首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydropathy analysis of the Mr 27,000 rat liver gap junction protein sequence deduced from a cDNA clone has suggested the presence of four transmembrane segments (Paul, D. L. (1986) J. Cell Biol. 103, 123-134). In the present report, several features of the molecular topology of the protein were investigated by microsequence analysis of peptides generated by treatment of isolated gap junctions with a variety of proteases. Under the experimental conditions used, the proteases had access only to the portion of the Mr 27,000 protein that was originally (in vivo) the cytoplasmic surface of the gap junction. Microsequencing of the peptides resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicates that the amino terminus of the protein is disposed at or near the cytoplasmic surface of the gap junction, and that this surface also contains a protease-hypersensitive hydrophilic sequence between residues 109 and 123, presumably connecting the second and third transmembrane segments. Immunocytological localization of binding of monoclonal antipeptide antibodies demonstrates that the carboxyl terminus of the protein is also localized to the cytoplasmic surface of the gap junction. No protease sensitivity was found in the hydrophilic sequences thought to connect either the first and second transmembrane segments or the third and fourth segments, supporting the model's prediction that these sequences face the narrow intercellular gap which cannot be penetrated by proteases.  相似文献   

2.
Paired intercellular transmembrane channels, termed connexons, comprised of hexameric assemblies of gap junction protein, were isolated and purified from rat liver by exploiting their resistance to either Sarkosyl detergent solubilization or alkali extraction. The secondary structures of the gap junction proteins prepared by these methods were compared by circular dichroism (CD) spectroscopy. Both the spectra and the calculated net secondary structures of the proteins obtained by the two isolation methods were different. The protein isolated by the Sarkosyl treatment was found to be approximately 50% alpha-helical, while protein isolated by alkali extraction had a lower helix content (approximately 40%). In both types of preparations, however, the helical content of the gap junction protein was sufficiently large to be consistent with an all-helical model for the membrane-spanning parts of the structure. CD spectroscopy was also used to examine the effects of proteolytic digestion of the cytoplasmic domain on the net secondary structure of the detergent-treated gap junction protein. The membrane-bound fragments had a slightly higher proportion of their residues that were alpha-helical in nature, suggesting that the transmembrane and/or intra-gap domains are indeed enriched in this type of secondary structure. This information constrains the range of models which can be realistically proposed for the channel structure.  相似文献   

3.
The assembly of connexins (Cxs) into gap junction intercellular communication channels was studied. An in vitro cell-free synthesis system showed that formation of the hexameric connexon hemichannels involved dimeric and tetrameric connexin intermediates. Cx32 contains two putative cytoplasmic calmodulin-binding sites, and their role in gap junction channel assembly was investigated. The oligomerization of Cx32 into connexons was reversibly inhibited by a calmodulin-binding synthetic peptide, and by W7, a naphthalene sulfonamide calmodulin antagonist. Removing the calmodulin-binding site located at the carboxyl tail of Cx32 limited connexon formation and resulted in an accumulation of intermediate connexin oligomers. This truncation mutant, Cx32Delta215, when transiently expressed in COS-7 cells, accumulated intracellularly and had failed to target to gap junctions. Immunoprecipitation studies suggested that a C-terminal sequence of Cx32 incorporating the calmodulin-binding site was required for the formation of hetero-oligomers of Cx26 and Cx32 but not for Cx32 homomeric association. A chimera, Cx32TM3CFTR, in which the third transmembrane and proposed channel lining sequence of Cx32 was substituted by a transmembrane sequence of the cystic fibrosis transmembrane conductance regulator, did not oligomerize in vitro and it accumulated intracellularly when expressed in COS-7 cells. The results indicate that amino-acid sequences in the third transmembrane domain and a calmodulin-binding domain in the cytoplasmic tail of Cx32 are likely candidates for regulating connexin oligomerization.  相似文献   

