首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inositol 1,3,4,5-tetrakisphosphates (Ins(1,3,4,5)P4), 32P-labelled in positions 4 and 5 were prepared enzymatically, using [4-32P]-phosphatidylinositol 4-phosphate (PtdInsP) and [5-32P]phosphatidylinositol 4,5-bisphosphate (PtdInsP2) as substrates, respectively. Degradation studies of Ins(1,3,4,5)P4, using an enriched phosphatase preparation from porcine brain cytosol, led to the formation of two inositol trisphosphate isomers which were identified as inositol 1,3,4-trisphosphate (Ins(1,3,4)P3) and inositol 1,4,5-trisphosphate (Ins(1,4,5)P3). This novel degradation pathway of Ins(1,3,4,5)P4 to Ins(1,4,5)P3 provides an additional source for the generation of Ins(1,4,5)P3, involving a 3-phosphatase.  相似文献   

2.
Stimulation of human platelets by thrombin leads to rises of both inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) and inositol 1,3,4-trisphosphate (Ins(1,3,4)P3) within 10 s. The mass of Ins(1,4,5)P3 was measured in platelet extracts after conversion to [3-32P]Ins(1,3,4,5)P4 with Ins(1,4,5)P3 3-kinase and [gamma-32P]ATP. Basal levels were equivalent to 0.2 microM and rose to 1 microM within 10 s of stimulation by thrombin. The mass of Ins(1,3,4)P3 was more than 10-fold greater than that of Ins(1,4,5)P3 between 10 and 60 s of thrombin stimulation. These results indicate that the majority of InsP3 liberated by phospholipase C in stimulated platelets must be the non-cyclic Ins(1,4,5)P3 in order to allow rapid phosphorylation by Ins(1,4,5)P3 3-kinase to Ins(1,3,4,5)P4 and then dephosphorylation to Ins(1,3,4)P3 by 5-phosphomonoesterase. A significant proportion of the InsP3 extracted from thrombin-stimulated platelets under neutral conditions is resistant to Ins(1,4,5)P3 3-kinase but susceptible after acid treatment, implying the presence of inositol 1,2-cyclic 4,5-trisphosphate (Ins(1,2cyc4,5)P3. The relative proportion of Ins(1,2cyc4,5)P3 increases with time. We suggest that such gradual accumulation is attributable to the relative insensitivity of this compound to hydrolytic and phosphorylating enzymes. Therefore, early Ca2+ mobilization in platelets is more likely to be effected by Ins(1,4,5)P3 than by Ins(1,2cyc4,5)P3.  相似文献   

3.
The action of carbachol on the generation of inositol trisphosphate and tetrakisphosphate isomers was investigated in dog-thyroid primary cultured cells radiolabelled with [3H]inositol. The separation of the inositol phosphate isomers was performed by reverse-phase high pressure liquid chromatography. The structure of inositol phosphates co-eluting with inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] and inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4] standards was determined by enzymatic degradation using a purified Ins(1,4,5)P3/Ins(1,3,4,5)P4 5-phosphatase. The data indicate that Ins(1,3,4,5)P4 was the only [3H]inositol phosphate which co-eluted with a [32P]Ins(1,3,4,5)P4 standard, whereas 80% of the [3H]InsP3 co-eluting with an Ins(1,4,5)P3 standard was actually this isomer. In the presence of Li+, carbachol led to rapid increases in [3H]Ins(1,4,5)P4. The level of Ins(1,4,5)P3 reached a peak at 200% of the control after 5-10 s of stimulation and fell to a plateau that remained slightly elevated for 2 min. The level of Ins(1,3,4,5)P4 reached its maximum at 20s. The level of inositol 1,3,4-trisphosphate [Ins(1,3,4)P3] increased continuously for 2 min after the addition of carbachol. Inositol-phosphate generation was also investigated under different pharmacological conditions. Li+ largely increased the level of Ins(1,3,4)P3 but had no effect on Ins(1,4,5)P3 and Ins(1,3,4,5)P4. Forskolin, which stimulates dog-thyroid adenylate cyclase and cyclic-AMP accumulation, had no effect on the generation of inositol phosphates. The absence of extracellular Ca2+ largely decreased the level of Ins(1,3,4,5)P4 as expected considering the Ca2(+)-calmodulin sensitivity of the Ins(1,4,5)P3 3-kinase. Staurosporine, an inhibitor of protein kinase C, increased the levels of Ins(1,4,5)P3, Ins(1,3,4,5)P4 and Ins(1,3,4)P3. This supports a negative feedback control of diacyglycerol on Ins(1,4,5)P3 generation.  相似文献   

