首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The density of SSRs on the published genetic map of bread wheat (Triticum aestivum L.) has steadily increased over the last few years. This has improved the efficiency of marker-assisted breeding and certain types of genetic research by providing more choice in the quality of SSRs and a greater chance of finding polymorphic markers in any cross for a chromosomal region of interest. Increased SSR density on the published wheat genetic map will further enhance breeding and research efforts. Here, sequence-tagged microsatellite profiling (STMP) is demonstrated as a rapid technique for the economical development of anonymous genomic SSRs to increase marker density on the wheat genetic map. A total of 684 polymorphic sequence-tagged microsatellites (STMs) were developed, and 380 were genetically mapped in three mapping populations, with 296 being mapped in the International Triticeae Mapping Initiative W7984 × Opata85 recombinant inbred cross. Across the three populations, a total of 479 STM loci were mapped. Several technological advantages of STMs over conventional SSRs were also observed. These include reduced marker deployment costs for fluorescent-based SSR analysis, and increased genotyping throughput by more efficient electrophoretic separation of STMs and a high amenability to multiplex PCR.Electronic Supplementary Material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

2.
An integrated DArT-SSR linkage map of durum wheat   总被引:2,自引:0,他引:2  
Genetic mapping in durum wheat (Triticum durum Desf.) is constrained by its large genome and allopolyploid nature. We developed a Diversity Arrays Technology (DArT) platform for durum wheat to enable efficient and cost-effective mapping and molecular breeding applications. Genomic representations from 56 durum accessions were used to assemble a DArT genotyping microarray. Microsatellite (SSR) and DArT markers were mapped on a durum wheat recombinant inbred population (176 lines). The integrated DArT-SSR map included 554 loci (162 SSRs and 392 DArT markers) and spanned 2022 cM (5 cM/marker on average). The DArT markers from durum wheat were positioned in respect to anchor SSRs and hexaploid wheat DArT markers. DArT markers compared favourably to SSRs to evaluate genetic relationships among the durum panel, with 1315 DArT polymorphisms found across the accessions. Combining DArT and SSR platforms provides an efficient and rapid method of generating linkage maps in durum wheat.  相似文献   

3.
I A Matus  P M Hayes 《Génome》2002,45(6):1095-1106
Genetic diversity can be measured by several criteria, including phenotype, pedigree, allelic diversity at marker loci, and allelic diversity at loci controlling phenotypes of interest. Abundance, high level of polymorphism, and ease of genotyping make simple sequence repeats (SSRs) an excellent molecular marker system for genetics diversity analyses. In this study, we used a set of mapped SSRs to survey three representative groups of barley germplasm: a sample of crop progenitor (Hordeum vulgare subsp. spontaneum) accessions, a group of mapping population parents, and a group of varieties and elite breeding lines. The objectives were to determine (i) how informative SSRs are in these three sets of barley germplasm resources and (ii) the utility of SSRs in classifying barley germplasm. A total of 687 alleles were identified at 42 SSR loci in 147 genotypes. The number of alleles per locus ranged from 4 to 31, with an average of 16.3. Crop progenitors averaged 10.3 alleles per SSR locus, mapping population parents 8.3 alleles per SSR locus, and elite breeding lines 5.8 alleles per SSR locus. There were many exclusive (unique) alleles. The polymorphism information content values for the SSRs ranged from 0.08 to 0.94. The cluster analysis indicates a high level of diversity within the crop progenitors accessions and within the mapping population parents. It also shows a lower level of diversity within the elite breeding germplasm. Our results demonstrate that this set of SSRs was highly informative and was useful in generating a meaningful classification of the germplasm that we sampled. Our long-term goal is to determine the utility of molecular marker diversity as a tool for gene discovery and efficient use of germplasm.  相似文献   

