首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We previously reported that infection with the periodontopathic bacterium Actinobacillus actinomycetemcomitans induced apoptosis in a mouse macrophage cell line J774.1. In the present study, we examined the involvement of cytochrome c and caspases in the induction of apoptosis in A. actinomycetemcomitans-infected J774.1 cells. Following infection, the expression levels of cytochrome c, and cleaved forms of caspase-3 and caspase-9 in the cells were examined using immunoblot analysis. Cytochrome c was released from mitochondria into the cytoplasm after A. actinomycetemcomitans-infected J774.1 cells were cultured for 6 h, and caspase-3 and caspase-9 were found to be cleaved forms in the cells. Further, caspase-9 activity was markedly increased, and phosphorylated p53 was detected in the cells 30 h following infection. These results suggest that apoptosis in A. actinomycetemcomitans-infected J774.1 cells is regulated by the release of cytochrome c from mitochondria into cytoplasm and the subsequent activation of caspases through phosphorylation of p53.  相似文献   

2.
A cytochrome c-enhanced green fluorescent protein chimera (cyt-c.EGFP) was used to monitor the release of cytochrome c from mitochondria in Bcl-2-negative and Bcl-2-positive MDA-MB-468 breast cancer cells. A comparison was made with the intracellular distribution of endogenous cytochrome c based on Western blotting of cell fractions and immunocytochemistry. The release of endogenous cytochrome c from mitochondria into the cytoplasm was detected in Bcl-2-negative cells treated with the kinase inhibitor staurosporine or the calcium-ATPase inhibitor thapsigargin. No release of endogenous cytochrome c was evident in Bcl-2-positive cells, consistent with earlier evidence that Bcl-2 overexpression inhibits cytochrome c release from mitochondria. Cyt-c.EGFP appeared to be localized to the mitochondria in Bcl-2-negative cells and to be released into the cytoplasm following treatment with either staurosporine or thapsigargin. However, in Bcl-2-positive cells the pattern of distribution of cytochrome c-EGFP was inconsistent with that of endogenous cytochrome c, due to accumulation of both cyt-c.EGFP and free EGFP in the cytoplasm of both treated and untreated cells. In summary, cyt-c.EGFP may be useful for monitoring cytochrome c release in living cells that do not express high levels of Bcl-2 but is an unreliable marker of cytochrome c release in cells that overexpress Bcl-2.  相似文献   

3.
Y Mori  H Suzuki  T Nei 《Cryobiology》1986,23(1):64-71
The effect of freeze-thawing on the yeast respiratory system was studied at rapid rates of cooling. Freezing of whole cells with liquid nitrogen induced decrease of respiratory activity to under 20% of that of original cells. Mitochondria harvested from freeze-thawed cells have markedly decreased succinate oxidizing activity. Activity of succinate cytochrome c reductase was reduced significantly after freeze-thawing of whole cells while activities of succinate dehydrogenase and cytochrome c oxidase were reduced slightly. By spectrophotometric analysis it was found that about one-half the amount of cytochrome c + c1 was eluted from mitochondria to cytosol after freeze-thawing of cells. The activities of succinate oxidation in mitochondria from freeze-thawed cells were restored to normal levels by the addition of cytochrome c. Freeze-thawing of isolated mitochondria did not induce deactivation of succinate oxidizing activities and succinate cytochrome c reductase, and no elution of cytochrome c was observed. It was concluded that the decreased respiratory activities of yeast cells by freezing of cells with liquid nitrogen can be attributed primarily to the elution of cytochrome c from mitochondria.  相似文献   

