首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondrial dysfunctions have been associated with neuronal apoptosis and are characteristic of neurodegenerative conditions. Caspases play a central role in apoptosis; however, their involvement in mitochondrial dysfunction-induced neuronal apoptosis remains elusive. In the present report using rotenone, a complex I inhibitor that causes mitochondrial dysfunction, we determined the initiator caspase and its role in cell death in primary cultures of cortical neurons from young adult mice (1-2 months old). By pretreating the cells with a cell-permeable, biotinylated pan-caspase inhibitor that irreversibly binds to and traps the active caspase, we identified caspase-2 as an initiator caspase activated in rotenone-treated primary neurons. Loss of caspase-2 inhibited rotenone-induced apoptosis; however, these neurons underwent a delayed cell death by necrosis. We further found that caspase-2 acts upstream of mitochondria to mediate rotenone-induced apoptosis in neurons. The loss of caspase-2 significantly inhibited rotenone-induced activation of Bid and Bax and the release of cytochrome c and apoptosis inducing factor from mitochondria. Rotenone-induced downstream activation of caspase-3 and caspase-9 were also inhibited in the neurons lacking caspase-2. Autophagy was enhanced in caspase-2 knock-out neurons after rotenone treatment, and this response was important in prolonging neuronal survival. In summary, the present study identifies a novel function of caspase-2 in mitochondrial oxidative stress-induced apoptosis in neurons cultured from young adult mice.  相似文献   

2.
3.
4.
Bax is translocated into the mitochondrial membrane and oligomerized therein to initiate mitochondrial apoptotic signaling. Our previous study indicated that reactive oxygen species (ROS)-mediated activation of mitogen-activated protein kinase (MAPK) and caspase is critically involved in 6-hydroxydopamine (6-OHDA)-mediated neurodegeneration. Here, we specifically attempted to examine whether and how these death signaling pathways may be linked to Bax translocation and oligomerization. We found that 6-OHDA treatment triggered translocation and oligomerization of Bax onto the mitochondria in MN9D dopaminergic neuronal cells. These events preceded cytochrome c release into the cytosol. Cross-linking assay revealed that co-treatment with a ROS scavenger or a pan-caspase inhibitor inhibited 6-OHDA-induced Bax oligomerization. Among several candidates of ROS-activated MAPKs and caspases, we found that co-treatment with PD169316 or VDVAD specifically inhibited 6-OHDA-induced Bax oligomerization, suggesting critical involvement of p38 MAPK and caspase-2. Consequently, overexpression of a dominant negative form of p38 MAPK or a shRNA-mediated knockdown of caspase-2 indeed inhibited 6-OHDA-induced Bax oligomerization. However, activation of p38 MAPK and caspase-2 was independently linked to oligomerization of Bax. This specificity was largely confirmed with a Bax 6A7 antibody known to detect activated forms of Bax on the mitochondria. Taken together, our data suggest that there is an independent amplification loop of Bax translocation and oligomerization via caspase-2 and p38 MAPK during ROS-mediated dopaminergic neurodegeneration.  相似文献   

5.
Parkinson's disease (PD) is a neurodegenerative disorder with motor symptoms caused by the loss of dopaminergic (DA) cells and consequently dopamine release in the nigrostriatal system. In vivo and in vitro 6-hydroxydopamine (6-OHDA) PD models are widely used to study the effect of striatal dopamine depletion as well as novel neuroprotective or restorative therapeutic strategies for PD. In the present study, we investigated in vitro the toxicity of 6-OHDA on DA neurons derived from E14 rat ventral mesencephalon (VM) and the neuroprotective efficiency of erythropoietin (Epo) on VM-derived cell cultures against 6-OHDA toxicity. Using E14 VM-derived DA-rich primary cultures, we could demonstrate that 6-OHDA toxicity works in a time-and concentration-dependent way, and leads to cell death not only in DA cells but also in non-DA cells in direct relation to concentration and incubation times. In addition, we found that 6-OHDA toxicity induces caspase-3 activation and an increment of intracellular reactive oxygen species (ROS) in VM-derived cultures. When 6-OHDA-treated VMs were cultured in the presence of the anti-apoptotic protein erythropoietin (Epo), the total neuronal population, including the DA neurons, was protected. However, untreated VM cultures exposed to Epo showed an increase in the total neuronal population, but not an additional increase in DA neuron cell number.These findings suggest that 6-OHDA toxicity is time and concentration-dependent and does not exclusively affect DA neurons. In high concentration and long incubation times, 6-OHDA influences the survival of other neuronal and non-neuronal cell populations derived from the VM cultures. 6-OHDA toxicity induces caspase-3 activation, indicating cell death via the apoptotic pathway which could be restricted or even prevented by pre-exposure to Epo, known to interact via the apoptotic pathway. Our results support and expand on previous findings showing that Epo is an interesting candidate molecule to mediate neuroprotective effects on DA neurons in PD. Furthermore, it could be used in promoting the survival of DA neurons after transplantation in clinical trials.  相似文献   