4.
The public availability of large quantities of gene sequence data provides a valuable resource of the mining of Simple Sequence Repeat (SSR) molecular genetic markers for genetic analysis. These markers are inexpensive, require minimal labour to produce and can frequently be associated with functionally annotated genes. This study presents the characterization of barley EST‐SSRs and the identification of putative polymorphic SSRs from EST data. Polymorphic SSRs are distinguished from monomorphic SSRs by the representation of varying motif lengths within an alignment of sequence reads. Two measures of confidence are calculated, redundancy of a polymorphism and co‐segregation with accessions. The utility of this method is demonstrated through the discovery of 597 candidate polymorphic SSRs, from a total of 452 642 consensus expressed sequences. PCR amplification primers were designed for the identified SSRs. Ten primer pairs were validated for polymorphism in barley and for transferability across species. Analysis of the polymorphisms in relation to SSR motif, length, position and annotation is discussed.  相似文献   

5.
Chromosomal assignment of microsatellite loci in cotton   总被引:16,自引:0,他引:16  
Microsatellite markers or simple sequence repeats (SSRs) represent a new class of genetic markers for cotton (Gossypium sp.). Sixty-five SSR primer pairs were used to amplify 71 marker loci and genotype 13 monosomic and 27 monotelodisomic cotton cytogenetic stocks. Forty-two SSR loci were assigned to cotton chromosomes or chromosome arms. Thirty SSRs were not located to specific chromosomes in this study. Nineteen marker loci were shown to occur on the A subgenome and 11 on the D subgenome by screening accessions of G. herbaceum (2n = 2x = 26 = 2A1) and G. raimondii (2n = 2x = 26 = 2D5). The aneuploid stocks proved to be very powerful tools for localizing SSR markers to individual cotton chromosomes. Multiplex PCR bins of the SSR primers and semiautomated detection of the amplified products were optimized in this experiment. Thirteen multiplex PCR bins were optimized to contain an average of 4 SSR primer pairs per bin. This provides a protocol for high-throughput genotyping of cotton SSRs that improves the efficiency of genetic mapping and marker-assisted programs utilizing SSR markers.  相似文献   

6.
We have developed a ’genotyping set’ of 48 SSR-based genetic markers for application in genetical studies of barley. The SSRs are a subset of a collection of approximately 600 SSRs available to the barley research community. They have been specifically chosen according to the following criteria: (1) they are single locus; (2) their product quality is good under standard assay conditions; (3) they are distributed across the barley genome; and (4) they exhibit reasonably high polymorphic information content (PIC) values in the cultivated barley gene-pool. To maximise genotyping throughput, one of each SSR primer pair was 5′ end-labelled with either fam, hex or tet fluorochromes to allow automated data capture after running the samples on a DNA sequencer. SSR product sizes were assembled from a reference set of 24 barley genotypes which allowed the construction of ’graphical genotypes’ of each of the individual lines. The graphical genotypes provide a convenient tool for interrogating genetic similarity in the individuals surveyed. The product sizes were compared to those obtained from end-labelling one of the primers with 33P and separating the products by denaturing PAGE followed by autoradiography. Although inconsistencies in size were common, they could generally be easily resolved. A reference manual for use of the ’genotyping set’ has been produced and is available as a PDF download file at http://www.scri.sari.ac.uk/ssr/pdf. These well-characterised barley SSRs, for the first time, provide a common set of robust PCR-based tools which can be used to integrate and compare information collected from fundamental and/or applied genetic studies on barley in different laboratories across the world. Received: 17 May 2000 / Accepted: 5 September 2000  相似文献   

7.
8.
Food security is a global concern and substantial yield increases in cereal crops are required to feed the growing world population. Wheat is one of the three most important crops for human and livestock feed. However, the complexity of the genome coupled with a decline in genetic diversity within modern elite cultivars has hindered the application of marker‐assisted selection (MAS) in breeding programmes. A crucial step in the successful application of MAS in breeding programmes is the development of cheap and easy to use molecular markers, such as single‐nucleotide polymorphisms. To mine selected elite wheat germplasm for intervarietal single‐nucleotide polymorphisms, we have used expressed sequence tags derived from public sequencing programmes and next‐generation sequencing of normalized wheat complementary DNA libraries, in combination with a novel sequence alignment and assembly approach. Here, we describe the development and validation of a panel of 1114 single‐nucleotide polymorphisms in hexaploid bread wheat using competitive allele‐specific polymerase chain reaction genotyping technology. We report the genotyping results of these markers on 23 wheat varieties, selected to represent a broad cross‐section of wheat germplasm including a number of elite UK varieties. Finally, we show that, using relatively simple technology, it is possible to rapidly generate a linkage map containing several hundred single‐nucleotide polymorphism markers in the doubled haploid mapping population of Avalon × Cadenza.  相似文献   

