首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intracellular calcium and the control of neuronal pacemaker activity   总被引:3,自引:0,他引:3  
Pacemaker activity of the Aplysia bursting pacemaker neuron R-15 was analyzed. It was shown that the free intracellular Ca2+ concentration, as measured by arsenazo III, increases during the depolarizing phase of the pacemaker cycle and declines throughout the hyperpolarizing phase that follows. This increase in Ca2+ results from the activation of voltage-dependent Ca2+ channels that open during the depolarizing phase of the cycle. The extracellular K+ concentration also increases during the depolarizing phase of the cycle and is correlated with an outward K+ current that opposes the inward current carried by Ca2+ ions. The increase in internal Ca2+ is sufficient to activate a K+ conductance that depends on the magnitude of the change in internal Ca2+ and on membrane potential, which is responsible for the hyperpolarizing phase of the cycle. It is proposed that the membrane oscillation depends on three separate but linked systems, which include a voltage-dependent Ca2+ channel, the internal Ca2+ concentration, and a Ca2+-activated K+ channel.  相似文献   

2.
Pituitary corticotroph cells generate repetitive action potentials and associated Ca2+ transients in response to the agonist corticotropin releasing hormone (CRH). There is indirect evidence suggesting that the agonist, by way of complex intracellular mechanisms, modulates the voltage sensitivity of the L-type Ca2+ channels embedded in the plasma membrane. We have previously constructed a Hodgkin-Huxley-type model of this process, which indicated that an increase in the L-type Ca2+ current is sufficient to generate repetitive action potentials (LeBeau et al. (1997). Biophys. J.73, 1263-1275). CRH is also believed to inhibit an inwardly rectifying K+ current. In this paper, we have found that a CRH-induced inhibition of the inwardly rectifying K+ current increases the model action potential firing frequency, [Ca2+]i transients and membrane excitability. This dual modulatory action of CRH on inward rectifier and voltage-gated Ca2+ channels better describes the observed CRH-induced effects. This structural alteration to the model along with parameter changes bring the model firing frequency in line with experimental data. We also show that the model exhibits experimentally observed bursting behaviour, where the depolarization spike is followed by small oscillations in the membrane potential.  相似文献   

3.
Capacitative regulation of calcium entry is a major mechanism of Ca2+ influx into electrically non-excitable cells, but it also operates in some excitable ones. It participates in the refilling of intracellular calcium stores and in the generation of Ca2+ signals in excited cells. The mechanism which couples depletion of intracellular calcium stores located in the endoplasmic reticulum with opening of store-operated calcium channels in the plasma membrane is not clearly understood. Mitochondria located in close proximity to Ca2+ channels are exposed to high Ca2+ concentration, and therefore, they are able to accumulate this cation effectively. This decreases local Ca2+ concentration and thereby affects calcium-dependent processes, such as depletion and refilling of the intracellular calcium stores and opening of the store-operated channels. Finally, mitochondria modulate the intensity and the duration of calcium signals induced by extracellular stimuli. Ca2+ uptake by mitochondria requires these organelles to be in the energized state. On the other hand, Ca2+ flux into mitochondria stimulates energy metabolism. To sum up, mitochondria couple cellular metabolism with calcium homeostasis and signaling.  相似文献   

4.
Conversion of beating to bursting pacemaker activity: Action of quinidine   总被引:1,自引:0,他引:1  
External quinidine converts the pacemaker neurone L-11, found in the Aplysia abdominal ganglion, from spontaneously "beating" to "bursting" discharge activity. Quinidine-induced bursting ceased when entry of Ca2+ ions into the cells was blocked in a Ca2+-free, Co2+-containing solution or if internal Ca2+ accumulation was prevented by the injection of EGTA. The analysis of membrane currents from voltage clamp experiments showed that quinidine blocks the Ca2+ inward current in a dose- and time-dependent manner. In addition, the currents were displaced to the left on the voltage axis, causing an increase of the inward current at negative membrane potentials. External quinidine suppresses the Ca2+-activated K+ current induced by intracellular Ca2+ injections and acts to prolong its decay phase. The slowing of the decay phase of the Ca2+-activated K+ current by quinidine was prevented after intracellular injection of EGTA, indicating that Ca2+ removal is impaired by the drug. It is suggested that the increase of Ca2+ inward current at negative potentials and the prolonged activation of the Ca2+-activated K+ current play a major role in causing the bursting discharge behavior in normally beating cells.  相似文献   