4.
An enzyme which catalyses the ATP-dependent phosphorylation of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] was purified approx. 180-fold from rat brain cytosol by (NH4)2SO4 precipitation, chromatography through hydroxyapatite, anion-exchange fast protein liquid chromatography and gel-filtration chromatography. Gel filtration on Sepharose 4B CL gives an Mr of 200 x 10(3) for the native enzyme. The inositol tetrakisphosphate (InsP4) produced by the enzyme has the chromatographic, chemical and metabolic properties of Ins(1,3,4,5)P4. Ins(1,4,5)P3 3-kinase displays simple Michaelis-Menten kinetics for both its substrates, having Km values of 460 microM and 0.44 microM for ATP and Ins(1,4,5)P3 respectively. When many of the inositol phosphates known to occur in cells were tested, only Ins(1,4,5)P3 was a substrate for the enzyme; the 2,4,5-trisphosphate was not phosphorylated. Inositol 4,5-bisphosphate and glycerophosphoinositol 4,5-bisphosphate were phosphorylated much more slowly than Ins(1,4,5)P3. CTP, GTP and adenosine 5'-[gamma-thio]triphosphate were unable to substitute for ATP. When assayed under conditions of first-order kinetics, Ins(1,4,5)P3 kinase activity decreased by about 40% as the [Ca2+] was increased over the physiologically relevant range. This effect was insensitive to the presence of calmodulin and appeared to be the result of an increase in the Km of the enzyme for Ins(1,4,5)P3. Preincubation with ATP and the purified catalytic subunit of cyclic AMP-dependent protein kinase did not affect the rate of phosphorylation of Ins(1,4,5)P3 when the enzyme was assayed at saturating concentrations of Ins(1,4,5)P3 or at concentrations close to its Km for this substrate.  相似文献   

5.
1. myo-[3H]Inositol 1,4,5-trisphosphate [Ins(1,4,5)P3], when added to lysed platelets, was rapidly converted into [3H]inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4], which was in turn converted into [3H]inositol 1,3,4-trisphosphate [Ins(1,3,4)P3]. This result demonstrates that platelets have the same metabolic pathways for interconversion of inositol polyphosphates that are found in other cells. 2. Labelling of platelets with [32P]Pi, followed by h.p.l.c., was used to measure thrombin-induced changes in the three inositol polyphosphates. Interfering compounds were removed by a combination of enzymic and non-enzymic techniques. 3. Ins(1,4,5)P3 was formed rapidly, and reached a maximum at about 4 s. It was also rapidly degraded, and was no longer detectable after 30-60 s. 4. Formation of Ins(1,3,4,5)P4 was almost as rapid as that of Ins(1,4,5)P3, and it remained detectable for a longer time. 5. Ins(1,3,4)P3 was formed after an initial lag, and this isomer reached its maximum, which was 10-fold higher than that of Ins(1,4,5)P3, at 30 s. 6. Comparison of the intracellular Ca2+ concentration as measured with fura-2 indicates that agents other than Ins(1,4,5)P3 are responsible for the sustained maintenance of a high concentration of intracellular Ca2+. It is proposed that either Ins(1,3,4)P3 or Ins(1,3,4,5)P4 may also be Ca2+-mobilizing agents.  相似文献   