4.
The membrane topology and quaternary structure of rat cardiac gap junction ion channels containing alpha 1 connexin (i.e. Cx43) have been examined using anti-peptide antibodies directed to seven different sites in the protein sequence, cleavage by an endogenous protease in heart tissue and electron microscopic image analysis of native and protease-cleaved two-dimensional membrane crystals of isolated cardiac gap junctions. Specificity of the peptide antibodies was established using dot immunoblotting, Western immunoblotting, immunofluorescence and immunoelectron microscopy. Based on the folding predicted by hydropathy analysis, five antibodies were directed to sites in cytoplasmic domains and two antibodies were directed to the two extracellular loop domains. Isolated gap junctions could not be labeled by the two extracellular loop antibodies using thin-section immunogold electron microscopy. This is consistent with the known narrowness of the extracellular gap region that presumably precludes penetration of antibody probes. However, cryo-sectioning rendered the extracellular domains accessible for immunolabeling. A cytoplasmic "loop" domain of at least Mr = 5100 (residues (101 to 142) is readily accessible to peptide antibody labeling. The native Mr = 43,000 protein can be protease-cleaved on the cytoplasmic side of the membrane, resulting in an Mr approximately 30,000 membrane-bound fragment. Western immunoblots showed that protease cleavage occurs at the carboxy tail of the protein, and the cleavage site resides between amino acid residues 252-271. Immunoelectron microscopy demonstrated that the Mr approximately 13,000 carboxy-terminal peptide(s) is released after protease cleavage and does not remain attached to the Mr approximately 30,000 membrane-bound fragment via non-covalent interactions. Electron microscopic image analysis of two-dimensional membrane crystals of cardiac gap junctions revealed that the ion channels are formed by a hexagonal arrangement of protein subunits. This quaternary arrangement is not detectably altered by protease cleavage of the alpha 1 polypeptide. Therefore, the Mr approximately 13,000 carboxyterminal domain is not involved in forming the transmembrane ion channel. The similar hexameric architecture of cardiac and liver gap junction connexins indicates conservation in the molecular design of the gap junction channels formed by alpha or beta connexins.  相似文献   

5.
D Odell  E Wanas  J Yan    H P Ghosh 《Journal of virology》1997,71(10):7996-8000
Chimeric proteins in which the transmembrane anchoring sequence (TM) or both the TM and the cytoplasmic tail (CT) of vesicular stomatitis virus glycoprotein G were replaced with corresponding domains of viral or cellular integral membrane proteins were used to examine the influence of these domains on acidic-pH-induced membrane fusion by G protein. The TM and CT of G were also replaced with the lipid anchor glycosylphosphatidylinositol. Hybrids containing foreign TM or TM and CT sequences were fusogenic at acidic pH but glycosylphosphatidylinositol-anchored G was nonfusogenic at acidic pH. The results suggest that the fusogenic activity of G protein requires membrane anchoring by a hydrophobic peptide sequence and the specific amino acid sequence of the TM has no influence on fusogenic activity.  相似文献   

6.
Membrane topology of Escherichia coli diacylglycerol kinase.   总被引:1,自引:1,他引:0       下载免费PDF全文
The topology of Escherichia coli diacylglycerol kinase (DAGK) within the cytoplasmic membrane was elucidated by a combined approach involving both multiple aligned sequence analysis and fusion protein experiments. Hydropathy plots of the five prokaryotic DAGK sequences available were uniform in their prediction of three transmembrane segments. The hydropathy predictions were experimentally tested genetically by fusing C-terminal deletion derivatives of DAGK to beta-lactamase and beta-galactosidase. Following expression, the enzymatic activities of the chimeric proteins were measured and used to determine the cellular location of the fusion junction. These studies confirmed the hydropathy predictions for DAGK with respect to the number and approximate sequence locations of the transmembrane segments. Further analysis of the aligned DAGK sequences detected probable alpha-helical N-terminal capping motifs and two amphipathic alpha-helices within the enzyme. The combined fusion and sequence data indicate that DAGK is a polytopic integral membrane protein with three transmembrane segments with the N terminus of the protein in the cytoplasm, the C terminus in the periplasmic space, and two amphipathic helices near the cytoplasmic surface.  相似文献   