5.
In eukaryotic cells, activation of cell surface receptors that couple to the phosphoinositide pathway evokes a biphasic increase in intracellular free Ca2+ concentration: an initial transient phase reflecting Ca2+ release from intracellular stores, followed by a plateau phase due to Ca2+ influx. A major component of this Ca2+ influx is store-dependent and often can be measured directly as the Ca2+ release-activated Ca2+ current (I(CRAC)). Under physiological conditions of weak intracellular Ca2+ buffering, respiring mitochondria play a central role in store-operated Ca2+ influx. They determine whether macroscopic I(CRAC) activates or not, to what extent and for how long. Here we describe an additional role for energized mitochondria: they reduce the amount of inositol 1,4,5-trisphosphate (InsP3) that is required to activate I(CRAC). By increasing the sensitivity of store-operated influx to InsP3, respiring mitochondria will determine whether modest levels of stimulation are capable of evoking Ca2+ entry or not. Mitochondrial Ca2+ buffering therefore increases the dynamic range of concentrations over which the InsP3 is able to function as the physiological messenger that triggers the activation of store-operated Ca2+ influx.  相似文献   

6.
7.
Gonadotropin-releasing hormone (GnRH) receptors are expressed in hypothalamic tissues from adult rats, cultured fetal hypothalamic cells, and immortalized GnRH-secreting neurons (GT1 cells). Their activation by GnRH agonists leads to an overall increase in the extracellular Ca2+-dependent pulsatile release of GnRH. Electrophysiological studies showed that GT1 cells exhibit spontaneous, extracellular Ca2+-dependent action potentials, and that their inward currents include Na+, T-type and L-type Ca2+ components. Several types of potassium channels, including apamin-sensitive Ca2+-controlled potassium (SK) channels, are also expressed in GT1 cells. Activation of GnRH receptors leads to biphasic changes in intracellular Ca2+ concentration ([Ca2+]i), with an early and extracellular Ca2+-independent peak and a sustained and extracellular Ca2+-dependent plateau phase. During the peak [Ca2+]i response, electrical activity is abolished due to transient hyperpolarization that is mediated by SK channels. This is followed by sustained depolarization and resumption of firing with increased spike frequency and duration. The agonist-induced depolarization and increased firing are independent of [Ca2+]i and are not mediated by inhibition of K+ currents, but by facilitation of a voltage-insensitive and store depletion-activated Ca2+-conducting inward current. The dual control of pacemaker activity by SK and store depletion-activated Ca2+ channels facilitates voltage-gated Ca2+ influx at elevated [Ca2+]i levels, but also protects cells from Ca2+ overload. This process accounts for the autoregulatory action of GnRH on its release from hypothalamic neurons.  相似文献   

8.
T Sasaki  D V Gallacher 《FEBS letters》1990,264(1):130-134
In exocrine acinar cells a variety of neurotransmitters (e.g. acetylcholine) stimulate phosphatidylinositol 4,5-bisphosphate hydrolysis elevating intracellular calcium to activate calcium-dependent membrane currents (outward K+ and inward Cl-). This study shows that in lacrimal acinar cells extracellular application of ATP is also associated with outward and inward current responses; these, however, are not the result of phosphoinositide metabolism. ATP directly activates receptor-operated cation channels which permit influx of Na+ and Ca+ (the inward current). The elevation in [Ca2+]i which results is sufficient to activate the outward K+ current. ATP thus promotes Ca+ influx in the absence of phosphoinositide metabolism.  相似文献   

