首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Differences in the growth of dorsolongitudinal flight muscles and gonads in 1–28 days old long-winged (macropterous) and short-winged (brachypterous) adults of the firebug (Pyrrhocoris apterus L.) and the resource allocation to these organs were studied by means of total protein analysis. We found predominant allocation of food resources to flight muscles compared to reproductive organs in both macropterous males and females during the first 5 days of adult life. Subsequent histolysis of developed flight muscles coincided with increased total protein content in some reproductive organs. Initiation of intensive food intake after starvation or application of higher dose of methoprene on macropterous adults changed the resource allocation in favour of growth of reproductive organs and induced precocious histolysis of flight muscles. It indicates an involvement of juvenile hormone in wing morph-related differential allocation of resources in the bug. Increased total protein contents in the ovaries and accessory glands of starved macropterous females and males treated with methoprene, respectively, indicate that proteins derived from the methoprene-induced histolysis of the flight muscles are re-utilized for the growth of the reproductive organs. It is the first report of persistence of differential resource allocation to flight muscles and reproductive organs in the wing-polymorphic insects with non-functional macropterism.  相似文献   

2.
Degeneration of indirect flight muscles takes place during the first gonotrophic cycle in females. Feeding and mating stimulate egg production and muscle histolysis. Starved virgin females do not histolyse the flight muscles. Mating has greater effect on muscle degeneration than feeding. Ovariectomy inhibits degeneration to a certain extent.  相似文献   

3.
ABSTRACT. Removal of hindwings from long-winged females of the striped ground cricket, Allonemobius fasciatus , DeGeer (Gryllidae), induces flight muscle histolysis and oocyte development. Such females develop oocytes as rapidly as do short-winged forms, while intact long-winged females retain their flight muscles and develop few oocytes.
Flight muscle histolysis occurs in starved long-winged females when they are de-alated. However, such females fail to mature oocytes. Implantation of corpora allata (CA) into long-winged females results in flight muscle histolysis as well as oocyte maturation even if their hindwings remain intact, indicating that flight muscle histolysis can take place without de-alation. It is likely that the CA are responsible for both flight muscle histolysis and oocyte development, and that CA activity is enhanced by de-alation.  相似文献   

4.
曾杨  朱道弘  赵吕权 《昆虫学报》2012,55(2):241-246
为探讨长颚斗蟋Velarifictorus asperses (Walker)翅型分化的生态学意义, 对室内饲养获得的长翅和短翅型雌成虫飞行肌和卵巢的发育, 以及长、 短翅型雌成虫的生殖力和寿命进行了比较研究。结果表明: 羽化当日, 长翅型雌成虫飞行肌重38.68±9.15 mg, 显著高于短翅型的17.53±4.44 mg (P<0.05); 而二者卵巢重量无显著差异(P>0.05), 分别为4.69±1.04 mg和4.88±0.97 mg。羽化后8 d内, 长翅型雌成虫飞行肌重量增加了48.9%, 短翅型雌成虫飞行肌重量无明显增加; 而短翅型雌成虫卵巢的重量增加至93.5±11.7 mg, 约为长翅型雌成虫的4.5倍。短翅型雌成虫的产卵前期显著短于长翅型, 其早期产卵量及总产卵量亦显著高于长翅型; 而两翅型雌成虫中后期产卵量及寿命无显著差异(P>0.05)。此外, 长翅型雌成虫在羽化后12 d开始发生飞行肌的降解, 飞行肌降解个体的卵巢重量显著高于未降解个体, 与短翅型相似。结果提示, 飞行肌与生殖系统的发育之间存在资源分配的权衡关系(trade-off), 且这种资源分配的差异可能会导致长翅型与短翅型个体在生活史策略上出现分化, 即长翅型个体具有飞行能力, 而短翅型个体则在生殖方面获得更高的收益, 且飞行肌的降解可能是长翅型个体由飞行转向生殖发育的生理信号。  相似文献   

5.
Morphology, flight muscles, and reproductive development were compared between long‐winged (LW) and short‐winged (SW) morphs of the cricket Velarifictorus ornatus (Shiraki) (Orthoptera: Gryllidae). There was no difference in body weight and pre‐oviposition between the two morphs, but LW individuals had better‐developed flight muscles than SW individuals during and after emergence of the adult. The flight muscles at adult emergence represented 11.9% of the total body weight in the LW female and 4.9% in the SW female. In addition, the weight of the flight muscle of LW females increased by 50% during the first 5 days, whereas the flight muscle of the SW variant increased only slightly after adult emergence. The process of oviposition in LW, SW, and de‐alated females varied: SW females produced more eggs at the early stage than LW females, but de‐alation could shorten the time until the peak of egg laying and caused histolysis of flight muscles of LW females. There was no significant difference in total egg production between the above three groups. In the male, unlike the female, the accessory glands of the two wing morphs enlarged continuously at the same rate. There was no difference between the two wing morphs in the mass of the testes during the first 7 days after adult emergence.  相似文献   