4.
The subunit pattern of immunopurified cytochrome c oxidase from cultured mouse cells and mature tissues of the mouse was investigated by electrophoretic analysis. In mature tissues two forms of cytochrome c oxidase could clearly be identified on the basis of differences in morbidity or staining intensity of subunits VIa and VIII. One form was present in muscle and heart, and the other in liver, kidney and spleen. In lung both forms were found. In the thymus, subunit VIII showed the characteristics of subunit VIII found in muscle and heart, whereas subunit VIa resembled subunit VIa found in liver. This suggest the existence of a third cytochrome c oxidase isoform. The subunits of cytochrome c oxidase from cultured cell lines showed no differences between the various cell lines and resembled those of mature mouse liver tissue. The cytochrome c oxidase isoform from cultured proliferating cells might therefore be the same as the one found in liver. Alternatively, it might represent either a normally occurring fetal isoform, or a form specific for poorly differentiated cultured cells.  相似文献   

5.
In rat cerebellar granule cells both reactive oxygen species production and release of cytochrome c take place during glutamate toxicity. This investigation was aimed (i) to ascertain whether and how these two processes are related and (ii) to gain insight into the role played by the released cytochrome c in the onset of neurotoxicity. Cytochrome c release takes place owing to the generation of reactive oxygen species both in glutamate-treated cerebellar granule cells and in sister control cultures incubated in the presence of the reactive oxygen species-generating system consisting of xanthine plus xanthine oxidase. In the early phase of neurotoxicity (30-min glutamate exposure) about 40% of the maximum (as measured at 3 h of glutamate exposure) cytochrome c release was found to occur in cerebellar granule cells from mitochondria that were essentially coupled and intact and that had a negligible production of oxygen free radicals. Contrarily, mitochondria from cells treated with glutamate for 3 h were mostly uncoupled and produced reactive oxygen species at a high rate. The cytosolic fraction containing the released cytochrome c was able to transfer electrons from superoxide anion to molecular oxygen via the respiratory chain and was found to partially prevent glutamate toxicity when added externally to cerebellar neurons undergoing necrosis. In the light of these findings, we propose that in the early phase of neurotoxicity, cytochrome c release can be part of a cellular and mitochondrial defense mechanism against oxidative stress.  相似文献   

6.
7.
H Hüdig  G Drews 《FEBS letters》1983,152(2):251-255
A cytochrome c (cyt. c) was solubilized with Triton-X-100 and co-purified with cytochrome c oxidase from membranes of chemotrophically grown cells of Rhodopseudomonas capsulata. Cyt. c and cytochrome oxidase were separated on Sephadex G-50 columns. Antibodies against cytochrome c2 from the same bacterium did not cross react with the membrane-bound cyt. c. The IEP of the membrane-bound cyt. c was found to be pH 8.2, the midpoint potential was 234 +/- 11 mV at pH 7.0. This cyt. c binds CO. The native cyt. c is a dimer with an apparent Mr of 25000 containing 2 mol heme per mol dimer, which is believed to function as an electron donor for the high-potential cytochrome c oxidase.  相似文献   

8.
Nitrosylation of cytochrome c during apoptosis   总被引:7,自引:0,他引:7  
Cytochrome c released from mitochondria into the cytoplasm plays a critical role in many forms of apoptosis by stimulating apoptosome formation and subsequent caspase activation. However, the mechanisms regulating cytochrome c apoptotic activity are not understood. Here we demonstrate that cytochrome c is nitrosylated on its heme iron during apoptosis. Nitrosylated cytochrome c is found predominantly in the cytoplasm in control cells. In contrast, when cytochrome c release from mitochondria is inhibited by overexpression of the anti-apoptotic proteins B cell lymphoma/leukemia (Bcl)-2 or Bcl-X(L), nitrosylated cytochrome c is found in the mitochondria. These data suggest that during apoptosis, cytochrome c is nitrosylated in mitochondria and then rapidly released into the cytoplasm in the absence of Bcl-2 or Bcl-X(L) overexpression. In vitro nitrosylation of cytochrome c increases caspase-3 activation in cell lysates. Moreover, the inhibition of intracellular cytochrome c nitrosylation is associated with a decrease in apoptosis, suggesting that cytochrome c nitrosylation is a proapoptotic modification. We conclude that nitrosylation of the heme iron of cytochrome c may be a novel mechanism of apoptosis regulation.  相似文献   