9.
In non-excitable cells, sustained intracellular Ca2+ increase critically depends on influx of extracellular Ca2+. Such Ca2+ influx is thought to occur by a 'store-operated' mechanism, i.e. the signal for Ca2+ entry is believed to result from the initial release of Ca2+ from inositol 1,4,5-trisphosphate-sensitive intracellular stores. Here we show that the depletion of cellular Ca2+ stores by thapsigargin or bradykinin is functionally linked to a phosphoinositide-specific phospholipase D (PLD) activity in cultured vascular smooth muscle cells (VSMC), and that phosphatidic acid formed via PLD enhances sustained calcium entry in this cell type. These results suggest a regulatory role for PLD in store-operated Ca2+ entry in VSMC.  相似文献   

10.
Activation of surface membrane receptors coupled to phospholipase C results in the generation of cytoplasmic Ca2+ signals comprised of both intracellular Ca2+ release, and enhanced entry of Ca2+ across the plasma membrane. A primary mechanism for this Ca2+ entry process is attributed to store-operated Ca2+ entry, a process that is activated by depletion of Ca2+ ions from an intracellular store by inositol 1,4,5-trisphosphate. Our understanding of the mechanisms underlying both Ca2+ release and store-operated Ca2+ entry have evolved from experimental approaches that include the use of fluorescent Ca2+ indicators and electrophysiological techniques. Pharmacological manipulation of this Ca2+ signaling process has been somewhat limited; but recent identification of key molecular players, STIM and Orai family proteins, has provided new approaches. Here we describe practical methods involving fluorescent Ca2+ indicators and electrophysiological approaches for dissecting the observed intracellular Ca2+ signal to reveal characteristics of store-operated Ca2+ entry, highlighting the advantages, and limitations, of these approaches.  相似文献   

11.
Recent work from this laboratory has demonstrated that purinergic-mediated depolarization of human microglia inhibited a store-operated pathway for entry of Ca2+. We have used Fura-2 spectrofluorometry to investigate the effects on store-operated Ca2+ influx induced by replacement of NaCl with Na-gluconate in extracellular solutions. Three separate procedures were used to activate store-operated channels. Platelet activating factor (PAF) was used to generate a sustained influx of Ca2+ in standard physiological saline solution (PSS). The magnitude of this response was depressed by 70% after replacement of PSS with low Cl- PSS. A second procedure used ATP, initially applied in Ca2+-free PSS solution to deplete intracellular stores. The subsequent perfusion of PSS solution containing Ca2+ resulted in a large and sustained entry of Ca2+, which was inhibited by 75% with low Cl- PSS. The SERCA inhibitor cyclopiazonic acid (CPA) was used to directly deplete stores in zero-Ca2+ PSS. Following the introduction of PSS containing Ca2+, a maintained stores-operated influx of Ca2+ was evident which was inhibited by 77% in the presence of the low Cl- PSS. Ca2+ influx was linearly reduced with cell depolarization in elevated K+ (7.5 to 35 mM) suggesting that changes in external Cl- were manifest as altered electrical driving force for Ca2+ entry. However, 50 mM external KCl effectively eliminated divalent entry which may indicate inactivation of this pathway with high magnitudes of depolarization. Patch clamp studies showed low Cl-PSS to cause depolarizing shifts in both holding currents and reversal potentials of currents activated with voltage ramps. The results demonstrate that Cl- channels play an important role in regulating store-operated entry of Ca2+ in human microglia.  相似文献   