9.
The first genetic map of the wild South Ameri- can barley species Hordeum chilense is presented. The map, based on an F2 population of 114 plants, contains 123 markers, including 82 RAPDs, 13 SSRs, 16 RFLPs, four SCARs, two seed storage proteins and two STS markers. The map spans 694 cM with an average distance of 5.7 cM between markers. Six additional SSRs and seven additional SCARs which were not polymorphic were assigned to chromosomes using wheat/H. chilense addition lines. Polymorphisms were revealed by 50% of the RAPD amplifications, 13% of wheat and barley SSR primers, and 78% of the Gramineae RFLP anchor probes. The utility of SSR and RFLP probes from other Gramineae species shows the usefulness of a comparative approach as a source of markers and for aligning the genetic map of H. chilense with other species. This also indicates that the overall structure of the H. chilense linkage groups is probably similar to that of the B and D genomes of wheat and the H genome of barley. Applications of the map for tritordeum and wheat breeding are discussed. Received: 20 August 2000 / Accepted: 22 September 2000  相似文献   

10.
Simple sequence repeats (SSRs), or microsatellites, are a new class of PCR-based DNA markers for genetic mapping. The objectives of the present study were to develop SSR markers for barley and to integrate them into an existing barley linkage map. DNA sequences containing SSRs were isolated from a barley genomic library and from public databases. It is estimated that the barley genome contains one (GA)n repeat every 330 kb and one (CA)n repeat every 620 kb. A total of 45 SSRs were identified and mapped to seven barley chromosomes using doubled-haploid lines and/or wheat-barley addition-line assays. Segregation analysis for 39 of these SSRs identified 40 loci. These 40 markers were placed on a barley linkage map with respect to 160 restriction fragment length polymorphism (RFLP) and other markers. The results of this study demonstrate the value of SSRs as markers in genetic studies and breeding research in barley.  相似文献   

11.
Simple molecular marker assays underpin routine plant breeding and research activities in many laboratories worldwide. With the rapid growth of single nucleotide polymorphism (SNP) resources for many important crop plants, the availability of routine, low-tech marker assays for genotyping SNPs is of increased importance. In this study, we demonstrate that temperature-switch PCR (TSP) supports the rapid development of robust, allele-specific PCR markers for codominant SNP genotyping on agarose gel. A total of 87 TSP markers for assessing gene diversity in barley were developed and used to investigate the efficacy for marker development, assay reliably and genotyping accuracy. The TSP markers described provide good coverage of the barley genome, are simple to use, easy to interpret and score, and are amenable to assay automation. They provide a resource of informative SNP markers for assessing genetic relationships among individuals, populations and gene pools of cultivated barley (Hordeum vulgare L.) and its wild relative H. spontaneum K. Koch. TSP markers provide opportunities to use available SNP resources for marker-assisted breeding and plant genetic research, and to generate information that can be integrated with SNP data from different sources and studies. TSP markers are expected to provide similar advantages for any animal or plant species. M. J. Hayden and T. Tabone contributed equally to this work.  相似文献   

12.
芒是许多禾本科作物穗部的重要结构, 不仅可以作为区分不同品种以及基因定位的重要形态标记, 而且在禾谷类作物的种子传播、籽粒灌浆、蒸腾作用及产量形成等方面起重要作用。该文综述了小麦(Triticum aestivum)、大麦(Hordeum vulgare)和水稻(Oryza sativa)芒的结构、功能与遗传调控机制研究进展, 以期为芒性状遗传机理的进一步研究及其在育种中的应用提供参考。  相似文献   

