to amphibians. The study highlights a need to explore the underlying mechanisms of species richness patterns, particularly for amphibians in macroecology.  相似文献   

15.
The body size of an animal is probably its most important functional trait. For arthropods, environmental drivers of body size variation are still poorly documented and understood, especially in tropical regions. We use a unique dataset for two species‐rich, phylogenetically independent moth taxa (Lepidoptera: Geometridae; Arctiinae), collected along an extensive tropical elevational gradient in Costa Rica, to investigate the correlates and possible causes of body‐size variation. We studied 15 047 specimens (794 species) of Geometridae and 4167 specimens (308 species) of Arctiinae to test the following hypotheses: 1) body size increases with decreasing ambient temperature, as predicted by the temperature–size rule; 2) body size increases with increasing rainfall and primary productivity, as predicted from considerations of starvation resistance; and 3) body size scales allometrically with wing area, as elevation increases, such that wing loading (the ratio of body size to wing area) decreases with increasing elevation to compensate for lower air density. To test these hypotheses, we examined forewing length as a proxy for body size in relation to ambient temperature, rainfall, vegetation index and elevation as explanatory variables in linear and polynomial spatial regression models. We analysed our data separately for males and females using two principal approaches: mean forewing length of species at each site, and mean forewing length of complete local assemblages, weighted by abundance. Body size consistently increased with elevation in both taxa, both approaches, both sexes, and also within species. Temperature was the best predictor for this pattern (–0.98 < r < –0.74), whereas body size was uncorrelated or weakly correlated with rainfall and enhanced vegetation index. Wing loading increased with elevation. Our results support the temperature–size rule as an important mechanism for body size variation in arthropods along tropical elevational gradients, whereas starvation resistance and optimization of flight mechanics seem to be of minor importance.  相似文献   

16.
One of the most widely recognized generalizations in biology is Bergmann's rule, the observation that, within species of birds and mammals, body size tends to be inversely related to ambient temperature. Recent studies indicate that turtles and salamanders also tend to follow Bergmann's rule, which hints that this species-level tendency originated early in tetrapod history. Furthermore, exceptions to Bergmann's rule are concentrated within squamate reptiles (lizards and snakes), suggesting that the tendency to express a Bergmann's rule cline may be heritable at the species level. We evaluated species-level heritability and early origination of Bergmann's rule by mapping size-latitude relationships for 352 species onto a tetrapod phylogeny. When the largest available dataset is used, Bergmann's rule shows significant phylogenetic signal, indicating species-level heritability. This represents one of the few demonstrations of heritability for an emergent species-level property and the first for an ecogeographic rule. When species are discretely coded as showing either Bergmann's rule or its converse, parsimony reconstructions suggest that: (1) the tendency to follow Bergmann's rule is ancestral for tetrapods, and (2) most extant species that express the rule have retained this tendency from that ancient ancestor. The first inference also generally holds when the discrete data or size-latitude correlation coefficients are analyzed using maximum likelihood, although the results are only statistically significant for some versions of the discrete analyses. The best estimates of ancestral states suggest that the traditional adaptive explanation for Bergmann's rule-conservation of metabolic heat-was not involved in the origin of the trait since that origin predates the evolution of endothermy. A more general thermoregulatory hypothesis could apply to endotherms and some ectotherms, but fails to explain why salamanders have retained Bergmann's rule. Thus, if thermoregulation underlies the origin of a Bergmann's rule tendency, this trait may have been continuously maintained while its cause changed. Alternatively, thermoregulation may not underlie Bergmann's rule in any tetrapod group. The results also suggest that many extinct groups not included in our analyses followed Bergmann's rule.  相似文献   