6.
The effects of deprivation of oviposition substrate on food consumption and egg production were compared between the long-winged (LW) and the short-winged (SW) morph of a cricket, Modicogryllus confirmatus, to determine how suppressed oviposition activity would influence these traits in each wing morph. Food consumption was greatly suppressed in females deprived of oviposition substrate (-OS) compared to those given access to it (+OS) during the 2-week feeding trial in the SW morph but not in the LW morph. Some LW females shed their hindwings and histolyzed the flight muscles. Such de-alated LW (DLW) morphs tended to consume more food than intact LW (ILW) morphs. In all morphs, ovarian weight was heavier under -OS conditions than under +OS conditions during the second week of adulthood, although the differences were greater in SW morphs than in ILW morphs. In DLW morphs in which flight muscle histolysis was induced by artificial de-alation at adult emergence, the temporal changes in ovarian weight were similar to those of SW morphs.In SW morphs, food consumption was also significantly reduced when ovipositing females were deprived of oviposition substrate for 2 days compared to those allowed to oviposit continuously, but food consumption was not reduced in ILW or DLW morphs. SW females from which one ovary was extirpated at adult emergence, SW (-o), also showed a significant difference in food consumption when treated as above, indicating that food consumption was not determined simply by the number of ovarian eggs. The crop content was positively correlated to food consumption and smaller under -OS conditions than under +OS conditions. The 2-day deprivation of oviposition substrate caused no significant difference in the total number of deposited and ovarian eggs in any group, but the ovarian mass of developing oocytes tended to be smaller under -OS than under +OS conditions, particularly in SW morphs.These results indicate the possibility that some inconsistent results and conclusions discussed in recent studies, concerning the physiological trade-offs between flight capability and reproduction, were caused by the suppressed oviposition activity and failure to recognize the occurrence of flight muscle growth and histolysis in the test crickets.  相似文献   

7.
Summary In Solenopsis spp., muscle histolysis or breakdown is a normal process in females and is initiated in the flight muscles only immediately after a mating flight. Information regarding the presence of the oxyradical scavenging enzyme superoxide dismutase (SOD) and the formation of the radical oxygen intermediate superoxide (SO) during the early stages of flight muscle histolysis in this insect was investigated. In normal fibrillar flight muscles from control animals, SOD was immunolocalized to vesicular and tubular components of the sarcotubular system. Lanthanum tracer studies indicated that some of these SOD-positive structures might be tubulovesicles continuous with the extracellular space. Following the injection of virgin alates with experimental haemolymph obtained from artificially inseminated females, the membrane delimited elements of the sarcotubular system became increasingly swollen and dilated with time (from 60 to 120 minutes postinjection) with a concomitant decrease in SOD activity and an increase in oxyradical formation. Many similar vesicles were lanthanum-positive. SO was not seen in the sarcoplasmic vesicles and tubules of control insects. The biochemical quantification of SO release over a 2-hour period showed a marked increase in oxyradical formation following treatment with the experimental haemolymph in comparison to control insects. Also, the addition of superoxide dismutase depressed SO formation under these conditions. Despite the histochemical and biochemical changes seen in the muscles of experimental insects, by 2 hours post-treatment there was no evidence of muscle necrosis. From these studies on flight muscle histolysis/necrosis in Solenopsis it appears that the formation of oxyradicals might represent an early event in myopathogenesis and subsequent tissue involution. The generation of SO is more than likely to be associated with alterations in the normal structure, biochemistry and permeability of the biomembranes which delimit the sarcotubular system.  相似文献   