13.
The development of organized, informative, robust, user-friendly, and freely accessible molecular markers is imperative to the Musa marker assisted breeding program. Although several hundred SSR markers have already been developed, the number of informative, robust, and freely accessible Musa markers remains inadequate for some breeding applications. In view of this issue, we surveyed SSRs in four different data sets, developed large-scale non-redundant highly informative therapeutic SSR markers, and classified them according to their attributes, as well as analyzed their cross-taxon transferability and utility for the genetic study of Musa and its relatives. A high SSR frequency (177 per Mbp) was found in the Musa genome. AT-rich dinucleotide repeats are predominant, and trinucleotide repeats are the most abundant in transcribed regions. A significant number of Musa SSRs are associated with pre-miRNAs, and 83% of these SSRs are promising candidates for the development of therapeutic SSR markers. Overall, 74% of the SSR markers were polymorphic, and 94% were transferable to at least one Musa spp. Two hundred forty-three markers generated a total of 1047 alleles, with 2-8 alleles each and an average of 4.38 alleles per locus. The PIC values ranged from 0.31 to 0.89 and averaged 0.71. We report the largest set of non-redundant, polymorphic, new SSR markers to be developed in Musa. These additional markers could be a valuable resource for marker-assisted breeding, genetic diversity and genomic studies of Musa and related species.  相似文献   

14.
Among commonly applied molecular markers, simple sequence repeats (SSRs, or microsatellites) possess advantages such as a high level of polymorphism and codominant pattern of inheritance at individual loci. To facilitate systematic and rapid genetic mapping in soybean, we designed a genotyping panel comprised 304 SSR markers selected for allelic diversity and chromosomal location so as to provide wide coverage. Most primer pairs for the markers in the panel were redesigned to yield amplicons of 80–600 bp in multiplex polymerase chain reaction (PCR) and fluorescence-based sequencer analysis, and they were labelled with one of four different fluorescent dyes. Multiplex PCR with sets of six to eight primer pairs per reaction generated allelic data for 283 of the 304 SSR loci in three different mapping populations, with the loci mapping to the same positions as previously determined. Four SSRs on each chromosome were analysed for allelic diversity in 87 diverse soybean germplasms with four-plex PCR. These 80 loci showed an average allele number and polymorphic information content value of 14.8 and 0.78, respectively. The high level of polymorphism, ease of analysis, and high accuracy of the SSR genotyping panel should render it widely applicable to soybean genetics and breeding.  相似文献   

15.
It has been argued that the level of genetic diversity in the modern durum wheat (Triticum turgidum L. var. durum) elite germplasm may have declined due to the high selection pressure applied in breeding programs. In this study, 58 accessions covering a wide spectrum of genetic diversity of the cultivated durum wheat gene pool were characterized with 70 microsatellite loci (or simple sequence repeats, SSRs). On average, SSRs detected 5.6 different allelic variants per locus, with a mean diversity index (DI) equal to 0.56, thus revealing a diversity content comparable to those previously observed with SSRs in other small-grain cereal gene pools. The mean genetic similarity value was equal to 0.44. A highly diagnostic SSR set has been identified. A high variation in allele size was detected among SSR loci, suggesting a different suitability of these loci for estimating genetic diversity. The B genome was characterized by an overall polymorphism significantly higher than that of the A genome. Genetic diversity is organised in well-distinct sub-groups identified by the corresponding foundation-genotypes. A large portion (92.7%) of the molecular variation detected within the group of 45 modern cvs was accounted for by SSR alleles tracing back to ten foundation-genotypes; among those, the most recent CIMMYT-derived founders were genetically distant from the old Mediterranean ones. On the other hand, rare alleles were abundant, suggesting that a large number of genetic introgressions contributed to the foundation of the well-diversified germplasm herein considered. The profiles of recently released varieties indicate that the level of genetic diversity present in the modern durum wheat germplasm has actually increased over time.Communicated by F. Salamini  相似文献   

16.
Genetic variation present in 64 durum wheat accessions was investigated by using three sources of microsatellite (SSR) markers: EST-derived SSRs (EST-SSRs) and two sources of SSRs isolated from total genomic DNA. Out of 245 SSR primer pairs screened, 22 EST-SSRs and 20 genomic-derived SSRs were polymorphic and used for genotyping. The EST-SSR primers produced high quality markers, but had the lowest level of polymorphism (25%) compared to the other two sources of genomic SSR markers (53%). The 42 SSR markers detected 189 polymorphic alleles with an average number of 4.5 alleles per locus. The coefficient of similarity ranged from 0.28 to 0.70 and the estimates of similarity varied when different sources of SSR markers were used to genotype the accessions. This study showed that EST-derived SSR markers developed in bread wheat are polymorphic in durum wheat when assaying loci of the A and B genomes. A minumum of ten EST-SSRs generated a very low probability of identity (0.36×10−12) indicating that these SSRs have a very high discriminatory power. EST-SSR markers directly sample variation in transcribed regions of the genome, which may enhance their value in marker-assisted selection, comparative genetic analysis and for exploiting wheat genetic resources by providing a more-direct estimate of functional diversity. Received: 19 December 2000 / Accepted: 17 April 2001  相似文献   