9.
We showed previously that a cytosolic Ca(2+) signal is involved in regulating UV-induced apoptosis in HeLa cells. In this study, we found evidence that this Ca(2+) signal occurs upstream of the release of cytochrome c from mitochondria. First, when we abolished [Ca(2+)](i) increases by injecting BAPTA or heparin into UV-treated HeLa cells, cytochrome c release was either blocked or severely delayed. Second, using a living cell imaging technique, we observed a series of transient [Ca(2+)](i) increases (typically lasting about 40-60s) in many apoptotic cells induced by either UV- or TNFalpha-treatment. Third, using GFP-tagged cytochrome c, we found that the Ca(2+) spikes appear in a time window before cytochrome c was released. Finally, by fixing the TNFalpha-treated cell at the time when it started to display Ca(2+) spikes, we examined the distribution of its endogenous cytochrome c using immunostaining. We found that cytochrome c was not yet released from mitochondria. These findings suggest the existence of certain apoptotic pathways, in which an early Ca(2+) signal is activated upstream of cytochrome c release.  相似文献   

10.
Drosophila affords a genetically well-defined system to study apoptosis in vivo. It offers a powerful extension to in vitro models that have implicated a requirement for cytochrome c in caspase activation and apoptosis. We found that an overt alteration in cytochrome c anticipates programmed cell death (PCD) in Drosophila tissues, occurring at a time that considerably precedes other known indicators of apoptosis. The altered configuration is manifested by display of an otherwise hidden epitope and occurs without release of the protein into the cytosol. Conditional expression of the Drosophila death activators, reaper or grim, provoked apoptogenic cytochrome c display and, surprisingly, caspase activity was necessary and sufficient to induce this alteration. In cell-free studies, cytosolic caspase activation was triggered by mitochondria from apoptotic cells but identical preparations from healthy cells were inactive. Our observations provide compelling validation of an early role for altered cytochrome c in PCD and suggest propagation of apoptotic physiology through reciprocal, feed-forward amplification involving cytochrome c and caspases.  相似文献   

11.
Cytochrome c(3) of Desulfovibrio desulfuricans strain G20 is an electron carrier for uranium (VI) reduction. When D. desulfuricans G20 was grown in medium containing a non-lethal concentration of uranyl acetate (1 mM), the rate at which the cells reduced U(VI) was decreased compared to cells grown in the absence of uranium. Western analysis did not detect cytochrome c(3) in periplasmic extracts from cells grown in the presence of uranium. The expression of this predominant tetraheme cytochrome was not detectably altered by uranium during growth of the cells as monitored through a translational fusion of the gene encoding cytochrome c(3) ( cycA) to lacZ. Instead, cytochrome c(3) protein was found tightly associated with insoluble U(IV), uraninite, after the periplasmic contents of cells were harvested by a pH shift. The association of cytochrome c(3) with U(IV) was interpreted to be non-specific, since pure cytochrome c(3) adsorbed to other insoluble metal oxides, including cupric oxide (CuO), ferric oxide (Fe(2)O(3)), and commercially available U(IV) oxide.  相似文献   