8.
We have characterized the process of flight muscle histolysis in the female house cricket, Acheta domesticus, through analysis of alterations of tissue wet weight, total protein content, and percent shortening of the dorsal longitudinal flight muscles (DLMs). Our objectives were to (1) define the normal course of histolysis in the cricket, (2) analyze the effects of juvenile hormone (JH) removal and replacement, (3) determine the effects of cycloheximide treatment, and (4) examine patterns of protein expression during histolysis. Our results suggest that flight muscle histolysis in the house cricket is an example of an active, developmentally regulated cell death program induced by an endocrine signal. Initial declines of total protein in DLMs indicated the JH signal that induced histolysis occurred by Day 2 and that histolysis was essentially complete by Day 3. Significant reductions in tissue weight and percent muscle shortening were observed in DLMs from Day 3 crickets. Cervical ligation of Day 1 crickets prevented histolysis but this inhibition could be reversed by continual topical treatments with methoprene (an active JH analog) although ligation of Day 2 crickets did not prevent histolysis. A requirement for active protein expression was demonstrated by analysis of synthesis block by cycloheximide and short-term incorporation of (35)S-methionine. Treatment with cycloheximide prevented histolysis. Autofluorographic imaging of DLM proteins separated by electrophoresis revealed apparent coordinated regulation of protein expression.  相似文献   

9.
The flightless bug Pyrrhocoris apterus (L.) is polymorphic for both wing length and flight muscle development. The developed flight muscles of macropterous adults of both sexes first enlarge their volume during the first 5 days after adult emergence, but are then histolyzed in all males and females older than 10 and 14 days, respectively. The flight muscles of brachypterous adult males and females are underdeveloped due to their arrested growth. The total protein content of histolyzed dorsolongitudinal flight muscles from 21-day-old macropterous adults of both sexes is lower than that of developed dorsolongitudinal flight muscles in 5-10-days-old macropterous bugs, but substantially higher than the protein content of underdeveloped dorsolongitudinal flight muscles from adult brachypters. Histolyzed dorsolongitudinal flight muscles differ from the developed ones by decreased quantities of 18 electrophoretically separated proteins. Histolysis of developed dorsolongitudinal flight muscles is accompanied by significant decreases in citrate synthase, glyceraldehyde-3-phosphate dehydrogenase and β-hydroxyacyl-CoA dehydrogenase enzyme activities and an increase in alanine aminotransferase activity, and can be precociously induced by application of a juvenile hormone analogue. This is the first report of flight muscle polymorphism, histolysis of developed flight muscles and its endocrine control in insects displaying non-functional wing polymorphism.  相似文献   

10.
Abstract In the field, adult males of the grasshopper Phymateus morbillosus are able to fly for up to 1 min and cover up to c. 100 m, whereas females, although fully winged, are apparently unable to get airborne. Morphometric data indicate that the males are lighter, have longer wings, a higher ratio of flight muscles to body mass, and a lower wing load value than females. It was investigated whether this inability of females to fly is related to fuel storage, flight muscle enzymatic design and/or the presence and quantitative capacity of the endocrine system to mobilize fuels. In both sexes, readily available potential energy substrates are present in the haemolymph in similar concentrations, and the amount of glycogen in flight muscles and fat bodies does not differ significantly between males and females. Mass-specific activities of the enzymes GAPDH (glycolysis), HOAD (fatty acid oxidation) and MDH (citric acid cycle) in flight muscles are significantly lower in females compared with males, and mitochondria are less abundant in the flight muscles of females. There is no significant difference between the ability of the two sexes to oxidize various important substrates. Both sexes contain three adipokinetic peptides in their corpora cardiaca; the amount of each peptide in female grasshoppers is higher than in males.
Thus, despite some differences listed above, both sexes appear to have sufficient substrates and the necessary endocrine complement to engage in flight. It seems more likely, from the morphometric data above, that the chief reason for flightlessness is that P. morbillosus females cannot produce sufficient lift for flight; alternatively, the neuronal functioning associated with the flight muscles may be impaired in females.  相似文献   

11.
Physiological and morphological comparisons were made between the short-winged (SW) and long-winged (LW) morphs of a cricket, Modicogryllus confirmatus, to determine the cost of the flight capacity and the physiological mechanisms underlying trade-offs between different life history traits related to migration and reproduction. Both wingmorphs grew at a similar rate and no consistent correlation was found between nymphal development and adult body size. The metathoracic muscles at adult emergence represented 4.2% of the wet body weight in the SW morph and 10.5% in the LW morph. Fat content of the body at adult emergence was positively correlated to dry body weight, but no significant difference was found in mean fat content between the two wingmorphs or between sexes after body weight was adjusted. SW females fed ad libitum produced significantly more eggs than LW females during the first 20days of adult life. Egg production was not correlated to either body size or the duration of nymphal development. LW adults lived longer than SW ones when kept with water alone or when given various amounts of food on day 1 and otherwise kept with water alone. In females, a highly significant correlation was found between longevity and egg production, indicating the presence of a trade-off. LW females mainly allocated the energy from food to flight muscle development and general maintenance of the body rather than to egg production, whereas SW females used it for egg production and longevity. LW females that had been de-alated at adult emergence histolyzed the flight muscle and used the energy from food for egg production almost exclusively. These results suggest that energy allocation and trade-offs after adult emergence may play crucial roles in the functional differentiation of the two wingmorphs.  相似文献   

