首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amyloid fibrils form in supersaturated solutions via a nucleation and growth mechanism. We proposed that ultrasonication may be an effective agitation to trigger nucleation that would otherwise not occur under the persistent metastability of supersaturation. However, the roles of supersaturation and effects of ultrasonication have not been elucidated in detail except for limited cases. Insulin is an amyloidogenic protein that is useful for investigating the mechanisms underlying amyloid fibrillation with biological relevance. We studied the alcohol-induced amyloid fibrillation of insulin using various concentrations of 2,2,2-trifluoroethanol and 1,1,1,3,3,3-hexafluoro-2-propanol at pH 2.0 and 4.8. Ultrasonic irradiation effectively triggered fibrillation under conditions in which insulin retained persistent supersaturation. Structural analyses by circular dichroism, Fourier transform infrared spectroscopy, transmission electron microscopy, and atomic force microscopy revealed that the dominant structures of fibrils varied between parallel and antiparallel β-sheets depending on the solvent conditions. pH and alcohol concentration-dependent phase diagrams showed a marked difference before and after the ultrasonic treatment, which indicated that the persistent metastability of supersaturation determined the conformations of insulin. These results indicate the importance of an alternative view of amyloid fibrils as supersaturation-limited crystal-like aggregates formed above the solubility limit.  相似文献   

2.
When subjected to acidic conditions and high temperature, insulin is known to produce fibrils that display the common properties of disease amyloids. Thus, clarifying the mechanisms of insulin fibrillation can help the general understanding of amyloidal aggregation. Insulin fibrillation exhibits a very sharp time dependence, with a pronounced lag phase and subsequent explosive growth of amyloidal aggregates. Here we show that the initial stages of this process can be well described by exponential growth of the fibrillated proteins. This indicates that the process is mainly controlled by a secondary nucleation pathway.  相似文献   

3.
Amyloid fibrils are composed of self assembled stacked peptide or protein molecules folded and trapped in a stable cross-beta-sheet conformation. The amyloid fibrillation mechanism represents an intriguing self-catalyzed process rendering replication of a molecular conformational memory of interest for prebiotic chemistry. Herein we describe how a solid surface can be rendered auto-catalytic for fibrillation of a protein solution. We have discovered that a hydrophobic silicon or glass surface can be made to continuously fibrillate solutions of insulin monomers under stressed conditions (pH 1.6, 65°C). It was found that the surface acts as a platform for the formation of nascent seeds that induce fibril replication on and at the surface. This autocatalytic effect stems from a layer a few insulin molecules thick representing an oligomeric layer of misfolded, conformationally trapped, insulin molecules that rapidly through epitaxial growth catalyze the rate determining step (nucleation) during fibril replication. This autocatalytic layer is generated by the protein-solid surface interaction and conformational changes of the adsorbed protein during exposure at the air-water interface. The resulting autocatalytic surface thus both initiates local conformational molecular self-replication and acts as a reservoir for fibril seeds budding off into solution spreading fibril replication entities to the surrounding medium. The possibility of catalysis of the conformational replication process by minute amounts of nucleation sites located on a recruiting surface can evade the issue of dramatic concentration dependence of amyloidogenesis.  相似文献   

4.
The importance of understanding the mechanism of protein aggregation into insoluble amyloid fibrils lies not only in its medical consequences, but also in its more basic properties of self-organization. The discovery that a large number of uncorrelated proteins can form, under proper conditions, structurally similar fibrils has suggested that the underlying mechanism is a general feature of polypeptide chains. In this work, we address the early events preceding amyloid fibril formation in solutions of zinc-free human insulin incubated at low pH and high temperature. Here, we show by time-lapse atomic force microscopy that a steady-state distribution of protein oligomers with a quasiexponential tail is reached within a few minutes after heating. This metastable phase lasts for a few hours, until fibrillar aggregates are observable. Although for such complex systems different aggregation mechanisms can occur simultaneously, our results indicate that the prefibrillar phase is mainly controlled by a simple coagulation-evaporation kinetic mechanism, in which concentration acts as a critical parameter. These experimental facts, along with the kinetic model used, suggest a critical role for thermal concentration fluctuations in the process of fibril nucleation.  相似文献   