17.
The rapid development and application of molecular marker assays have facilitated genomic selection and genome‐wide linkage and association studies in wheat breeding. Although PCR‐based markers (e.g. simple sequence repeats and functional markers) and genotyping by sequencing have contributed greatly to gene discovery and marker‐assisted selection, the release of a more accurate and complete bread wheat reference genome has resulted in the design of single‐nucleotide polymorphism (SNP) arrays based on different densities or application targets. Here, we evaluated seven types of wheat SNP arrays in terms of their SNP number, distribution, density, associated genes, heterozygosity and application. The results suggested that the Wheat 660K SNP array contained the highest percentage (99.05%) of genome‐specific SNPs with reliable physical positions. SNP density analysis indicated that the SNPs were almost evenly distributed across the whole genome. In addition, 229 266 SNPs in the Wheat 660K SNP array were located in 66 834 annotated gene or promoter intervals. The annotated genes revealed by the Wheat 660K SNP array almost covered all genes revealed by the Wheat 35K (97.44%), 55K (99.73%), 90K (86.9%) and 820K (85.3%) SNP arrays. Therefore, the Wheat 660K SNP array could act as a substitute for other 6 arrays and shows promise for a wide range of possible applications. In summary, the Wheat 660K SNP array is reliable and cost‐effective and may be the best choice for targeted genotyping and marker‐assisted selection in wheat genetic improvement.  相似文献   

18.
We have developed the 2-step PCR method, a kind of suppression PCR procedure, to isolate simple sequence repeats (SSRs) from common wheat (Triticum aestivum L.) in a more convenient manner. This system requires neither genomic library screening nor the SSR-enrichment procedure. As a result, we designed 131 primer pairs based on isolated SSRs from not only genomic DNA, but also transformation-competent artificial chromosome (TAC) clones. It has been demonstrated that 34 of the 131 SSR markers developed were polymorphic among 8 wheat lines. Four of 34 polymorphic SSR markers were derived from TAC clones, indicating that this method could be applied to the targeted development of unique SSR markers in large genomic DNA libraries such as those composed of bacterial artificial chromosomes (BACs). A considerable number of isolated SSR clones had similarities with part of several long terminal repeats of retrotransposons (LTR-RTs) identified in various Triticeae genome sequences. Most of those SSRs showed smear amplification profiles, suggesting that a considerable number of dysfunctional SSRs originating from repetitive DNA components, especially LTR-RTs, might exist in the common wheat genome.  相似文献   

19.
20.
To enable rapid selection of traits in marker‐assisted breeding, markers must be technically simple, low‐cost, high‐throughput and randomly distributed in a genome. We developed such a technology, designated as Multiplex Restriction Amplicon Sequencing (MRASeq), which reduces genome complexity by polymerase chain reaction (PCR) amplification of amplicons flanked by restriction sites. The first PCR primers contain restriction site sequences at 3’‐ends, preceded by 6‐10 bases of specific or degenerate nucleotide sequences and then by a unique M13‐tail sequence which serves as a binding site for a second PCR that adds sequencing primers and barcodes to allow sample multiplexing for sequencing. The sequences of restriction sites and adjacent nucleotides can be altered to suit different species. Physical mapping of MRASeq SNPs from a biparental population of allohexaploid wheat (Triticum aestivum L.) showed a random distribution of SNPs across the genome. MRASeq generated thousands of SNPs from a wheat biparental population and natural populations of wheat and barley (Hordeum vulgare L.). This novel, next‐generation sequencing‐based genotyping platform can be used for linkage mapping to screen quantitative trait loci (QTL), background selection in breeding and many other genetics and breeding applications of various species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号