12.
Female Gryllus assimilis subjected to 4.5-7.7h continuous tethered flight had significantly lower amounts of total lipid, triglyceride and total soluble carbohydrate compared with unflown controls. A much greater amount of total lipid (6.3mg) was used during flight compared with carbohydrate (0.14mg). Flown individuals also had substantially reduced amounts of injected, radiolabeled [(14)C]-oleic acid. Activities of lipid, carbohydrate and amino acid catabolizing enzymes in flight muscles of G. assimilis and its wing-polymorphic congener, G. firmus, were very similar to activities in insects which primarily utilize lipid to power flight. By contrast, enzyme activities were very different from those in insects which primarily or exclusively use carbohydrate or proline as a flight fuel. These results strongly implicate lipid as the major flight fuel in Gryllus. Previous studies have shown that lipid levels are higher in flight-capable (long-winged) G. firmus that have small ovaries compared with flightless (short-winged) females that have large ovaries. Results of the present and previous studies collectively indicate that elevated lipid in long-winged G. firmus represents an energetic cost of flight capability which reduces (trade-offs with) reproduction in Gryllus. In G. firmus, mass-specific activities of nearly all enzymes were considerably reduced in underdeveloped, and to a lesser degree in histolyzed muscle, compared with fully-developed flight muscle. An important exception was alanine aminotransferase, whose activity was the highest in histolyzed muscle, and which may be involved in the catabolism of amino acids derived from muscle degradation. Despite the dramatic differences in enzyme activity, electrophoretic profiles of soluble flight-muscle proteins differed only subtly between fully-developed and underdeveloped or histolyzed flight muscles.  相似文献   

13.
Morphogenesis and degeneration of the flight muscles in Acheta domestica was studied. The dorso-longitudinal flight muscles (DLMs) degenerate during the fourth day after adult ecdysis and the dorso-ventral flight muscles (DVMs) on the fifteenth day. In the presence of an intact innervation the degeneration of the DLMs can be retarded for 2 days by the injection of ecdysterone into very young adults. This retardation may also result in hypertrophy of the muscle fibres. The injection of ecdysterone, even in high doses, did not affect the flight muscle remnants. No notable changes have been found in the degeneration of DLMs by ovarectomy. Thus, the degeneration of flight muscles and the development of ovaries appear to be independent processes.The DLMs are homogeneous in fibre pattern in respect to succinic dehydrogenase, an important oxidative enzyme, and to ATPase activity, but the muscle fibres do not show any phosphorylase activity.  相似文献   

14.
赵吕权  朱道弘  曾杨 《昆虫学报》2012,55(9):1037-1045
丽斗蟋Velarifictorus ornatus具有明显的翅二型现象, 长翅型与短翅型雌虫的卵巢和飞行肌存在着生理权衡。本研究分别应用蒽酮比色法、 硫代磷酸香草醛法、 考马斯亮蓝染液对羽化后10 d内两型雌虫飞行肌与卵巢内糖原、 总脂及蛋白质含量进行了定量分析。结果表明: 成虫羽化后10 d内, 两型雌虫体重无明显差异(P>0.05), 但短翅型雌虫怀卵量明显多于长翅型雌虫, 而人工脱翅能够促进长翅型雌虫怀卵量增加(P<0.05)。短翅型雌虫飞行肌内蛋白质、 糖原及总脂含量在成虫羽化后10 d内无明显变化, 但长翅型雌虫飞行肌内蛋白质在成虫羽化后3 d时达到最大值564.4±87.5 μg/♀, 糖原与总脂含量分别于羽化后第5天达到最大值85.2±21.7 μg/♀和5 284.7±1 267.4 μg/♀。然后开始下降, 各实验处理天数内, 长翅型雌虫飞行肌内蛋白质、 糖原及总脂含量都显著多于短翅型雌虫(P<0.05)。相反, 各处理天数内, 短翅型雌虫卵巢内蛋白质、 糖原及总脂含量则明显多于长翅型雌虫(P<0.05), 同时虫龄对蛋白质、 糖原及总脂在两型雌虫飞行肌与卵巢内分配也产生明显影响(P<0.05)。人工脱翅能够促进长翅型雌虫卵巢内蛋白质、 糖原及总脂含量增加, 同时诱导飞行肌内蛋白质、 糖原及总脂含量降低, 其中总脂含量在脱翅后10 d时降为2 394.9±1 461.8 μg/♀, 只有最大值的一半, 而与短翅型雌虫相似(P>0.05), 表明总脂为丽斗蟋飞行的主要能源物质。外用保幼激素Ⅲ能够促进长翅型雌虫卵巢内蛋白质、 糖原及总脂含量增加(P<0.05), 但对飞行肌内三者含量无明显影响(P>0.05), 外用早熟素Ⅰ对短翅型雌虫卵巢内蛋白质、 糖原及总脂含量亦无明显影响(P>0.05)。上述结果表明, 丽斗蟋长翅型雌虫首先将获得的资源用于发育飞行所需的飞行肌, 短翅型雌虫则首先将所获得的资源用于发育繁殖所需的卵巢, 但长翅型雌虫飞行肌与卵巢间的资源分配方式受保幼激素的影响。  相似文献   