6.
Human erythrocyte membranes metabolize inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4] to inositol 1,3,4-trisphosphate [Ins(1,3,4)P3] in the presence of Mg2+. In the absence of Mg2+ a less rapid conversion of Ins(1,3,4,5)P4 into Ins(1,4,5)P3 was revealed. Such an enzyme activity, if present in hormonally sensitive cells, could provide a mechanism for maintaining constant concentrations of Ins(1,4,5)P3 and Ins(1,3,4,5)P4, important for stimulation of Ca2+ entry after Ca2+ mobilization.  相似文献   

7.
Turkey erythrocytes contain soluble and particulate kinase activities which catalyse the ATP-dependent phosphorylation of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3]. The particle-bound activity accounts for approximately one-quarter of the total cellular Ins(1,4,5)P3 kinase, when assayed at a [Ca2+] of 10 nM. The particle-bound Ins(1,4,5)P3 kinase is not washed from the membrane by 0.6 M-KCl, yet may be solubilized by a variety of detergents. This suggests that it is an intrinsic membrane protein. The product of the membrane-bound Ins(1,4,5)P3 kinase is inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4], identifying the enzyme as an Ins(1,4,5)P3 3-kinase. In the presence of calmodulin, the membrane-associated Ins(1,4,5)P3 3-kinase is activated as [Ca2+] is increased over the range 0.2-1.0 microM. Under these conditions, the rates of dephosphorylation of Ins(1,3,4,5)P4 and Ins(1,4,5)P3 by phosphatases in the membrane fraction are unchanged.  相似文献   

8.
The analysis of the inositol cycle in Dictyostelium discoideum cells is complicated by the limited uptake of [3H]inositol (0.2% of the applied radioactivity in 6 h), and by the conversion of [3H]inositol into water-soluble inositol metabolites that are eluted near the position of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] on anion-exchange h.p.l.c. columns. The uptake was improved to 2.5% by electroporation of cells in the presence of [3H]inositol; electroporation was optimal at two 210 microseconds pulses of 7 kV. Cells remained viable and responsive to chemotactic signals after electroporation. The intracellular [3H]inositol was rapidly metabolized to phosphatidylinositol and more slowly to phosphatidylinositol phosphate and phosphatidylinositol bisphosphate. More than 85% of the radioactivity in the water-soluble extract that was eluted on Dowex columns as Ins(1,4,5)P3 did not co-elute with authentic [32P]Ins(1,4,5)P3 on h.p.l.c. columns. Chromatography of the extract by ion-pair reversed-phase h.p.l.c. provided a good separation of the polar inositol polyphosphates. Cellular [3H]Ins(1,4,5)P3 was identified by (a) co-elution with authentic [32P]Ins(1,4,5)P3 and (b) degradation by a partially purified Ins(1,4,5)P3 5-phosphatase from rat brain. The chemoattractant cyclic AMP and the non-hydrolysable analogue guanosine 5'-[gamma-thio]triphosphate induced a transient accumulation of radioactivity in Ins(1,4,5)P3; we did not detect radioactivity in inositol 1,3,4-trisphosphate or inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4]. In vitro, Ins(1,4,5)P3 was metabolized to inositol 1,4- and 4,5-bisphosphate, but not to Ins(1,3,4,5)P4 or another tetrakisphosphate isomer. We conclude that Dictyostelium has a receptor- and G-protein-stimulated inositol cycle which is basically identical with that in mammalian cells, but the metabolism of Ins(1,4,5)P3 is probably different.  相似文献   