6.
The neurotoxin 6-hydroxydopamine (6-OHDA) has been widely used to generate an experimental model of Parkinson's disease. It has been reported that reactive oxygen species (ROS), such as the superoxide anion and hydrogen peroxide (H2O2), generated from 6-OHDA are involved in its cytotoxicity; however, the contribution and role of ROS in 6-OHDA-induced cell death have not been fully elucidated. In the present study using PC12 cells, we observed the generation of 50 microM H2O2 from a lethal concentration of 100 microM 6-OHDA within a few minutes, and compared the sole effect of H2O2 with 6-OHDA. Catalase, an H2O2-removing enzyme, completely abolished the cytotoxic effect of H2O2, while a significant but partial protective effect was observed against 6-OHDA. 6-OHDA induced peroxiredoxin oxidation, cytochrome c release, and caspase-3 activation. Catalase exhibited a strong inhibitory effect against the peroxiredoxin oxidation, and cytochrome c release induced by 6-OHDA; however, caspase-3 activation was not effectively inhibited by catalase. On the other hand, 6-OHDA-induced caspase-3 activation was inhibited in the presence of caspase-8, caspase-9, and calpain inhibitors. These results suggest that the H2O2 generated from 6-OHDA plays a pivotal role in 6-OHDA-induced peroxiredoxin oxidation, and cytochrome c release, while H2O2- and cytochrome c-independent caspase activation pathways are involved in 6-OHDA-induced neurotoxicity. These findings may contribute to explain the importance of generated H2O2 and secondary products as a second messenger of 6-OHDA-induced cell death signal linked to Parkinson's disease.  相似文献   

7.
Cellular stress may stimulate cell survival pathways or cell death depending on its severity. 6-Hydroxydopamine (6-OHDA) is a neurotoxin that targets dopaminergic neurons that is often used to induce neuronal cell death in models of Parkinson's disease. Here we present evidence that 6-OHDA induces apoptosis in rat PC12 cells that involves release of cytochrome c and Smac/Diablo from mitochondria, caspase-3 activation, cleavage of PARP, and nuclear condensation. 6-OHDA also induced the heat shock response, leading to increased levels of Hsp25 and Hsp70. Increased Hsp25 expression was associated with cell survival. Prior heat shock or overexpression of Hsp27 (human homologue of Hsp25) delayed cytochrome c release, caspase activation, and reduced the level of apoptosis caused by 6-OHDA. We conclude that 6-OHDA induces a variety of responses in cultured PC12 cells ranging from cell survival to apoptosis, and that induction of stress proteins such as Hsp25 may protect cells from undergoing 6-OHDA-induced apoptosis.  相似文献   