7.
Analysis by SDS-PAGE of gap junction fractions isolated from heart suggests that the junctions are comprised of a protein with an Mr 43,000. Antibodies against the electroeluted protein and a peptide representing the 20 amino terminal residues bind specifically on immunoblots to the 43-kD protein and to the major products arising from proteolysis during isolation. By immunocytochemistry, the protein is found in ventricle and atrium in patterns consistent with the known distribution of gap junctions. Both antibodies bind exclusively to gap junctions in fractions from heart examined by EM after gold labeling. Since only domains of the protein exposed at the cytoplasmic surface should be accessible to antibody, we conclude that the 43-kD protein is assembled in gap junctions with the amino terminus of the molecule exposed on the cytoplasmic side of the bilayer, that is, on the same side as the carboxy terminus as determined previously. By combining proteolysis experiments with data from immunoblotting, we can identify a third cytoplasmic region, a loop of some 4 kD between membrane protected domains. This loop carries an antibody binding site. The protein, if transmembrane, is therefore likely to cross the membrane four times. We have used the same antisera to ascertain if the 43-kD protein is involved in cell-cell communication. The antiserum against the amino terminus blocked dye coupling in 90% of cell pairs tested; the antiserum recognizing epitopes in the cytoplasmic loop and cytoplasmic tail blocked coupling in 75% of cell pairs tested. Preimmune serum and control antibodies (one against MIP and another binding to a cardiac G protein) had no or little effect on dye transfer. Our experimental evidence thus indicates that, in spite of the differences in amino acid sequence, the gap junction proteins in heart and liver share a general organizational plan and that there may be several domains (including the amino terminus) of the molecule that are involved in the control of junctional permeability.  相似文献   

8.
Rat heart and other organs contain mRNA coding for connexin43, a polypeptide homologous to a gap junction protein from liver (connexin32). To provide direct evidence that connexin43 is a cardiac gap junction protein, we raised rabbit antisera directed against synthetic oligopeptides corresponding to two unique regions of its sequence, amino acids 119-142 and 252-271. Both antisera stained the intercalated disc in myocardium by immunofluorescence but did not react with frozen sections of liver. Immunocytochemistry showed anti-connexin43 staining of the cytoplasmic surface of gap junctions in isolated rat heart membranes but no reactivity with isolated liver gap junctions. Both antisera reacted with a 43-kD polypeptide in isolated rat heart membranes but did not react with rat liver gap junctions by Western blot analysis. In contrast, an antiserum to the conserved, possibly extracellular, sequence of amino acids 164-189 in connexin32 reacted with both liver and heart gap junction proteins on Western blots. These findings support a topological model of connexins with unique cytoplasmic domains but conserved transmembrane and extracellular regions. The connexin43-specific antisera were used by Western blots and immunofluorescence to examine the distribution of connexin43. They demonstrated reactivity consistent with gap junctions between ovarian granulosa cells, smooth muscle cells in uterus and other tissues, fibroblasts in cornea and other tissues, lens and corneal epithelial cells, and renal tubular epithelial cells. Staining with the anti-connexin43 antisera was never observed to colocalize with antibodies to other gap junctional proteins (connexin32 or MP70) in the same junctional plaques. Because of limitations in the resolution of the immunofluorescence, however, we were not able to determine whether individual cells ever simultaneously express more than one connexin type.  相似文献   

9.
Dimerization of the scaffolding protein ZO-1 through the second PDZ domain   总被引:9,自引:0,他引:9  
The tight junction protein ZO-1 is known to link the transmembrane proteins occludin, claudins, and JAMs to many cytoplasmic proteins and the actin cytoskeleton. Although specific roles for ZO-1 at the tight junction are unknown, it is widely assumed that ZO-1, together with its homologs ZO-2 and ZO-3, serves as a platform to scaffold various transmembrane and cytoplasmic tight junction proteins. Thus the manner in which the zonula occludens (ZO) proteins multimerize has implications for the protein networks they can coordinate. The purpose of our study was to determine whether ZO-1 forms homodimers and to determine the protein interaction region. Using laser light scattering and analytical centrifugation, we show that protein sequences corresponding to the NH(2)-terminal half of ZO-1 form stable homodimers with a submicromolar equilibrium dissociation constant. Analysis of the molecular weight of different truncated forms of ZO-1 revealed that the second PDZ domain is both necessary and sufficient for dimerization. This interaction does not use the beta-finger motif described for other PDZ dimers. Furthermore, ZO-1 does not dimerize via an Src homology 3 to Guk domain interaction as was demonstrated previously for MAGUKs, like PSD-95. Results from immunoprecipitation experiments with polarized Madin-Darby canine kidney epithelial cells stably transfected with full-length GFP-ZO-1 indicate that a substantial portion of ZO-1 forms homodimers in vivo. As described previously, ZO-1 also forms heterodimers with ZO-2 and ZO-3. We conclude that the dimerization of ZO proteins is unlike that of other MAGUKs and that the previously unrecognized ZO-1 homodimers may allow formation of protein networks distinct from those of heterodimers with ZO-2 and ZO-3.  相似文献   