5.
Amyloid fibrils are often found arranged into large ordered spheroid structures, known as spherulites, occurring in vivo and in vitro. The spherulites are predominantly composed of radially ordered amyloid fibrils, which self-assemble from protein in solution. We have observed and measured amyloid spherulites forming from heat-treated solutions of bovine insulin at low pH. The spherulites form in large numbers as semispherical dome-shaped objects on the cell surfaces, showing that surface defects or impurities, or the substrates themselves, can provide good nucleation sites for their formation. Using optical microscopy, we have measured the growth of individual spherulites as a function of time and in various conditions. There is a lag time before nucleation of the spherulites. Once they have nucleated, they grow, each with a radius increasing linearly, or faster than linearly, with time. Remarkably, this growth period has a sudden end, at which all spherulites in the system suddenly stop growing. A model of spherulite formation based on the polymerization of oriented fibrils around a nucleus, from a precursor in solution, quantitatively accounts for the observed growth kinetics. Seeding of native insulin solutions with preformed spherulites led to the preformed spherulites growing without a lag time. This seeding behavior is evidence that the fibrils in the spherulites assemble from small protein species rather than fibrils. The density of the spherulites was also measured and found to be constant with respect to radius, indicating that the space fills as the spherulite grows.  相似文献   

6.
We have recently shown that upon slight thermal destabilization the legume lectin Concanavalin A may undergo two different aggregation processes, leading, respectively, to amyloid fibrils at high pH and amorphous aggregates at low pH. Here we present an experimental study on the amyloid aggregation of Succinyl Concanavalin A, which is a dimeric active variant of Concanavalin. The results show that, as for the native protein, the fibrillation process appears to be favoured by alkaline pH, far from the isoelectric point of the protein. Moreover, it strongly depends on temperature and requires large conformational changes both at secondary and tertiary structure level. With respect to the native protein, the succinyl derivative forms amyloid fibrils in considerably longer times and with a minor exposure of hydrophobic regions. At physiological conditions, Concanavalin A still displays a sizeable tendency to form amyloid fibril, while the succinyl variant does not. A close correlation was observed between the progress of amyloid formation and a narrowing of the tryptophans fluorescence emission band, indicating a reduction of protein conformational heterogeneity in amyloid fibrils. Proceedings of the XVIII Congress of the Italian Society of Pure and Applied Biophysics (SIBPA), Palermo, Sicily, September 2006.  相似文献   

7.
In the search for the molecular mechanism of insulin fibrillation, the kinetics of insulin fibril formation were studied under different conditions using the fluorescent dye thioflavin T (ThT). The effect of insulin concentration, agitation, pH, ionic strength, anions, seeding, and addition of 1-anilinonaphthalene-8-sulfonic acid (ANS), urea, TMAO, sucrose, and ThT on the kinetics of fibrillation was investigated. The kinetics of the fibrillation process could be described by the lag time for formation of stable nuclei (nucleation) and the apparent rate constant for the growth of fibrils (elongation). The addition of seeds eliminated the lag phase. An increase in insulin concentration resulted in shorter lag times and faster growth of fibrils. Shorter lag times and faster growth of fibrils were seen at acidic pH versus neutral pH, whereas an increase in ionic strength resulted in shorter lag times and slower growth of fibrils. There was no clear correlation between the rate of fibril elongation and ionic strength. Agitation during fibril formation attenuated the effects of insulin concentration and ionic strength on both lag times and fibril growth. The addition of ANS increased the lag time and decreased the apparent growth rate for insulin fibril formation. The ANS-induced inhibition appears to reflect the formation of amorphous aggregates. The denaturant, urea, decreased the lag time, whereas the stabilizers, trimethylamine N-oxide dihydrate (TMAO) and sucrose, increased the lag times. The results indicated that both nucleation and fibril growth were controlled by hydrophobic and electrostatic interactions. A kinetic model, involving the association of monomeric partially folded intermediates, whose concentration is stimulated by the air-water interface, leading to formation of the critical nucleus and thence fibrils, is proposed.  相似文献   