12.
Calcium (Ca2+) oscillations play fundamental roles in various cell signaling processes and have been the subject of numerous modeling studies. Here we have implemented a general mathematical model to simulate the impact of store-operated Ca2+ entry on intracellular Ca2+ oscillations. In addition, we have compared two different models of the inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) and their influences on intracellular Ca2+ oscillations. Store-operated Ca2+ entry following Ca2+ depletion of endoplasmic reticulum (ER) is an important component of Ca2+ signaling. We have developed a phenomenological model of store-operated Ca2+ entry via store-operated Ca2+ (SOC) channels, which are activated upon ER Ca2+ depletion. The depletion evokes a bi-phasic Ca2+ signal, which is also produced in our mathematical model. The IP3R is an important regulator of intracellular Ca2+ signals. This IP3 sensitive Ca2+ channel is also regulated by Ca2+. We apply two IP3R models, the Mak-McBride-Foskett model and the De Young and Keizer model, with significantly different channel characteristics. Our results show that the two separate IP3R models evoke intracellular Ca2+ oscillations with different frequencies and amplitudes. Store-operated Ca2+ entry affects the oscillatory behavior of these intracellular Ca2+ oscillations. The IP3 threshold is altered when store-operated Ca2+ entry is excluded from the model. Frequencies and amplitudes of intracellular Ca2+ oscillations are also altered without store-operated Ca2+ entry. Under certain conditions, when intracellular Ca2+ oscillations are absent, excluding store-operated Ca2+ entry induces an oscillatory response. These findings increase knowledge concerning store-operated Ca2+ entry and its impact on intracellular Ca2+ oscillations.  相似文献   

13.
The activation mechanism of the recently cloned human transient receptor potential vanilloid type 6 (TRPV6) channel, originally termed Ca(2+) transporter-like protein and Ca(2+) transporter type 1, was investigated in whole-cell patch-clamp experiments using transiently transfected human embryonic kidney and rat basophilic leukemia cells. The TRPV6-mediated currents are highly Ca(2+)-selective, show a strong inward rectification, and reverse at positive potentials, which is similar to store-operated Ca(2+) entry in electrically nonexcitable cells. The gating of TRPV6 channels is strongly dependent on the cytosolic free Ca(2+) concentration; lowering the intracellular free Ca(2+) concentration results in Ca(2+) influx, and current amplitude correlates with the intracellular EGTA or BAPTA concentration. This is also the case for TRPV6-mediated currents in the absence of extracellular divalent cations; compared with endogenous currents in nontransfected rat basophilic leukemia cells, these TRPV6-mediated monovalent currents reveal differences in reversal potential, inward rectification, and slope at very negative potentials. Release of stored Ca(2+) by inositol 1,4,5-trisphosphate and/or the sarco/endoplasmic reticulum Ca(2+)-ATPase inhibitor thapsigargin appears not to be involved in TRPV6 channel gating in both cell lines but, in rat basophilic leukemia cells, readily activates the endogenous Ca(2+) release-activated Ca(2+) current. In conclusion, TRPV6, expressed in human embryonic kidney cells and in rat basophilic leukemia cells, functions as a Ca(2+)-sensing Ca(2+) channel independently of procedures known to deplete Ca(2+) stores.  相似文献   

14.
Changes in intracellular pH affect calcium currents in Paramecium caudatum   总被引:5,自引:0,他引:5  
The relation between intracellular pH and membrane excitability was studied in the holotrich ciliate Paramecium caudatum. Intracellular pH (pHi) was measured with recessed-tip ion-sensitive microelectrodes (Thomas 1974) and electrical properties were examined by current stimulation and conventional two-electrode voltage clamp. Under normal conditions the resting pHi of Paramecium was 6.80 +/- 0.05. Intracellular alkalinization enhanced the early Ca current, while internal acidification depressed the Ca current. Both effects occurred in a voltage-independent manner. The late outward current was relatively unaffected by these alterations. Results obtained with replacement of extracellular Ca2+ by Ba2+ also support a direct effect of pHi on current through the Ca channel. Intracellular alkalinization to pH 7.15 converted graded, quasi-regenerative Ca responses elicited by injected current pulses into all-or-none action potentials. This change to all-or-none behaviour is presumed to be due to the increase in Ca current and a consequent change in the balance of inward and outward currents. Extracellular pH changes had little effect on pHi, resting membrane potential or the current-voltage relations. The intracellular pH was also independent of shifts in membrane potential. The results are consistent with a model in which Ca channel permeability is blocked by intracellular protonation of a single titratable site having an apparent dissociation constant of 6.2.  相似文献   