12.
Although the role of cytochrome c in apoptosis is well established, details of its participation in signaling pathways in vivo are not completely understood. The knockout for the somatic isoform of cytochrome c caused embryonic lethality in mice, but derived embryonic fibroblasts were shown to be resistant to apoptosis induced by agents known to trigger the intrinsic apoptotic pathway. In contrast, these cells were reported to be hypersensitive to tumor necrosis factor alpha (TNF-alpha)-induced apoptosis, which signals through the extrinsic pathway. Surprisingly, we found that this cell line (CRL 2613) respired at close to normal levels because of an aberrant activation of a testis isoform of cytochrome c, which, albeit expressed at low levels, was able to replace the somatic isoform for respiration and apoptosis. To produce a bona fide cytochrome c knockout, we developed a mouse knockout for both the testis and somatic isoforms of cytochrome c. The mouse was made viable by the introduction of a ubiquitously expressed cytochrome c transgene flanked by loxP sites. Lung fibroblasts in which the transgene was deleted showed no cytochrome c expression, no respiration, and resistance to agents that activate the intrinsic and to a lesser but significant extent also the extrinsic pathways. Comparison of these cells with lines with a defective oxidative phosphorylation system showed that cells with defective respiration have increased sensitivity to TNF-alpha-induced apoptosis, but this process was still amplified by cytochrome c. These studies underscore the importance of oxidative phosphorylation and apoptosome function to both the intrinsic and extrinsic apoptotic pathways.  相似文献   

13.
In the present study a clonal Jurkat cell line deficient in expression of Bak was used to analyze the role of Bak in cytochrome c release from mitochondria. The Bak-deficient T leukemic cells were resistant to apoptosis induced by UV, staurosporin, VP-16, bleomycin, or cisplatin. In contrast to wild type Jurkat cells, these Bak-deficient cells did not respond to UV or treatment with these anticancer drugs by membranous phosphatidylserine exposure, DNA breaks, activation of caspases, or release of mitochondrial cytochrome c. The block in the apoptotic cascade was in the mitochondrial mechanism for cytochrome c release because purified mitochondria from Bak-deficient cells failed to release cytochrome c or apoptosis-inducing factor in response to recombinant Bax or truncated Bid. The resistance of Bak-deficient cells to VP-16 was reversed by transduction of the Bak gene into these cells. Also, the cytochrome c releasing capability of the Bak-deficient mitochondria was restored by insertion of recombinant Bak protein into purified mitochondria. Following mitochondrial localization, low dose recombinant Bak restored the mitochondrial release of cytochrome c in response to Bax; at increased doses it induced cytochrome c release itself. The function of Bak is independent of Bid and Bax because recombinant Bak induced cytochrome c release from mitochondria purified from Bax(-/-), Bid(-/-), or Bid(-/-) Bax(-/-) mice. Together, our findings suggest that Bak plays a key role in the apoptotic machinery of cytochrome c release and thus in the chemoresistance of human T leukemic cells.  相似文献   

14.
c-Type cytochromes are located partially or completely in the periplasm of gram-negative bacteria, and the heme prosthetic group is covalently bound to the protein. The cytochrome c maturation (Ccm) multiprotein system is required for transport of heme to the periplasm and its covalent linkage to the peptide. Other cytochromes and hemoglobins contain a noncovalently bound heme and do not require accessory proteins for assembly. Here we show that Bradyrhizobium japonicum cytochrome c550 polypeptide accumulation in Escherichia coli was heme dependent, with very low levels found in heme-deficient cells. However, apoproteins of the periplasmic E. coli cytochrome b562 or the cytosolic Vitreoscilla hemoglobin (Vhb) accumulated independently of the heme status. Mutation of the heme-binding cysteines of cytochrome c550 or the absence of Ccm also resulted in a low apoprotein level. These levels were restored in a degP mutant strain, showing that apocytochrome c550 is degraded by the periplasmic protease DegP. Introduction of the cytochrome c heme-binding motif CXXCH into cytochrome b562 (c-b562) resulted in a c-type cytochrome covalently bound to heme in a Ccm-dependent manner. This variant polypeptide was stable in heme-deficient cells but was degraded by DegP in the absence of Ccm. Furthermore, a Vhb variant containing a periplasmic signal peptide and a CXXCH motif did not form a c-type cytochrome, but accumulation was Ccm dependent nonetheless. The data show that the cytochrome c heme-binding motif is an instability element and that stabilization by Ccm does not require ligation of the heme moiety to the protein.  相似文献   