15.
Summary Evolutionary stable dispersal and wing muscle histolysis strategies are studied in the waterstriderGerris thoracicus. These strategies relate to spreading reproductive risk. Overwintering individuals have the choice of dispersing to either a brackish sea bay or a rock pool habitat. The former is reproductively more favorable than the latter during warm dry years and less favorable during cool wet years. After spring migration, individuals may histolyse their flight muscles and lay all their eggs in one pool or they may retain their flight ability and lay fewer eggs in total but spread them in several pools. We use a simple two-habitat model to examine the question of habitat dispersal. Our results indicate that, although the value of the evolutionary stable dispersal depends on the degree of variability in the environment and on the probability of local extinctions in either habitat, the population always disperses to both habitats as a consequence of density dependent growth. We use a more detailed multiple-rockpool habitat model to examine the question of wing muscle histolysis as a response to density dependence. Our results indicate that a wing muscle histolysis response to population density is an evolutionarily stable strategy when compared with the two alternatives of females always histolysing or never histolysing their flight muscles. The application of evolutionarily stable theory to stochastic problems presents a number of difficulties. We discuss these difficulties in the context of computing evolutionarily stable strategies for the problems at hand.  相似文献   

16.
Impaired flight ability--a cost of reproduction in female blue tits   总被引:3,自引:0,他引:3  
When prey are attacked by predators, escape ability has an obvious influence on the probability of survival. Laboratory studieshave suggested that flight performance of female birds mightbe affected by egg production. This is the first study of changesin take-off ability, and thus potentially in predation risk,during reproduction in wild birds. We trapped individual maleand female blue tits repeatedly during the breeding season.Females were 14% heavier and flew 20% slower (probably as aconsequence of a lower ratio of flight muscle to body mass)during the egg-laying period than after the eggs had hatched.However, flight muscle size did not change to compensate for changes in body mass over this period. In contrast, males showedno changes in either body mass, muscle size, or flight abilityover the same period. Furthermore, the impairment of flightin females increased with the proportion of the clutch thathad been laid, an effect that was independent of body mass and muscle size. This indicates that egg production causes additional physiological changes in the female body that produce impairedlocomotor performance. We suggest that courtship feeding offemale blue tits by their mates might reduce predation riskduring the period when female take-off ability is impairedby reducing the time females have to spend foraging and thusreducing the time they are exposed to increased predation.  相似文献   