8.
Zhu M  Li M  Yang F  Ou X  Ren Q  Gao H  Zhu C  Guo J 《Neurochemistry international》2011,59(6):739-748
It is well established that stimulating delta-opioid receptor (DOR) with its specific agonists elicits neuroprotection against hypoxia/ischemia. Mitochondrial dysfunction plays a key role in hypoxic neuronal injury, but the effects of DOR activation on mitochondrial dysfunction in neurons are poorly elucidated. In this investigation, we studied the effects of [d-Ala2, d-Leu5] enkephalin (DADLE), a potent DOR agonist, on acute mitochondrial dysfunction and ensuing cell damage induced by sodium azide in primary rat cortical neuronal cultures, and explored possible mechanisms underlying. Here, we show that DADLE reverses NaN3-induced acute mitochondrial dysfunction by selectively activating DOR, mainly including mitochondrial membrane depolarization, mitochondrial Ca2+ overload and reactive oxygen species generation. DOR stimulation also inhibits cytochrome c release and caspase-3 activation, and attenuates neuronal death caused by acute NaN3 insults. Furthermore, DOR activation with DADLE protects neurons from acute NaN3 insults mainly through PKC-ERK pathway, and mitochondrial ERK activation is especially required for DOR neuroprotection against acute mitochondrial dysfunction.  相似文献   

9.
Qu M  Zhou Z  Chen C  Li M  Pei L  Chu F  Yang J  Wang Y  Li L  Liu C  Zhang L  Zhang G  Yu Z  Wang D 《Neurochemistry international》2011,59(8):1095-1103
Lycopene is a potent free radicals scavenger with demonstrated protective efficacy in several experimental models of oxidative damage. Trimethyltin (TMT) is an organotin compound with neurotoxic effects on the hippocampus and other limbic structures and is used to model neurodegenerative diseases targeting these brain areas. Oxidative stress is widely accepted as a central pathogenic mechanism of TMT-mediated neurotoxicity. The present study investigated whether the plant carotene lycopene protects against TMT-induced neurotoxicity in primary cultured rat hippocampal neurons. Lycopene pretreatment improved cell viability in TMT-treated hippocampal neurons and inhibited neuronal apoptosis. Microfluorometric imaging revealed that lycopene inhibited the accumulation of mitochondria-derived reactive oxygen species (ROS) during TMT exposure. Moreover, lycopene ameliorated TMT-induced activation of the mitochondrial permeability transition pore (mPTP) and the concomitant depolarization of the mitochondrial membrane potential (ΔΨm). Consequently, cytochrome c release from the mitochondria and ensuing caspase-3 activation were markedly reduced. These findings reveal that lycopene protects against TMT-induced neurotoxicity by inhibiting the mitochondrial apoptotic pathway. The anti-apoptotic effect of lycopene on hippocampal neurons highlights the therapeutic potential of plant-derived antioxidants against neurodegenerative diseases.  相似文献   

10.
Defects in mitochondrial function have been shown to participate in the induction of neuronal cell injury. The aim of the present study was to assess the influence of the mitochondrial membrane permeability transition inhibition against the toxicity of 1-methyl-4-phenylpyridinium (MPP+) and 6-hydroxydopamine (6-OHDA) in relation to the mitochondria-mediated cell death process and role of oxidative stress. Both MPP+ and 6-OHDA induced the nuclear damage, the changes in the mitochondrial membrane permeability, leading to the cytochrome c release and caspase-3 activation, the formation of reactive oxygen species and the depletion of GSH in differentiated PC12 cells. Cyclosporin A (CsA), trifluoperazine and aristolochic acid, inhibitors of mitochondrial permeability transition, significantly attenuated the MPP+-induced mitochondrial damage leading to caspase-3 activation, increased oxidative stress and cell death. In contrast to MPP+, the cytotoxicity of 6-OHDA was not reduced by the addition of the mitochondrial permeability transition inhibitors. The results show that the cytotoxicity of MPP+ may be mediated by the mitochondrial permeability transition formation, which is associated with formation of reactive oxygen species and the depletion of GSH. In contrast, the 6-OHDA-induced cell injury appears to be mediated by increased oxidative stress without intervention of the mitochondrial membrane permeability transition.  相似文献   