10.
In our preceding paper [Ratnam, M., Sargent, P. B., Sarin, V., Fox, J. L., Le Nguyen, D., Rivier, J., Criado, M., & Lindstrom, J. (1986) Biochemistry (preceding paper in this issue)], we presented results from peptide mapping studies of purified subunits of the Torpedo acetylcholine receptor which suggested that the sequence beta 429-441 is on the cytoplasmic surface of the receptor. Since this finding contradicts earlier theoretical models of the transmembrane structure of the receptor, which placed this sequence of the beta subunit on the extracellular surface, we investigated the location of the corresponding sequence (389-408) and adjacent sequences of the alpha subunit by a more direct approach. We synthesized peptides including the sequences alpha 330-346, alpha 349-364, alpha 360-378, alpha 379-385, and alpha 389-408 and shorter parts of these peptides. These peptides corresponded to a highly immunogenic region, and by using 125I-labeled peptides as antigens, we were able to detect in our library of monoclonal antibodies to alpha subunits between two and six which bound specifically to each of these peptides, except alpha 389-408. We obtained antibodies specific for alpha 389-408 both from antisera against the denatured alpha subunit and from antisera made against the peptide. These antibodies were specific to alpha 389-396. In binding assays, antibodies specific for all of these five peptides bound to receptor-rich membrane vesicles only after permeabilization of the vesicles to permit access of the antibodies to the cytoplasmic surface of the receptors, suggesting that the receptor sequences which bound these antibodies were located on the intracellular side of the membrane. Electron microscopy using colloidal gold to visualize the bound antibodies was used to conclusively demonstrate that all of these sequences are exposed on the cytoplasmic surface of the receptor. These results, along with our previous demonstration that the C-terminal 10 amino acids of each subunit are exposed on the cytoplasmic surface, show that the hydrophobic domain M4 (alpha 409-426), previously predicted from hydropathy profiles to be transmembranous, does not, in fact, cross the membrane. Further, these results show that the putative amphipathic transmembrane domain M5 (alpha 364-399) also does not cross the membrane. Our results thus indicate that the transmembrane topology of a membrane protein cannot be deduced strictly from the hydropathy profile of its primary amino acid sequence. We present a model for the transmembrane orientation of receptor subunit polypeptide chains which is consistent with current data.  相似文献   

11.
The topological organization of the major rat liver gap junction protein has been examined in intact gap junctions and gap junction-derived single membrane structures. Two methods, low pH and urea at alkaline pH, were used to "transform" or "split" double membrane gap junctions into single membrane structures. Low pH treatment "transforms" rat liver gap junctions into small single membrane vesicles which have an altered sodium dodecyl sulfate-polyacrylamide gel electrophoresis profile after digestion with L-1-to-sylamido-2-phenylethylchloromethyl ketone-trypsin. Alkaline pH treatment in the presence of 8 M urea can split isolated rat liver gap junctions into single membrane sheets which have no detectable structural alteration or altered sodium dodecyl sulfate-polyacrylamide gel electrophoresis profile after proteolytic digestion, suggesting that these single membrane sheets may be useful for topological studies of the gap junction protein. Proteolytic digestion studies have been used to localize the carboxyl terminus of the molecule on the cytoplasmic surface of the intact gap junction. However, the amino terminus does not appear to be accessible to proteases or to interaction with an antibody that is specific for the amino-terminal region of the molecule in intact or split gap junctions. Binding of antibodies, that block junctional channel conductance, can be eliminated by proteolytic digestion of intact gap junctions, suggesting that all antigenic sites for these antibodies are located on the cytoplasmic surface of the intact gap junction. In addition, calmodulin gel overlays indicate that at least two calmodulin binding sites exist on the cytoplasmic surface of the junctional protein. The information generated from these studies has been used to develop a low resolution two-dimensional model for the organization of the major rat liver gap junctional protein in the junctional membrane.  相似文献   