17.
饥饿和交配对小地老虎飞行肌发育的影响   总被引:1,自引:0,他引:1  
王伟  尹姣  曹雅忠  李克斌 《昆虫知识》2013,(6):1573-1585
小地老虎Agrotis ypsilon(Rottemburg)成虫飞行肌的发育常受一些因素影响而发生变化,为探讨饥饿和交配行为对飞行肌发育的影响,通过电子显微镜对雌虫飞行肌(背纵肌)的肌原纤维、线粒体结构进行观察,结果显示:4日龄饥饿雌虫,肌原纤维直径、肌节长度、肌原纤维体积均显著(P<0.05)小于取食的。7日龄饥饿雌虫肌原纤维直径、肌节长度、肌原纤维体积分数较4日龄的差异均不显著(P≥0.05),而7日龄饥饿的肌原纤维直径显著(P<0.05)大于7日龄取食的;羽化10 d后,饥饿雌虫肌节长度显著(P<0.05)大于取食雌虫的,而肌纤维体积分数和线粒体体积分数均却小于后者。7、10、13日龄交配雌虫肌原纤维横切直径分别显著(P<0.05)小于同日龄非交配的;7、10、13日龄交配雌虫肌原纤维体积分数显著(P<0.05)小于非交配的,线粒体体积分数虽然无差异(P≥0.05),但是交配雌虫的早在4日龄便已明显(P<0.05)减小。上述结果表明:正常取食的小地老虎飞行肌4日龄后会发生降解现象;饥饿抑制飞行肌前期发育和中期的降解,而促进成虫末期肌原纤维的分解;交配能促进飞行肌的降解。  相似文献   

18.
ABSTRACT.
  • 1 Horvathiolus gibbicollis (Costa), a ground-living seed-feeding bug of the mediterranean region, has two wing morphs. In macrop-terous bugs both pairs of wings are fully developed. In brachypterous ones forewings are reduced to about two-thirds and hindwings to less than a third of their length in macropters.
  • 2 Each morph bred true with regard to wing length when reared under variable density, food and temperature conditions for several generations.
  • 3 All F1 offspring between crosses of the two morphs were brachypterous. In F2 approximately 25% were macropters and 75% brachypters implying monogenic control of wingform.
  • 4 Flight muscles in macropters vary from fully developed to totally reduced. This variation is determined by environmental conditions during adult life. Most young adult bugs have flight muscles, and totally starved or unmated bugs retain their flight muscles. Fed and mated females histolyse flight muscles as they start laying eggs, while most males of the same group retain their muscles.
  • 5 Brachypterous bugs have a smaller thorax and larger abdomen than macropterous ones.
  • 6 Brachypterous bugs reach adulthood slightly before macropterous ones, and they have a distinctly shorter adult preoviposition period.
  • 7 Lifetime egg production does not differ significantly between the two wing morphs. However, the temporal pattern of egg laying is different in the two morphs. The mx-curve of macropters starts later, then attains a higher peak and finally decreases faster than that of brachypters.
  • 8 Initially, macropters lay smaller eggs than brachypters, but egg volume increases with age in macropters and eventually approaches that of brachypters.
  • 9 The initial increase in reproductive effort (egg volumexegg number) of macropters is concomitant with wing muscle histolysis and the mobilization of thorax space for reproduction.
  • 10 Adult survival rate does not differ between the morphs.
  相似文献   

19.
Wing shedding or de-alation is a common phenomenon among crickets. Its significance and effects on other traits were examined based on the results from experiments using artifical or natural de-alation. Artificial de-alation at adult emergence induces rapid egg production and flight muscle histolysis in several species examined. However, natural de-alation does not always shorten the pre-ovipositional period because it does not occur immediately after adult emergence and because oviposition starts before de-alation. In some cases, naturally de-alated females produce more eggs than to intact females during early adult life, but peak ovipositing activity occurs before de-alation. Therefore, retention of the hindwings does not suppress high ovipositing activity in such cases. It appears that de-alation is a result rather than a causal factor in ending migration. Ovarian development and flight muscle histolysis, which can be stimulated by de-alation, are controlled by the jevenile hormone, but the mechanism inducing de-alation remains unknown. The possible factors leading to the evolution of de-alation are discussed.  相似文献   

20.
Summary Ubiquitin was localized by immunofluorescence microscopy during post-mating histolysis of fibrillar flight muscle in female fire ants, Solenopsis spp. Normal muscles, as well as histolysing muscles from artificially inseminated and haemolymph-injected females contained ubiquitin in association with nuclei, Z-lines, myofilaments and mitochondria. However, the density of the ubiquitin immunoreaction was markedly increased in the nuclei, Z-lines and mitochondria of degenerating tissues 6, 12 and 24 h post treatment. At these times the heaviest immunoreactivity for ubiquitin was seen in association with the nuclei, Z-lines and mitochondria. Immuno-controls, incubated in the absence of the primary antibody, showed no similar immunostaining. When insemination was preceded by the injection of actinomycin D, muscle degradation was significantly depressed after a 24-h period. Also, ubiquitin immunofluorescence was markedly reduced in tissues pre-treated with actinomycin D. These observations suggest that insemination increases the ubiquitination of specific myofibrillar proteins destined for degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号