11.
Our recent study indicated that polyglutamine-expanded ataxin-7-Q75 induced apoptotic death of cultured cerebellar neurons by downregulating Bcl-x(L) expression and activating mitochondrial apoptotic cascade. Mutant polyglutamine-expanded proteins are believed to impair the proteolytic function of ubiquitin-proteasome system by sequestering components of proteasomes. Proteasome degradation of IkappaBalpha permits nuclear translocation of NF-kappaB and is required for continuous NF-kappaB activity, which supports the survival of cultured cerebellar neurons by inducing Bcl-x(L) expression. Thus, we tested the hypothesis that mutant ataxin-7-Q75 causes proteasome dysfunction and impairs NF-kappaB activity, leading to reduced Bcl-x(L) expression, caspase activation and cerebellar neuronal death. EMSA assays indicate that DNA-binding activity of NF-kappaB was significantly decreased in cerebellar neurons expressing ataxin-7-Q75. Similar to mutant ataxin-7-Q75, NF-kappaB inhibitor APEQ induced cerebellar neuronal death by decreasing Bcl-x(L) expression and activating caspase-9. Mutant ataxin-7-Q75 inhibited the proteolytic activity of proteasomes in cerebellar neurons. Proteasome inhibitor MG132 also caused cerebellar neuronal death by decreasing Bcl-x(L) expression and activating caspase-9. Both ataxin-7-Q75 and MG132 caused the cytosolic accumulation of IkappaBalpha in cerebellar neurons. Mutant ataxin-7-Q75 or MG132 increased the cytosolic level of NF-kappaB p65 and decreased the nuclear NF-kappaB p65 level. Our study provides the evidence that polyglutamine-expanded ataxin-7-Q75 decreases nuclear translocation of NF-kappaB p65 and impairs NF-kappaB activity by inhibiting proteasome activity of cerebellar neurons.  相似文献   

12.
Abstract: The neurotoxin 6-hydroxydopamine (6-OHDA) induces apoptosis in the rat phaeochromocytoma cell line PC12. 6-OHDA-induced apoptosis is morphologically indistinguishable from serum deprivation-induced apoptosis. Exposure of PC12 cells to a low concentration of 6-OHDA (25 µ M ) results in apoptosis, whereas an increased concentration (50 µ M ) results in a mixture of apoptosis and necrosis. We investigated the involvement of caspases in the apoptotic death of PC12 cells induced by 6-OHDA, using a general caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (zVAD-fmk), and compared this with serum deprivation-induced apoptosis, which is known to involve caspases. We show that zVAD-fmk (100 µ M ) completely prevented the apoptotic morphology of chromatin condensation induced by exposure to either 6-OHDA (25 and 50 µ M ) or serum deprivation. Furthermore, cell lysates from 6-OHDA-treated cultures showed cleavage of a fluorogenic substrate for caspase-3-like proteases (caspase-2, 3, and 7), acetyl-Asp-Glu-Val-Asp-aminomethylcoumarin, and this was inhibited by zVAD-fmk. However, although zVAD-fmk restored total cell viability to serum-deprived cells or cells exposed to 25 µ M 6-OHDA, the inhibitor did not restore viability to cells exposed to 50 µ M 6-OHDA. These data show the involvement of a caspase-3-like protease in 6-OHDA-induced apoptosis and that caspase inhibition is sufficient to rescue PC12 cells from the apoptotic but not the necrotic component of 6-OHDA neurotoxicity.  相似文献   

13.
Kynurenic acid (KYNA), a tryptophan metabolite in the kynurenine pathway, is protective against various insults. However, the molecular mechanism of this protective effect has not been identified. In this study, we examined the protective effects of KYNA against 1-methyl-4-phenylpyridinium (MPP(+)), the best-characterized toxin inducing pathological changes resembling Parkinson's disease (PD), using SH-SY5Y and SK-N-SH human neuroblastoma cells. Pre-treatment of KYNA attenuated MPP(+)-induced neuronal cell death in SH-SY5Y and SK-N-SH cells. MPP(+)-induced cell death was preceded by increases in Bax expression and mitochondrial dysfunction, such as collapse of mitochondrial membrane potential (DeltaPsi(m)), release of cytochrome c from mitochondria into the cytoplasm, and increases in caspase-9/-3 activities. KYNA effectively inhibited all of these mitochondrial apoptotic processes. Our results indicate that KYNA plays a protective role by down-regulating Bax expression and maintaining mitochondrial function in MPP(+)-induced neuronal cell death, and suggest that KYNA may have therapeutic potential in PD.  相似文献   