12.
Occludin is a transmembrane protein of the tight junction that functions in creating both an intercellular permeability barrier and an intramembrane diffusion barrier. Creation of the barrier requires the precise localization of occludin, and a distinct family of transmembrane proteins called claudins, into continuous linear fibrils visible by freeze-fracture microscopy. Conflicting evidence exists regarding the relative importance of the transmembrane and extracellular versus the cytoplasmic domains in localizing occludin in fibrils. To specifically address whether occludin's COOH-terminal cytoplasmic domain is sufficient to target it into tight junction fibrils, we created chimeras with the transmembrane portions of connexin 32. Despite the gap junction targeting information present in their transmembrane and extracellular domains, these connexin-occludin chimeras localized within fibrils when expressed in MDCK cells, as assessed by immunofluorescence and immunogold freeze-fracture imaging. Localization of chimeras at tight junctions depends on the COOH-terminal ZO-binding domain and not on the membrane proximal domain of occludin. Furthermore, neither endogenous occludin nor claudin is required for targeting to ZO-1-containing cell-cell contacts, since in normal rat kidney fibroblasts targeting of chimeras again required only the ZO-binding domain. These results suggest an important role for cytoplasmic proteins, presumably ZO-1, ZO-2, and ZO-3, in localizing occludin in tight junction fibrils. Such a scaffolding and cytoskeletal coupling function for ZO MAGUKs is analogous to that of other members of the MAGUK family.  相似文献   

13.
Transmembrane topography and evolutionary conservation of synaptophysin   总被引:21,自引:0,他引:21  
Synaptophysin is the major integral membrane protein of small synaptic vesicles. Its primary structure deduced from rat and human complementary DNA sequences predicts that synaptophysin contains four transmembrane regions and a carboxyl-terminal domain having a novel repetitive structure. To elucidate the transmembrane organization of this protein in the synaptic vesicle, five antipeptide antibodies were raised. The site-specific antibodies were used to map the cognate sequences to the cytoplasmic or intravesicular side of the synaptic vesicle membrane by determining the susceptibility of the epitopes to proteolysis. The results confirm a topographic model for synaptophysin in which the protein spans the vesicle membrane four times, with both the amino and carboxyl terminus being cytoplasmic. In addition, the evolutionary conservation of the synaptophysin domains was addressed as a function of their membrane localization. To this end the primary structure of bovine synaptophysin was determined. Sequence comparisons between bovine, rat, and human synaptophysin revealed that only the intravesicular loops showed a significant number of amino acid substitutions (22%), while the transmembrane regions and cytoplasmic sequences were highly conserved (3% substitutions). These results depict synaptophysin as a protein with multiple membrane spanning regions whose functional site is likely to reside in highly conserved intramembranous and cytoplasmic sequences.  相似文献   

14.
Specific binding sites for anti-26 K antibodies directed against the liver gap junction protein (26 K) were localized by immunoelectron microscopy in gap junction plaques purified from hepatic plasma membranes. Using immunofluorescence microscopy we found discrete fluorescent spots on plasma membranes in cross sections of liver tissues after incubation with anti-26 K antibodies. This is consistent with the notion of specific binding to gap junction plaques. Quantitative binding of anti-26 K antibodies was indirectly measured by the protein A-gold technique. We found that urea/detergent-treated, purified gap junction plaques bind 30-fold more anti-26 K antibodies than preimmune serum. Anti-26 K antibodies also bind specifically to native gap junction plaques within hepatic plasma membranes although only about one fifth as efficiently as to purified plaques. Possibly the anti-26 K antibodies raised after injection of SDS-denatured 26 K protein into rabbits recognize the cytoplasmic face of urea/detergent-treated plaques better than that of native plaques. Some, if not most, of the vesicular structures in preparations of purified plaques appear to be derived from split gap junction plaques and are probably sheets of gap junction hemichannels. In some vesicles the former cytoplasmic face of the hemichannels is turned outside, other vesicles have the former cell surface turned outside. The anti-26 K antibodies do not recognize any 26 K protein on the sheets of partially split gap junction plaques, on the heterogeneous vesicular structures, or on non-junctional areas of hepatic plasma membranes. These results suggest that the conformation of the 26 K protein in plaques must be different from that of the 26 K protein in earlier biosynthetic steps of plaque assembly.  相似文献   

15.
A radioimmunoassay (RIA) and enzyme-linked immunosorbent assay (ELISA) were used to determine relative concentrations of liver connexin32 (CX32) in rats. The RIA and ELISA utilize synthetic peptides corresponding to regions of the carboxyl-terminus and antibodies raised in rabbits against these peptides. Assuming that affinities of antisera are similar for peptide and native CX32, total cellular CX32 was found to exceed the amount of gap junction protein at the cell surface calculated from morphometric analyses by 1.5-2.0 fold. This finding raises the possibility that some of the protein is present in cytoplasmic compartments or as occult precursors in the plasma membrane. Studies of CX32 content in regenerating rat liver support this conclusion and show a time course of loss and recovery of CX32 that agrees with those reported in studies using other techniques.  相似文献   