8.
Insulin is susceptible to fibrillation, a misfolding process leading to well ordered cross-beta assembly. Protection from fibrillation in beta cells is provided by sequestration of the susceptible monomer within zinc hexamers. We demonstrate that proinsulin is refractory to fibrillation under conditions that promote the rapid fibrillation of zinc-free insulin. Proinsulin fibrils, as probed by Raman microscopy, are nonetheless similar in structure to insulin fibrils. The connecting peptide, although not well ordered in native proinsulin, participates in a fibril-specific beta-sheet. Native insulin and proinsulin exhibit similar free energies of unfolding as inferred from guanidine denaturation studies: relative amyloidogenicities are thus not correlated with global stability. Strikingly, the susceptibility of proinsulin to fibrillation is increased by scission of the connecting peptide at single sites. We thus propose that the connecting peptide constrains a large scale conformational change in the misfolded protein. A tethering mechanism is proposed based on a model of an insulin protofilament derived from electron-microscopic image reconstruction. The proposed relationship between cross-beta assembly and protein topology is supported by studies of single-chain analogs (mini-proinsulin and insulin-like growth factor I) in which foreshortened connecting peptides further retard fibrillation. In addition to its classic function to facilitate disulfide pairing, the connecting peptide may protect beta cells from toxic protein misfolding in the endoplasmic reticulum.  相似文献   

9.
Partially folded intermediates in insulin fibrillation   总被引:5,自引:0,他引:5  
Ahmad A  Millett IS  Doniach S  Uversky VN  Fink AL 《Biochemistry》2003,42(39):11404-11416
Native zinc-bound insulin exists as a hexamer at neutral pH. Under destabilizing conditions, the hexamer dissociates, and is very prone to forming fibrils. Insulin fibrils exhibit the typical properties of amyloid fibrils, and pose a problem in the purification, storage, and delivery of therapeutic insulin solutions. We have carried out a systematic investigation of the effect of guanidine hydrochloride (Gdn.HCl)-induced structural perturbations on the mechanism of fibrillation of insulin. At pH 7.4, the addition of as little as 0.25 M Gdn.HCl leads to dissociation of insulin hexamers into dimers. Moderate concentrations of Gdn.HCl lead to formation of a novel partially unfolded dimer state, which dissociates into a partially unfolded monomer state. High concentrations of Gdn.HCl resulted in unfolded monomers with some residual structure. The addition of even very low concentrations of Gdn.HCl resulted in substantially accelerated fibrillation, although the yield of fibrils decreased at high concentrations. Accelerated fibrillation correlated with the population of the expanded (partially folded) monomer, which existed up to >6 M Gdn.HCl, accounting for the formation of substantial amounts of fibrils under such conditions. In the presence of 20% acetic acid, where insulin exists as the monomer, fibrillation was also accelerated by Gdn.HCl. The enhanced fibrillation of the monomer was due to the increased ionic strength at low denaturant concentrations, and due to the presence of the partially unfolded, expanded conformation at Gdn.HCl concentrations above 1 M. The data suggest that under physiological conditions, the fibrillation of insulin involves both changes in the association state (with rate-limiting hexamer dissociation) and conformational changes, leading to formation of the amyloidogenic expanded monomer intermediate.  相似文献   

10.
Hong DP  Fink AL 《Biochemistry》2005,44(50):16701-16709
Insulin is very prone to form amyloid fibrils under slightly destabilizing conditions, and the B-chain region plays a critical role in the fibrillation. We show here that the isolated B-chain peptide of bovine insulin also forms fibrils at both acidic and neutral pH. When a mixture of insulin and the B-chain peptide was incubated at either acidic or neutral pH, the formation of fibrils was clearly separated into two phases, with the faster phase corresponding to the formation of homogeneous fibrils from the B-chain and the slower phase corresponding to homogeneous fibrillation of insulin. To further investigate the interaction (or lack thereof) between the two polypeptides, we examined the effects of cross-seeding. The results indicate that seeds of B-chain fibrils accelerate the fibrillation of insulin at pH 1.6 and inhibit the fibrillation at pH 7.5, but seeds of insulin fibrils have little effect on the fibrillation of the B-chain. We conclude that at pH 7.5 simultaneous independent homologous fibrillation occurs, but at low pH, heterologous fibrillation takes place, and with B-chain seeding of insulin, a unique conformation of fibrils is formed. Our results demonstrate that in the co-aggregation of closely related peptides each peptide species may undergo concurrent homogeneous or heterologous polymerization and that fibrils of one species may or may not seed fibrillation of the other. The results demonstrate the significant "species" barrier in amyloid fibril formation between fibrillation induced by different fibrils. A model for the fibrillation of the heterogeneous system of insulin and B-chain insulin is proposed.  相似文献   