15.
It was found that a collapse of the mitochondrial calcium buffering caused by the protonophoric uncoupler CCCP, antimycin A plus oligomycin, or the inhibitor of the mitochondrial Ca2+/Na+ exchanger led to a strong inhibition of thapsigargin-induced capacitative Ca2+ entry (CCE) into Jurkat cells suspended in a medium at pH 7.2. The effect of these inhibitors was markedly less significant at higher extracellular pH. Moreover, dysfunction of the mitochondrial calcium handling greatly decreased CCE sensitivity to extracellular Ca2+ when the pH of extracellular solution was 7.2 (apparent Kd toward extracellular Ca2+ rose from 2.3 +/- 0.6 mm in control cells to 11.0 +/- 1.7 mM in CCCP-treated cells) as compared with pH 7.8 (apparent Kd toward extracellular Ca2+ increased from 1.3 +/- 0.4 mM in control cells to 2.4 +/- 0.4 mM in uncoupler-treated cells). Changes in intracellular pH triggered by methylamine did not influence Ca2+ influx. This suggests that, in Jurkat cells, store-operated calcium channels sense extracellular pH change as a parameter that modifies their sensitivity to intracellular Ca2+. In contrast, in human osteosarcoma cells, changes in extracellular pH as well as mitochondrial uncoupling did not exert any inhibitory effects on CCE.  相似文献   

16.
J J Densmore  G Szabo  L S Gray 《FEBS letters》1992,312(2-3):161-164
Activation of T lymphocytes results in an increase in intracellular Ca2+ due in large part to influx of extracellular Ca2+. Using the patch clamp technique, an inward current in Jurkat T lymphocytes was observed upon depolarization from a holding potential of -90 mV but not from -60 mV. This whole-cell current was insensitive to tetrodotoxin, carried by Ba2+, and blocked by Ni2+. Occupancy of the T lymphocyte antigen receptor increased the current's magnitude. These data suggest that antigen receptor-induced Ca2+ entry in T lymphocytes may be mediated by a voltage-regulated Ca channel.  相似文献   

17.
Ca2+ is well established as an intracellular second messenger. However, the molecular identification of a detector for extracellular Ca2+--the extracellular calcium-sensing receptor--has opened up the possibility that Ca2+ might also function as a messenger outside cells. Information about the local extracellular Ca2+ concentration is conveyed to the interior of many cell types through this unique G-protein-coupled receptor. Here, we describe new emerging concepts concerning the signalling function of extracellular Ca2+, with particular emphasis on the extracellular calcium-sensing receptor.  相似文献   

18.
Calcium currents from neonatal rat ventricular heart muscle cells grown in primary culture were examined using the "whole-cell" voltage clamp technique. An inward current characterized by large amplitude and slow inactivation decay was induced when the extracellular Ca2+ concentration was reduced by EGTA. This current was suppressed by extracellular Na+ removal, or by calcium antagonists, and increased by epinephrine and BAY K 8644. These findings suggest that this current is carried by sodium ions through Ca channels. Both Ca and Na currents through calcium channels were irreversibly blocked by omega-conotoxin. Complete blockade developed 10-15 minutes after the toxin introduction in the extracellular solution. Blockade of Na currents through calcium channels was characterized by a transient increase of current amplitude without any changes in its kinetics and voltage-dependent properties. Structural differences between calcium channels in rat and guinea-pig and frog cardiomyocytes were suggested.  相似文献   