16.
We have recently demonstrated that a 37-amino acid peptide corresponding to the cytoplasmic domain of the natriuretic peptide receptor C (NPR-C) inhibited adenylyl cyclase activity via pertussis toxin (PT)-sensitive G(i) protein. In the present studies, we have used seven different peptide fragments of the cytoplasmic domain of the NPR-C receptor with complete, partial, or no G(i) activator sequence to examine their effects on adenylyl cyclase activity. The peptides used were KKYRITIERRNH (peptide 1), RRNHQEESNIGK (peptide 2), HRELREDSIRSH (peptide 3), RRNHQEESNIGKHRELR (peptide 4), QEESNIGK (peptide X), ITIERRNH (peptide Y), and ITIYKKRRNHRE (peptide Z). Peptides 1, 3, and 4 have complete G(i) activator sequences, whereas peptides 2 and Y have partial G(i) activator sequences with truncated carboxyl or amino terminus, respectively. Peptide X has no structural specificity, whereas peptide Z is the scrambled peptide control for peptide 1. Peptides 1, 3, and 4 inhibited adenylyl cyclase activity in a concentration-dependent manner with apparent K(i) between 0.1 and 1 nm; however, peptide 2 inhibited adenylyl cyclase activity with a higher K(i) of about 10 nm, and peptides X, Y, and Z were unable to inhibit adenylyl cyclase activity. The maximal inhibitions observed were between 30 and 40%. The inhibition of adenylyl cyclase activity by peptides 1-4 was absolutely dependent on the presence of guanine nucleotides and was completely attenuated by PT treatment. In addition, the stimulatory effects of isoproterenol, glucagon, and forskolin on adenylyl cyclase activity were inhibited to different degrees by these peptides. These results suggest that the small peptide fragments of the cytoplasmic domain of the NPR-C receptor containing 12 or 17 amino acids were sufficient to inhibit adenylyl cyclase activity through a PT-sensitive G(i) protein. The peptides having complete structural specificity of G(i) activator sequences at both amino and carboxyl termini were more potent to inhibit adenylyl cyclase activity as compared with the peptides having a truncated carboxyl terminus, whereas the truncation of the amino-terminal motif completely attenuates adenylyl cyclase inhibition.  相似文献   

17.
X-ray diffraction patterns have been recorded from partially oriented specimens of gap junctions isolated from mouse liver and suspended in sucrose solutions of different concentration and thus of different electron density. Analysis of these diffraction patterns has shown that sucrose is excluded from the 6-fold rotation axis of the junction lattice for a length of about 100 Å. This indicates that the aqueous channel of the junctions is in the closed, high resistance state in these preparations. Mapping of the sucrose-accessible space in the junction indicates that the cross-sectional area of the channel entrance on the cytoplasmic side of the membrane could be up to five times larger than the area of the transmembrane channel. Sucrose does not penetrate more than 20 Å into the membrane along the channel. Apparently the aqueous channel, 8 to 10 Å in radius for most of its length, is narrowed or blocked by a small feature about 50 Å from the center of the gap. Very close interactions exist between the gap junction protein and the lipid polar head groups on the cytoplasmic surface of the membrane. In this region, the protein intercalates between the polar head groups. These results suggest that the gap junction protein may have a functional two-domain structure. One domain, with a molecular weight of about 15,000, spans one bilayer and half of the gap and is contained largely within a radius of 25 Å from the 6-fold axis. The second domain is smaller and occupies the cytoplasmic surface of the gap junction membrane. Trypsin digestion removes about 4000 Mrmr from the cytoplasmic surface domain of the junction protein. Most of the material susceptible to trypsin digestion is located more than 28 å from the 6-fold axis.  相似文献   