9.
A cytosolic fraction derived from rat hepatocytes was used to investigate the regulation of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] kinase, the enzyme which converts Ins(1,4,5)P3 to inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4]. The activity was doubled by raising the free Ca2+ concentration of the assay medium from 0.1 microM to 1.0 microM. A 5 min preincubation of the hepatocytes with 100 microM-dibutyryl cyclic AMP (db.cAMP) plus 100 nM-tetradecanoylphorbol acetate (TPA) resulted in a 40% increase in Ins(1,4,5)P3 kinase activity when subsequently assayed at 0.1 microM-Ca2+. This effect was smaller at [Ca2+] greater than 0.5 microM, and absent at 1.0 microM-Ca2+. Similar results were obtained after preincubation with 100 microM-db.cAMP plus 300 nM-vasopressin (20% increase at 0.1 microM-Ca2+; no effect at 1.0 microM-Ca2+). Preincubation with vasopressin, db.cAMP or TPA alone did not alter Ins(1,4,5)P3 kinase activity. It is proposed that these results, together with recent evidence implicating Ins(1,3,4,5)P4 in the control of Ca2+ influx, could be relevant to earlier findings that hepatic Ca2+ uptake is synergistically stimulated by cyclic AMP analogues and vasopressin.  相似文献   

10.
Metabolism of inositol 1,4,5-trisphosphate was investigated in permeabilized guinea-pig hepatocytes. The conversion of [3H]inositol 1,4,5-trisphosphate to a more polar 3H-labelled compound occurred rapidly and was detected as early as 5 s. This material co-eluted from h.p.l.c. with inositol 1,3,4,5 tetrakis[32P]phosphate and is presumably an inositol tetrakisphosphate. A significant increase in the 3H-labelled material co-eluting from h.p.l.c. with inositol 1,3,4-trisphosphate occurred only after a definite lag period. Incubation of permeabilized hepatocytes with inositol 1,3,4,5-tetrakis[32P]phosphate resulted in the formation of 32P-labelled material that co-eluted with inositol 1,3,4-trisphosphate; no inositol 1,4,5-tris[32P]phosphate was produced, suggesting the action of a 5-phosphomonoesterase. The half-time of hydrolysis of inositol 1,3,4,5-tetrakis[32P]phosphate of approx. 1 min was increased to 3 min by 2,3-bisphosphoglyceric acid. Similarly, the rate of production of material tentatively designed as inositol 1,3,4-tris[32P]phosphate from the tetrakisphosphate was reduced by 10 mM-2,3-bisphosphoglyceric acid. In the absence of ATP there was no conversion of [3H]inositol 1,4,5-trisphosphate to [3H]inositol tetrakisphosphate or to [3H]inositol 1,3,4-trisphosphate, which suggests that the 1,3,4 isomer does not result from isomerization of inositol 1,4,5-trisphosphate. The results of this study suggest that the origin of the 1,3,4 isomer of inositol trisphosphate in isolated hepatocytes is inositol 1,3,4,5-tetrakisphosphate and that inositol 1,4,5-trisphosphate is rapidly converted to this tetrakisphosphate. The ability of 2,3-bisphosphoglyceric acid, an inhibitor of 5-phosphomonoesterase of red blood cell membrane, to inhibit the breakdown of the tetrakisphosphate suggests that the enzyme which removes the 5-phosphate from inositol 1,4,5-trisphosphate may also act to convert the tetrakisphosphate to inositol 1,3,4-trisphosphate. It is not known if the role of inositol 1,4,5-trisphosphate kinase is to inactivate inositol 1,4,5-trisphosphate or whether the tetrakisphosphate product may have a messenger function in the cell.  相似文献   