19.
Activation of Na-Ca exchange current by photolysis of "caged calcium".   总被引:1,自引:1,他引:0  
Intracellular photorelease of Ca2+ from "caged calcium" (DM-nitrophen) was used to investigate the Ca(2+)-activated currents in ventricular myocytes isolated from guinea pig hearts. The patch-clamp technique was applied in the whole-cell configuration to measure membrane current and to dialyze the cytosol with a pipette solution containing the caged compound. In the presence of inhibitors for Ca2+, K+, and Na+ channels, concentration jumps of [Ca2+]i induced a rapidly activating inward Na-Ca exchange current which then decayed slowly (tau approximately 500 ms). The initial peak of the inward current and the time-course of current decay were voltage-dependent, and no reversal of the current direction was found between -100 and +100 mV. The observed shallow voltage dependence can be described in terms of the movement of an apparently fractional elementary charge (+0.44e-) across an energy barrier located symmetrically in the electrical field of the membrane. The currents were dependent on extracellular Na+ with a half-maximal activation at 73 mM and a Hill coefficient of 2.8. No change of membrane conductance was activated by the Ca2+ concentration jump when extracellular Na+ was completely replaced by Li+ or N-methyl-D-glucamine (NMG) or when the Na-Ca exchange was inhibited by extracellular Ni2+, La3+, or dichlorobenzamil (DCB). The velocity of relengthening after a twitch induced by photorelease of Ca2+ was only reduced drastically when both the sarcoplasmic reticulum and the Na-Ca exchange were inhibited suggesting that all other Ca2+ removing mechanisms have a low transport capacity under these conditions. In conclusion, we have used a novel approach to study Na-Ca exchange activity with photolysis of "caged" calcium. We found that in guinea pig heart muscle cells the Na-Ca exchange is a potent mechanism for Ca2+ extrusion, is weakly voltage-dependent (118 mV for e-fold change) and can be studied without contamination with other Ca(2+)-activated currents.  相似文献   

20.
The kinetics of Na(+)-Ca2+ exchange current after a cytoplasmic Ca2+ concentration jump (achieved by photolysis of DM-nitrophen) was measured in excised giant membrane patches from guinea pig or rat heart. Increasing the cytoplasmic Ca2+ concentration from 0.5 microM in the presence of 100 mM extracellular Na+ elicits an inward current that rises with a time constant tau 1 < 50 microseconds and decays to a plateau with a time constant tau 2 = 0.65 +/- 0.18 ms (n = 101) at 21 degrees C. These current signals are suppressed by Ni2+ and dichlorobenzamil. No stationary current, but a transient inward current that rises with tau 1 < 50 microseconds and decays with tau 2 = 0.28 +/- 0.06 ms (n = 53, T = 21 degrees C) is observed if the Ca2+ concentration jump is performed under conditions that promote Ca(2+)-Ca2+ exchange (i.e., no extracellular Na+, 5 mM extracellular Ca2+). The transient and stationary inward current is not observed in the absence of extracellular Ca2+ and Na+. The application of alpha-chymotrypsin reveals the influence of the cytoplasmic regulatory Ca2+ binding site on Ca(2+)-Ca2+ and forward Na(+)-Ca2+ exchange and shows that this site regulates both the transient and stationary current. The temperature dependence of the stationary current exhibits an activation energy of 70 kj/mol for temperatures between 21 degrees C and 38 degrees C, and 138 kj/mol between 10 degrees C and 21 degrees C. For the decay time constant an activation energy of 70 kj/mol is observed in the Na(+)-Ca2+ and the Ca(2+)-Ca2+ exchange mode between 13 degrees C and 35 degrees C. The data indicate that partial reactions of the Na(+)-Ca2+ exchanger associated with Ca2+ binding and translocation are very fast at 35 degrees C, with relaxation time constants of about 6700 s-1 in the forward Na(+)-Ca2+ exchange and about 12,500 s-1 in the Ca(2+)-Ca2+ exchange mode and that net negative charge is moved during Ca2+ translocation. According to model calculations, the turnover number, however, has to be at least 2-4 times smaller than the decay rate of the transient current, and Na+ inward translocation appears to be slower than Ca2+ outward movement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号