14.
We previously showed (Gastroenterology 123: 206-216, 2002) that lysophosphatidic acid (LPA) protects and rescues rat intestinal epithelial cells (IEC-6) from apoptosis. Here, we provide evidence for the LPA-elicited inhibition of the mitochondrial apoptotic pathway leading to attenuation of caspase-3 activation. Pretreatment of IEC-6 cells with LPA inhibited campothecin-induced caspase-9 and caspase-3 activation and DNA fragmentation. A caspase-9 inhibitor peptide mimicked the LPA-elicited antiapoptotic activity. LPA elicited ERK1/ERK2 and PKB/Akt phosphorylation. The LPA-elicited antiapoptotic activity and inhibition of caspase-9 activity were abrogated by pertussis toxin, PD 98059, wortmannin, and LY 294002. LPA reduced cytochrome c release from mitochondria and prevented activation of caspase-9. LPA prevented translocation of Bax from cytosol to mitochondria and increased the expression of the antiapoptotic Bcl-2 mRNA and protein. LPA had no effect on Bcl-xl, Bad, and Bak mRNA or protein expression. These data indicate that LPA protects IEC-6 cells from camptothecin-induced apoptosis through G(i)-coupled inhibition of caspase-3 activation mediated by the attenuation of caspase-9 activation due to diminished cytochrome c release, involving upregulation of Bcl-2 protein expression and prevention of Bax translocation.  相似文献   

15.
This study aimed to investigate the protective effect of Apocynum venetum leaf extract (AVLE) on an in vitro model of ischemia-reperfusion induced by oxygen and glucose deprivation (OGD) and further explored the possible mechanisms underlying protection. Cell injury was assessed by morphological examination using phase-contrast microscopy and quantified by measuring the amount of lactate dehydrogenase (LDH) leakage; cell viability was measured by XTT reduction. Neuronal apoptosis was determined by flow cytometry, and electron microscopy was used to study morphological changes of neurons. Caspase-3,?-8, and?-9 activation and Bcl-2/Bax protein expression were determined by Western blot analysis. We report that treatment with AVLE (5 and 50?μg/mL) effectively reduced neuronal cell death and relieved cell injury induced by OGD. Moreover, AVLE decreased the percentage of apoptotic neurons, relieved neuronal morphological damage, suppressed overexpression of active caspase-3 and?-8 and Bax, and inhibited the reduction of Bcl-2 expression. These findings indicate that AVLE protects against OGD-induced injury by inhibiting apoptosis in rat cortical neurons by down-regulating caspase-3 activation and modulating the Bcl-2/Bax ratio.  相似文献   

16.
17.
Our previous study has shown that alpha-mangostin, a xanthone from the pericarps of mangosteen, induces caspase-3-dependent apoptosis in HL60 cells. In the current study, we investigated the mechanism of apoptosis induced by alpha-mangostin in HL60 cells. Alpha-mangostin-treated HL60 cells demonstrated caspase-9 and -3 activation but not -8, which leads us to assume that alpha-mangostin may mediate the mitochondrial pathway in the apoptosis. Parameters of mitochondrial dysfunction including swelling, loss of membrane potential (deltapsim), decrease in intracellular ATP, ROS accumulation, and cytochrome c/AIF release, were observed within 1 or 2 h after the treatment. On the other hand, alpha-mangostin-treatment did not affect expression of bcl-2 family proteins and activation of MAP kinases. These findings indicate that alpha-mangostin preferentially targets mitochondria in the early phase, resulting in indication of apoptosis in HL60 cells. Furthermore, we examined the structure-activity relationship between xanthone derivatives including alpha-mangostin and the potency of deltapsim-loss in HL60 cells. Interestingly, replacement of hydroxyl group by methoxy group remarkably decreased its potency. It was also shown that the cytotoxicity substantially correlated with deltapsim decrease. These results indicate that alpha-mangostin and its analogs would be candidates for preventive and therapeutic application for cancer treatment.  相似文献   