11.
Addition of 1 mM-carbachol to [3H]inositol-labelled rat parotid slices stimulated rapid formation of [3H]inositol 1,3,4,5-tetrakisphosphate, the accumulation of which reached a peak 20 s after stimulation, and then declined rapidly towards a new steady state. The initial rate of formation of inositol 1,3,4,5-tetrakisphosphate was slower than that for inositol 1,4,5-trisphosphate. The radioactivity in [3H]inositol 1,3,4,5-tetrakisphosphate fell quickly in carbachol-stimulated and then atropine-blocked parotid slices, suggesting that it is rapidly metabolized during stimulation. Parotid homogenates rapidly dephosphorylated inositol 1,4,5-trisphosphate, inositol 1,3,4,5-tetrakisphosphate and, less rapidly, inositol 1,3,4-trisphosphate. Inositol 1,3,4,5-tetrakisphosphate was specifically hydrolysed to a compound with the chromatographic properties of inositol 1,3,4-trisphosphate. The only 3H-labelled phospholipids that we could detect in parotid slices labelled with [3H]inositol for 90 min were phosphatidylinositol, phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Parotid homogenates synthesized inositol tetrakisphosphate from inositol 1,4,5-trisphosphate. This activity was dependent on the presence of ATP. We suggest that, during carbachol stimulation of parotid slices, the key event in inositol lipid metabolism is the activation of phosphatidylinositol 4,5-bisphosphate-specific phospholipase C. The inositol 1,4,5-trisphosphate thus liberated is metabolized in two distinct ways; by direct hydrolysis of the 5-phosphate to form inositol 1,4-bisphosphate and by phosphorylation to form inositol 1,3,4,5-tetrakisphosphate and hence, by hydrolysis of this tetrakisphosphate, to form inositol 1,3,4-trisphosphate.  相似文献   

12.
Several properties of macrophages change when suspended cells become adherent. To determine the intracellular signals involved in these changes, concentrations of the second messenger inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] were monitored during adherence of J774.1 cells, a macrophage-like cell line. When cells grown in suspension were allowed to adhere to a glass surface, there was a transient increase in InsP3 that reached a peak between 100 and 120 s after plating. Inositol mono- and bis-phosphate concentrations were also elevated 100 and 120 s after plating. Analysis of isomer distribution showed significant 3-fold increases in Ins(1,4,5)P3 and inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4] at 100 s after plating. These values were maintained at 120 s, with the additional appearance of a 4-fold increase in inositol 1,3,4-trisphosphate. The adherence-induced generation of Ins(1,4,5)P3 was decreased, and Ins(1,3,4,5)P4 formation was blocked, in Ca2+-free medium. However, doubling intracellular [Ca2+] by addition of the Ca2+ ionophore ionomycin (1 microM) did not increase Ins(1,4,5)P3 in suspended cells. Adherence of J774.1 cells to fibronectin-coated glass also induced an increase in InsP3.  相似文献   

13.
In bovine adrenal microsomes, Ins(1,4,5)P3 binds to a specific high-affinity receptor site (Kd = 11 nM) with low affinity for two other InsP3 isomers, Ins(1,3,4)P3 and Ins(2,4,5)P3. In the same subcellular fractions Ins(1,4,5)P3 was also the most potent stimulus of Ca2+ release of all the inositol phosphates tested. Of the many inositol phosphates recently identified in angiotensin-II-stimulated adrenal glomerulosa and other cells, Ins(1,3,4,5)P4 has been implicated as an additional second messenger that may act in conjunction with Ins(1,4,5)P3 to elicit Ca2+ mobilization. In the present study, an independent action of Ins(1,3,4,5)P4 was observed in bovine adrenal microsomes. Heparin, a sulphated polysaccharide which binds to Ins(1,4,5)P3 receptors in several tissues, inhibited both the binding of radiolabelled Ins(1,4,5)P3 and its Ca2(+)-releasing activity in adrenal microsomes. In contrast, heparin did not inhibit the mobilization of Ca2+ by Ins(1,3,4,5)P4, even at doses that abolished the Ins(1,4,5)P3 response. Such differential inhibition of the Ins(1,4,5)P3- and Ins(1,3,4,5)P4-induced Ca2+ responses by heparin indicates that Ins(1,3,4,5)P4 stimulates the release of Ca2+ from a discrete intracellular store, and exerts this action via a specific receptor site that is distinct from the Ins(1,4,5)P3 receptor.  相似文献   