15.
Cultured skin fibroblasts from a child with fatal lacticacidemia displayed an abnormally high lactate:pyruvate ratio of 77:1, compared with control values of 22:1-27:1. When protease-treated isolated mitochondria were used, activity of the respiratory-chain enzymes was found to be approximately 60% of normal, and adenosine triphosphate synthesis was found to be normal with all substrates tested. In mitochondria prepared by means of digitonin treatment, adenosine triphosphate synthesis was depressed with all substrates tested, suggesting a defect in the operation of the cytochrome oxidase complex. In disrupted whole cells from the patient, cytochrome oxidase activity was 56% of the activity in the control cell line with the lowest activity. In the presence of a twofold excess of oxidized cytochrome c, patient cells showed 31% of the activity in controls. Cytochrome oxidase activity in both sonicated whole-cell preparations and in sonicated mitochondria displayed abnormal kinetics with regard to the substrate-reduced cytochrome c, which was particularly evident in the presence of excess oxidized cytochrome c. We believe that kinetically abnormal cytochrome oxidase complex is responsible for the biochemical and clinical abnormalities present in this patient.  相似文献   

16.
To gain some insight into the mechanism by which glutamate neurotoxicity takes place in cerebellar granule cells, two steps of glucose oxidation were investigated: the electron flow via respiratory chain from certain substrates to oxygen and the transfer of extramitochondrial reducing equivalents via the mitochondrial shuttles. However, cytochrome c release from intact mitochondria was found to occur in glutamate-treated cells as detected photometrically in the supernatant of the cell homogenate suspension. As a result of cytochrome c release, an increase of the oxidation of externally added NADH was found, probably occurring via the NADH-b5 oxidoreductase of the outer mitochondrial membrane. When the two mitochondrial shuttles glycerol 3-phosphate/dihydroxyacetone phosphate and malate/oxaloacetate, devoted to oxidizing externally added NADH, were reconstructed, both were found to be impaired under glutamate neurotoxicity. Consistent early activation in two NADH oxidizing mechanisms, i.e., lactate production and plasma membrane NADH oxidoreductase activity, was found in glutamate-treated cells. In spite of this, the increase in the cell NADH fluorescence was found to be time-dependent, an index of the progressive damage of the cell.  相似文献   

17.
In order to define the interaction domain on Rhodospirillum rubrum cytochrome c2 for the photosynthetic reaction center, positively charged lysine amino groups on cytochrome c2 were modified to form negatively charged carboxydinitrophenyl lysines. The reaction mixture was separated into six different fractions by ion exchange chromatography on carboxymethylcellulose and sulfopropyl-Sepharose. Peptide mapping studies indicated that fraction A consisted of a mixture of singly labeled derivatives modified at lysines 58, 81, and 109 on the back of cytochrome c2. Fractions C1, C2, C3, and C4 were found to be mixtures of singly labeled derivatives modified at lysines 9, 13, 75, 86, and 88 on the front of cytochrome c2 surrounding the heme crevice. The photooxidation of the carboxydinitrophenyl-cytochrome c2 derivatives by reaction centers purified from R. rubrum was measured following excitation with a laser pulse. The second-order rate constant of fraction A modified at backside lysines was found to be 2.3 X 10(7) M-1 s-1, nearly the same as that of native cytochrome c2, 2.6 X 10(7) M-1 s-1. However, the rate constants of fractions C1-C4 were found to be 6 to 12-fold smaller than that of native cytochrome c2. These results indicate that lysines surrounding the heme crevice of cytochrome c2 are involved in electrostatic interactions with carboxylate groups at the binding site of the reaction center. The reaction rates of horse heart cytochrome c derivatives modified at single lysine amino groups with trifluoroacetyl or trifluoromethylphenylcarbamoyl were also measured. Modification of lysines 8, 13, 25, 27, 72, 79, or 87 surrounding the heme crevice was found to significantly lower the rate of reaction, while modification of lysines in other regions had no effect. This indicates that the reaction of horse heart cytochrome c with the reaction center also involves the heme crevice domain.  相似文献   