18.
Mitochondrial dysfunction plays a key role in the progression of Alzheimer’s disease (AD). The accumulation of amyloid-beta peptide (Aβ) in the brains of AD patients is thought to be closely related to neuronal mitochondrial dysfunction and oxidative stress. Therefore, protecting mitochondria from Aβ-induced neurotoxicity is an effective strategy for AD therapeutics. In a previous study, we found that geniposide, a pharmacologically active compound purified from gardenia fruit, has protective effects on oxidative stress and mitochondrial dysfunction in AD transgenic mouse models. However, whether geniposide has a protective effect on Aβ-induced neuronal dysfunction remains unknown. In the present study, we demonstrate that geniposide protects cultured primary cortical neurons from Aβ-mediated mitochondrial dysfunction by recovering ATP generation, mitochondrial membrane potential (MMP), and cytochrome c oxidase (CcO) and caspase 3/9 activity; by reducing ROS production and cytochrome c leakage; as well as by inhibiting apoptosis. These findings suggest that geniposide may attenuate Aβ-induced neuronal injury by inhibiting mitochondrial dysfunction and oxidative stress.  相似文献   

19.
The removal of H(2)O(2) by antioxidants has been proven to be beneficial to patients with vitiligo. Baicalein (5,6,7-trihydroxyflavone; BE) has antioxidant activity and has been used in vitiligo therapy in Chinese traditional medicine. In this study, we investigated the potential protective effect and mechanisms of BE against H(2)O(2)-induced apoptosis in human melanocytes. Melanocytes from the PIG1 cell line were pretreated with different concentrations of BE for 1 h, followed by exposure to 1.0 mM H(2)O(2) for 24 h. Cell apoptosis, reactive oxygen species levels, and mitochondrial membrane potentials were evaluated by flow cytometry, and cell viability was determined by an MTT assay. The expressions of Bax, Bcl-2, caspase-3, total and phosphorylated ERKs, and p38 MAPK were assayed by Western blot to investigate the possible molecular mechanisms. Our results showed that BE significantly inhibited H(2)O(2)-induced apoptosis, intracellular reactive oxygen species generation, and changes in the mitochondrial membrane potential. It also reduced the Bax/Bcl-2 ratio, the release of cytochrome c, the activation of caspase-3, and the phosphorylation of p38 MAPK in a concentration-dependent manner. The results demonstrate for the first time that BE exerts a cytoprotective role in H(2)O(2)-induced apoptosis by inhibiting the mitochondria-dependent caspase activation and p38 MAPK pathway.  相似文献   

20.
Mitochondria play a critical role in cell death by releasing apoptogenic factors, such as cytochrome c and apoptosis-inducing factor (AIF), from the intermembrane space into the cytoplasm. Because mitochondrial dysfunction has been shown to be involved in several neurodegenerative diseases, mitochondrial toxins are largely used to model these disorders. These include 3-nitropropionic acid (3-NP), an irreversible inhibitor of succinate dehydrogenase, which has been used to model Huntington's disease and was previously reported by us to induce apoptotic cell death through caspase activation. In the present study, we evaluated the involvement of caspase-independent neuronal cell death induced by 3-NP (1 mM) and the effect of z-VDVAD-fmk, an inhibitor of caspase-2, using cortical neurons in culture. Our results highly suggest that 3-NP induces both caspase-dependent and -independent cell death. We showed that z-VDVAD-fmk prevented both caspase-2 and -3-like activities evoked by 3-NP, but only partly prevented chromatin fragmentation/condensation. However, z-VDVAD-fmk did not avoid 3-NP-induced release of cytochrome c or AIF from mitochondria nor did it affect the levels of mitochondrial Bax. Furthermore, 3-NP-mediated decrease in plasma membrane integrity was not affected by z-VDVAD-fmk. Under these conditions, the inhibitor prevented the caspase-dependent cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号