14.
We have augmented our previous studies [Storey, Shears, Kirk & Michell (1984) Nature (London) 312, 374-376] on the subcellular location and properties of Ins(1,4,5)P3 (inositol 1,4,5-trisphosphate) phosphatases in rat liver and human erythrocytes. We also investigate Ins(1,3,4)P3 (inositol 1,3,4-trisphosphate) metabolism by rat liver. Membrane-bound and cytosolic Ins(1,4,5)P3 phosphatases both attack the 5-phosphate. The membrane-bound enzyme is located on the inner face of the plasma membrane, and there is little or no activity associated with Golgi apparatus. Cytosolic Ins(1,4,5)P3 5-phosphatase (Mr 77,000) was separated by gel filtration from Ins(1,4)P2 (inositol 1,4-bisphosphate) and inositol 1-phosphate phosphatases (Mr 54,000). Ins(1,4,5)P3 5-phosphatase activity in hepatocytes was unaffected by treatment of the cells with insulin, vasopressin, glucagon or dibutyryl cyclic AMP. Ins(1,4,5)P3 5-phosphatase activity in cell homogenates was unaffected by changes in [Ca2+] from 0.1 to 2 microM. After centrifugation of a liver homogenate at 100,000 g, Ins(1,3,4)P3 phosphatase activity was largely confined to the supernatant. The sum of the activities in the supernatant and the pellet exceeded that in the original homogenate. When these fractions were recombined, Ins(1,3,4)P3 phosphatase activity was restored to that observed in unfractionated homogenate. Ins(1,3,4)P3 was produced from Ins(1,3,4,5)P4 (inositol 1,3,4,5-tetrakisphosphate) and was metabolized to a novel InsP2 that was the 3,4-isomer. Ins(1,3,4)P3 phosphatase activity was not changed by 50 mM-Li+ or 0.07 mM-Ins(1,4)P2 alone, but when added together these agents inhibited Ins(1,3,4)P3 metabolism. In Li+-treated and vasopressin-stimulated hepatocytes, Ins(1,4)P2 may reach concentrations sufficient to inhibit Ins(1,3,4)P3 metabolism, with little effect on Ins(1,4,5)P3 hydrolysis.  相似文献   

15.
The calcium-liberating second messenger inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) is converted to inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4) by Ins(1,4,5)P3 3-kinases (IP3Ks) that add a fourth phosphate group to the 3-position of the inositol ring. Two isoforms of IP3Ks (named A and B) from different vertebrate species have been well studied. Recently the cloning and examination of a human full-length cDNA encoding a novel isoform, termed human IP3K-C (HsIP3K-C), has been reported. In the present study we report the cloning of a full-length cDNA encoding a rat homologue of HsIP3K-C with a unique mRNA expression pattern, which differs remarkably from the tissue distribution of HsIP3K-C. Of the rat tissues examined, rat IP3K-C (RnIP3K-C) is mainly present in heart, brain, and testis and shows the strongest expression in an epidermal tissue, namely tongue epithelium. RnIP3K-C has a calculated molecular mass of approximately 74.5 kDa and shows an overall identity of approximately 75% with HsIP3K-C. A bacterially expressed, enzymatically active and Ca2+-calmodulin-regulated fragment of this isoform displays remarkable enzymatic properties like a very low Km for Ins(1,4,5)P3 ( approximately 0.2 microm), substrate inhibition by high concentrations of Ins(1,4,5)P3, allosteric product activation by Ins(1,3,4,5)P4 in absence of Ca2+-calmodulin (Ka(app) 0.52 microm), and the ability to efficiently phosphorylate a second InsP3 substrate, inositol 2,4,5-trisphosphate, to inositol 2,4,5,6-tetrakisphosphate in the presence of Ins(1,3,4,5)P4. Furthermore, the RnIP3K-C fused with a fluorescent protein tag is actively transported into and out of the nucleus when transiently expressed in mammalian cells. A leucine-rich nuclear export signal and an uncharacterized nuclear import activity are localized in the N-terminal domain of the protein and determine its nucleocytoplasmic shuttling. These findings point to a particular role of RnIP3K-C in nuclear inositol trisphosphate phosphorylation and cellular growth.  相似文献   