17.
Aim  To test Bergmann's rule (which predicts a larger body size in colder areas within warm-blooded vertebrate species) in three partially sympatric species of larks ( Galerida theklae , Galerida cristata and Galerida randonii ) that occur in Morocco.
Location  Morocco.
Methods  Restriction fragment length polymorphism techniques applied on cytochrome b haplotypes were used to discriminate G. cristata and G. randonii , and to investigate the effects of interspecific hybridization in their contact zone. A comprehensive statistical framework was then designed to test Bergmann's rule in our three Galerida species (using altitude as a proxy for cold temperatures), while controlling for the possible influence of interspecific hybridization and competition and accounting for spatial autocorrelation. The method we propose is conservative in the sense that potentially confounding factors are adjusted so as to maximize their influence on the variable of interest.
Results  Bergmann's rule was strongly supported in G. theklae and G. randonii . However, body size did not respond to altitude in G. cristata , a result that was not simply explained by species-specific differences in geographical ranges and altitudinal span. In G. cristata , we detected a tendency for body size to increase with aridity, in agreement with an alternative definition of Bergmann's rule. However, since G. cristata also hybridizes with G. randonii in a contact zone located in the most arid part of the range of G. cristata , we could not tease apart the relative contribution of selection and hybridization in driving this pattern.
Main conclusions  This study highlights the need for careful statistical designs that allow meaningful variables to be picked out from large sets of potential factors. When taking these factors into account, we found that Bergmann's rule was still strongly supported in two out of the three species examined.  相似文献   

18.
The body size of animals is affected by several factors, including ambient temperature and food availability. Ambient temperature is often negatively related to body size (Bergmann's rule) whereas an improved diet, especially during growth, has a positive effect. Animals commensal with man commonly exploit additional food sources (e.g. garbage dumps), thereby increasing their food supply. Using museum material, we studied morphological variation in skull size (and thus body size) among Spanish red foxes. Four measurements were taken of each skull and were related to the habitat from which the foxes were collected (agricultural and non-agricultural), and to latitude as a proxy for ambient temperature. The skull size of foxes collected in agricultural areas during the late 20th Century was significantly larger than that of those from non-agricultural areas, and was negatively related to latitude, thus contradicting Bergmann's rule. We suggest that increased food availability from animal husbandry is the cause for the observed increase in skull size (and thus body size).  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 90 , 729–734.  相似文献   

19.
A recent interspecific study found Bergmann's size clines for Holarctic anurans and proposed an explanation based on heat balance to account for the pattern. However, this analysis was limited to cold temperate regions, and exploring the patterns in warmer tropical climates may reveal other factors that also influence anuran body size variation. We address this using a Cerrado anuran database. We examine the relationship between mean body size in a grid of 1° cells and environmental predictors and test the relative support for four hypotheses using an AIC-based model selection approach. Also, we considered three different amphibian phylogenies to partition the phylogenetic and specific components of the interspecific variation in body size using a method analogous to phylogenetic eigen vector regression (PVR). To consider the potential effects of spatial autocorrelation we use eigenvector-based spatial filters. We found the largest species inhabiting high water deficit areas in the northeast and the smallest in the wet southwest. Our results are consistent with the water availability hypothesis which, coupled with previous findings, suggests that the major determinant of interspecific body size variation in anurans switches from energy to water towards the equator. We propose that anuran body size gradients reflect effects of reduced surface to volume ratios in larger species to control both heat and water balance.  相似文献   

20.
1.  Spatial variation in breeding performance is of critical importance in understanding the large-scale distribution and abundance of living species, and in understanding species conservation. We studied the large-scale spatial variation in reproductive output of two species of declining British bird, the song thrush Turdus philomelos and the blackbird Turdus merula .
2.  We developed a method to predict spatial variation in reproductive output. Brood size and nest failure rates during the incubation and nestling periods were related to environmental factors using generalized linear models. Predicted values obtained from these models were combined to give values of number of fledglings produced per nesting attempt for 10-km squares throughout Britain.
3.  We observed substantial spatial variation in reproductive output for both species; the component that varied most was nest failure rate during incubation. We were more successful in relating environmental factors to spatial variation in reproductive output for song thrush than for blackbird.
4.  Reproductive output in both species was affected mainly by factors that vary on a small spatial scale. Nest failure rate during incubation increased significantly where corvids were more abundant, suggesting a role for avian nest predators in determining spatial variation in reproductive output.
5.  Our approach can be extended readily to other species of birds, to other taxonomic groups and to finer spatial scales. Such models could be used to evaluate the implications of current and proposed wider countryside management for spatial variation in breeding performance. Evaluations based on breeding success as well as numbers are likely to be more robust than those based solely on abundance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号