18.
《The Journal of cell biology》1987,105(6):2621-2629
Northern blot analysis of rat heart mRNA probed with a cDNA coding for the principal polypeptide of rat liver gap junctions demonstrated a 3.0- kb band. This band was observed only after hybridization and washing using low stringency conditions; high stringency conditions abolished the hybridization. A rat heart cDNA library was screened with the same cDNA probe under the permissive hybridization conditions, and a single positive clone identified and purified. The clone contained a 220-bp insert, which showed 55% homology to the original cDNA probe near the 5' end. The 220-bp cDNA was used to rescreen a heart cDNA library under high stringency conditions, and three additional cDNAs that together spanned 2,768 bp were isolated. This composite cDNA contained a single 1,146-bp open reading frame coding for a predicted polypeptide of 382 amino acids with a molecular mass of 43,036 D. Northern analysis of various rat tissues using this heart cDNA as probe showed hybridization to 3.0-kb bands in RNA isolated from heart, ovary, uterus, kidney, and lens epithelium. Comparisons of the predicted amino acid sequences for the two gap junction proteins isolated from heart and liver showed two regions of high homology (58 and 42%), and other regions of little or no homology. A model is presented which indicates that the conserved sequences correspond to transmembrane and extracellular regions of the junctional molecules, while the nonconserved sequences correspond to cytoplasmic regions. Since it has been shown previously that the original cDNA isolated from liver recognizes mRNAs in stomach, kidney, and brain, and it is shown here that the cDNA isolated from heart recognizes mRNAs in ovary, uterus, lens epithelium, and kidney, a nomenclature is proposed which avoids categorization by organ of origin. In this nomenclature, the homologous proteins in gap junctions would be called connexins, each distinguished by its predicted molecular mass in kilodaltons. The gap junction protein isolated from liver would then be called connexin32; from heart, connexin43.  相似文献   

19.
We have synthesized an antisense oligonucleotide primer that matches a supposedly conserved sequence in messages for heparan sulfate proteoglycans with transmembrane orientations. With the aid of this primer we have amplified partial and selected full-length copies of a message from human lung fibroblasts that codes for a novel integral membrane heparan sulfate proteoglycan. The encoded protein is 198 amino-acids long, with discrete cytoplasmic, transmembrane, and amino-terminal extracellular domains. Except for the sequences that represent putative heparan sulfate chain attachment sites, the extracellular domain of this protein has a unique structure. The transmembrane and cytoplasmic domains, in contrast, are highly similar to the corresponding domains of fibroglycan and syndecan, the two cell surface proteoglycans that figured as models for the design of the antisense primer. This similarity includes the conservation of four tyrosine residues, one immediately in front of the stop transfer sequence and three in the cytoplasmic segment, and of the most proximal and most distal cytoplasmic sequences. The cDNA detects a single 2.6-kb message in cultured human lung fibroblasts and in a variety of human epithelial and fibroblastic cell lines. Polyclonal and monoclonal antibodies raised against the encoded peptide after expression as a beta-galactosidase fusion protein react with the 35-kD coreprotein of a cell surface heparan sulfate proteoglycan of human lung fibroblasts and decorate the surface of many cell types. We propose to name this proteoglycan "amphiglycan" (from the Greek words amphi, "around, on both sides of" and amphoo, "both") referring to its domain structure which extends on both sides of the plasmamembrane, and to its localization around cells of both epithelial and fibroblastic origin.  相似文献   

20.
An hypothesis is tested that individual peptides corresponding to the transmembrane helices of the membrane protein, rhodopsin, would form helices in solution similar to those in the native protein. Peptides containing the sequences of helices 1, 4 and 5 of rhodopsin were synthesized. Two peptides, with overlapping sequences at their termini, were synthesized to cover each of the helices. The peptides from helix 1 and helix 4 were helical throughout most of their length. The N- and C-termini of all the peptides were disordered and proline caused opening of the helical structure in both helix 1 and helix 4. The peptides from helix 5 were helical in the middle segment of each peptide, with larger disordered regions in the N- and C-termini than for helices 1 and 4. These observations show that there is a strong helical propensity in the amino acid sequences corresponding to the transmembrane domain of this G-protein coupled receptor. In the case of the peptides from helix 4, it was possible to superimpose the structures of the overlapping sequences to produce a construct covering the whole of the sequence of helix 4 of rhodopsin. As similar superposition for the peptides from helix 1 also produced a construct, but somewhat less successfully because of the disordering in the region of sequence overlap. This latter problem was more severe for helix 5 and therefore a single peptide was synthesized for the entire sequence of this helix, and its structure determined. It proved to be helical throughout. Comparison of all these structures with the recent crystal structure of rhodopsin revealed that the peptide structures mimicked the structures seen in the whole protein. Thus similar studies of peptides may provide useful information on the secondary structure of other transmembrane proteins built around helical bundles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号