16.
An explanation of the complex effects of hormones on intracellular Ca2+ requires that the intracellular actions of Ins(1,4,5)P3 and the relationships between intracellular Ca2+ stores are fully understood. We have examined the kinetics of 45Ca2+ efflux from pre-loaded intracellular stores after stimulation with Ins(1,4,5)P3 or the stable phosphorothioate analogue, Ins(1,4,5)P3[S]3, by simultaneous addition of one of them with glucose/hexokinase to rapidly deplete the medium of ATP. Under these conditions, a maximal concentration of either Ins(1,4,5)P3 or Ins(1,4,5)P3[S]3 evoked rapid efflux of about half of the accumulated 45Ca2+, and thereafter the efflux was the same as occurred under control conditions. Submaximal concentrations of Ins(1,4,5)P3 or Ins(1,4,5)P3[S]3 caused a smaller rapid initial efflux of 45Ca2+, after which the efflux was similar whatever the concentration of Ins(1,4,5)P3 or Ins(1,4,5)P3[S]3 present. The failure of submaximal concentrations of Ins(1,4,5)P3 and Ins(1,4,5)P3[S]3 to mobilize fully the Ins(1,4,5)P3-sensitive Ca2+ stores despite prolonged incubation was not due either to inactivation of Ins(1,4,5)P3 or to desensitization of the Ins(1,4,5)P3 receptor. The results suggest that the size of the Ins(1,4,5)P3 sensitive Ca2+ stores depends upon the concentration of Ins(1,4,5)P3.  相似文献   

17.
The role of phosphoinositide turnover in the mediation of acid secretion was examined in an enriched preparation of isolated rabbit parietal cells (75%). Both gastrin and CCK-8 (octapeptide of cholecystokinin) stimulated [14C]aminopyrine (AP) uptake by cells (EC50 0.07 +/- 0.03 nM (gastrin) and 0.093 +/- 0.065 nM (CCK-8] and increased [3H]inositol phosphates cellular contents (EC50 0.142 +/- 0.016 nM (gastrin) and 0.116 +/- 0.027 nM (CCK-8] in a parallel fashion. In addition, the EC50 values for both phenomenon were quite similar to the Kd values obtained from binding experiments. HPLC analysis of the different [3H]inositol phosphates produced under gastrin or CCK-8 stimulation showed a 2-fold increase in [3H]Ins(1,4,5)P3 levels within 5 s with a concomitant increase in [3H]Ins(1,4)P2 content within 15 s. A low but significant rise in [3H]Ins(1,3,4,5)P4 and [3H]Ins(1,3,4)P3 cellular contents was also observed. No difference between gastrin- and CCK-8-induced inositol phosphates production could be shown. We can conclude that gastrin and CCK-8 display an identical profile of action, suggesting that they stimulate the acid secretory function of parietal cells through the same receptor site coupled to the Ins(1,4,5)P3 production.  相似文献   

18.
Previous studies with antigen-stimulated rat basophilic leukemia (RBL-2H3) cells indicated the formation of multiple isomers of each of the various categories of inositol phosphates. The identities of the different isomers have been elucidated by selective labeling of [3H]inositol 1,3,4,5-tetrakisphosphate with [32P]phosphate in the 3'-or 4',5'-positions and by following the metabolism of different radiolabeled inositol phosphates in extracts of RBL-2H3 cells. We report here that inositol 1,3,4,5-tetrakisphosphate, when incubated with the membrane fraction of extracts of RBL-2H3 cells, was converted to inositol 1,4,5-trisphosphate and inositol 1,3,4-trisphosphate. Further dephosphorylation of the inositol polyphosphates proceeded rapidly in whole extracts of cells, although the process was significantly retarded when ATP (2 mM) levels were maintained by an ATP-regenerating system. The degradation of inositol 1,4,5-trisphosphate proceeded with the sequential formation of inositol 1,4-bisphosphate, the inositol 4-monophosphate (with smaller amounts of the 1-monophosphate), and finally inositol. Inositol 1,3,4-trisphosphate, on the other hand, was converted to inositol 1,3-bisphosphate and inositol 3,4-bisphosphate and subsequently to inositol 4-monophosphate and inositol 1-monophosphate (stereoisomeric forms were undetermined). The possible implications of the apparent interconversion between inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate in regulating histamine secretion in the RBL-2H3 cells are discussed.  相似文献   