18.
The precursor proteins to the subunits of ubiquinol:cytochrome c reductase (cytochrome bc1 complex) of Neurospora crassa were synthesized in a reticulocyte lysate. These precursors were immunoprecipitated with antibodies prepared against the individual subunits and compared to the mature subunits immunoprecipitated or isolated from mitochondria. Most subunits were synthesized as precursors with larger apparent molecular weights (subunits I, 51,500 versus 50,000; subunit II, 47,500 versus 45,000; subunit IV (cytochrome c1), 38,000 versus 31,000; subunit V (Fe-S protein), 28,000 versus 25,000; subunit VII, 12,000 versus 11,500; subunit VIII, 11,600 versus 11,200). Subunit VI (14,000) was synthesized with the same apparent molecular weight. The post-translational transfer of subunits I, IV, V, and VII was studied in an in vitro system employing reticulocyte lysate and isolated mitochondria. The transfer and proteolytic processing of these precursors was found to be dependent on the mitochondrial membrane potential. In the transfer of cytochrome c1, the proteolytic processing appears to take place in two separate steps via an intermediate both in vivo and in vitro. In vivo, the intermediate form accumulated when cells were kept at 8 degrees C and was chased into mature cytochrome c1 at 25 degrees C. Both processing steps were energy-dependent.  相似文献   

19.
20.
In the preceding paper (Ross, E., and Schatz, G. (1976) J. Biol. Chem. 251, 1991-1996) yeast cytochrome c1 was characterized as a 31,000 dalton polypeptide with a covalently bound heme group. In order to determine the site of translation of this heme-carrying polypeptide, yeast cells were labeled with [H]leu(be under the following conditions: (a) in the absence of inhibitors, (b) in the presence of acriflavin (an inhibitor of mitochondrial translation), or (c) in the presence of cycloheximide (an inhibitor of cytoplasmic translation). The incorporation of radioactivity into the hemeprotein was measured by immunoprecipitating it from mitochondrial extracts and analyzing it by dodecyl sulfate-polyacrylamide gel electrophoresis. Label was incorporated into the cytochrome c1 apoprotein only in the presence of acriflavin or in the absence of inhibitor, but not in the presence of cycloheximide. Cytochrome c1 is thus a cytoplasmic translation product. This conclusion was further supported by the demonstration that a cytolasmic petite mutant lacking mitochondrial protein synthesis still contained holocytochrome c1 that was indistinguishable from cytochrome c1 of wild type yeast with respect to molecular weight, absorption spectru, the presence of a covalently bound heme group, and antigenic properties. Cytochrome c1 in the mitochondria of the cytoplasmic petite mutant is firmly bound to the membrane, and its concentration approaches that typical of wild type mitochondria. However, its lability to proteolysis appeared to be increased. A mitochondrial translation product may thus be necessary for the correct conformation or orientation of cytochrome c1 in the mitochondrial inner membrane. Accumulation of cytochrome c1 protein in mitochondria is dependent on the abailability of heme. This was shown with a delta-aminolevulinic acid synthetase-deficient yeast mutant which lacks heme and any light-absorbing peaks attributable to cytochromes. Mitochondria from mutant cells grown without added delta-aminolevulinic acid contained at least 20 times less protein immunoprecipitable by cytochrome c1-antisera than mitochondria from cells grown in the presence of the heme precursor. Similarly, the respiration-deficient promitochondria of anaerobically grown wild type cells are almost completely devoid of material cross-reacting with cytochrome c1-antisera. A 105,000 X g supernatant of aerobically grown wild type cells contains a 29,000 dalton polypeptide that is precipitated by cytochrome c1-antiserum but not by nonimmune serum. This polypeptide is also present in high speed supernatants from the heme-deficient mutant or from anaerobically gorwn wild type cells. The possible identity of this polypeptide with soluble apocytochrome c1 is being investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号