19.
In internally perfused single lacrimal acinar cells the competitive inositol 1,4,5-trisphosphate (Ins 1,4,5-P3)-antagonist heparin inhibits the ACh-evoked K+ current response mediated by internal Ca2+ and also blocks both the Ins 1,4,5-P3-evoked transient as well as the sustained K+ current increase evoked by combined stimulation with internal Ins 1,4,5-P3 and inositol 1,3,4,5-tetrakisphosphate (Ins 1,3,4,5-P4). When, during sustained stimulation with both Ins 1,4,5-P3 and Ins 1,3,4,5-P4, one of the inositol polyphosphates is removed, the K+ current declines; whereas removal of Ins 1,4,5-P3 results in an immediate termination of the response, removal of Ins 1,3,4,5-P4 only causes a very gradual and slow reduction in the current. Ins 1,3,4,5-P4 is therefore not an acute controller of Ca2+ release from stores into the cytosol, but modulates the release of Ca2+ induced by Ins 1,4,5,P3 by an unknown mechanism, perhaps by linking Ins 1,4,5 P3-sensitive and insensitive Ca2+ stores.  相似文献   

20.
The abilities of D-myo-inositol phosphates (InsPs) to promote Ca2+ release and to compete for D-myo-[3H]-inositol 1,4,5-trisphosphate [( 3H]Ins(1,4,5)P3) binding were examined with microsomal preparations from rat cerebellum. Of the seven InsPs examined, only Ins(1,4,5)P3, Ins(2,4,5)P3 and Ins(4,5)P2 stimulated the release of Ca2+. Ca2+ release was maximal in 4-6 s and was followed by a rapid re-accumulation of Ca2+ into the Ins(1,4,5)P3-sensitive compartment after Ins(1,4,5)P3, but not after Ins(2,4,5)P3 or Ins(4,5)P2. Ca2+ re-accumulation after Ins(1,4,5)P3 was also faster than after pulse additions of Ca2+, and coincided with the metabolism of [3H]Ins(1,4,5)P3. These data suggest that Ins(1,4,5)P3-induced Ca2+ release and the accompanying decrease in intraluminal Ca2+ stimulate the Ca2+ pump associated with the Ins(1,4,5)P3-sensitive compartment. That this effect was observed only after Ins(1,4,5)P3 may reflect differences in either the metabolic rates of the various InsPs or an effect of the Ins(1,4,5)P3 metabolite Ins(1,3,4,5)P4 to stimulate refilling of the Ins(1,4,5)P3-sensitive store. InsP-induced Ca2+ release was concentration-dependent, with EC50 values (concn. giving half-maximal release) of 60, 800 and 6500 nM for Ins(1,4,5)P3, Ins(2,4,5)P3 and Ins(4,5)P2 respectively. Ins(1,4,5)P3, Ins(2,4,5)P3 and Ins(4,5)P2 also competed for [3H]Ins(1,4,5)P3 binding, with respective IC50 values (concn. giving 50% inhibition) of 100, 850 and 13,000 nM. Comparison of the EC50 and IC50 values yielded a significant correlation (r = 0.991). These data provide evidence of an association between the [3H]Ins(1,4,5)P3-binding site and the receptor mediating Ins(1,4,5)P3-induced Ca2+ release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号