11.
Amyloid fibril forming proteins have been related to some neurodegenerative diseases and are not fully understood. In some such systems, these amyloid fibrils have been found to form radially oriented spherulite structures. The thermal dependence of formation and growth of these spherulite structures in two model protein systems, beta-lactoglobulin and insulin at low pH aqueous and high temperature conditions, have been monitored with time-lapse optical microscopy and quantified. A population-based polymerization reaction model was developed and applied to the experimental data with excellent agreement. While spherulites in the insulin solutions formed and grew at approximately 25x the rate of spherulites in the beta-lactoglobulin solutions, the temperature dependence and activation energies of both systems were found to be very similar to one another, suggesting that the underlying rate-limiting mechanisms for both formation and growth are consistent across the two systems. The similarity of both of these amyloid fibril forming protein systems provides confidence in their use as model systems for extrapolating understanding to similar systems involved in neurodegenerative diseases.  相似文献   

12.
Macromolecular crowding is expected to have a significant effect on protein aggregation. In the present study we analyzed the effect of macromolecular crowding on fibrillation of four proteins, bovine S-carboxymethyl-alpha-lactalbumin (a disordered form of the protein with reduced three out of four disulfide bridges), human insulin, bovine core histones, and human alpha-synuclein. These proteins are structurally different, varying from natively unfolded (alpha-synuclein and core histones) to folded proteins with rigid tertiary and quaternary structures (monomeric and hexameric forms of insulin). All these proteins are known to fibrillate in diluted solutions, however their aggregation mechanisms are very divers and some of them are able to form different aggregates in addition to fibrils. We studied how macromolecular crowding guides protein between different aggregation pathways by analyzing the effect of crowding agents on the aggregation patterns under the variety of conditions favoring different aggregated end products in diluted solutions.  相似文献   

13.
Under conditions relevant to the manufacturing of insulin (e.g., pH 3, room temperature), biosynthetic human insulin (BHI), and Lispro insulin (Lispro) require a nucleation step to initiate aggregation. However, upon seeding with preformed aggregates, both insulins rapidly aggregate into nonnative fibrils. Far ultraviolet circular dichroism (far‐UV CD) and second derivative Fourier transform infrared (2D‐FTIR) spectroscopic analyses show that the fibrillation process involves a change in protein secondary structure from α‐helical in native insulin to predominantly β‐sheet in the nonnative fibrils. After seeding, Lispro aggregates faster than BHI, likely because of a reduced propensity to reversibly self‐associate. Composition gradient multi‐angle light scattering (CG‐MALS) analyses show that Lispro is more monomeric than BHI, whereas their conformational stabilities measured by denaturant‐induced unfolding are statistically indistinguishable. For both BHI and Lispro, as the protein concentration increases, the apparent first‐order rate constant for soluble protein loss decreases. To explain these phenomena, we propose an aggregation model that assumes fibril growth through monomer addition with competitive inhibition by insulin dimers. Biotechnol. Bioeng. 2011;108: 2359–2370. © 2011 Wiley Periodicals, Inc.  相似文献   

14.
Protein aggregation and amyloid fibrillation can lead to several serious diseases and protein drugs ineffectiveness; thus, the detection and inhibition of these processes have been of great interest. In the present study, the inhibition of insulin amyloid fibrillation by laser irradiation was investigated using dynamic light scattering (DLS), transmission electron microscopy (TEM), far-UV circular dichroism (far-UV CD), and thioflavin T (ThT) fluorescence. During heat-induced aggregation, the size distribution of two insulin solutions obtained by online and offline dynamic light scattering were different. The laser-on insulin in the presence of 0.1 M NaCl exhibited fewer fibrils than the laser-off insulin, whereas no insulin fibril under laser irradiation was observed in the absence of 0.1 M NaCl for 45 h incubation. Moreover, our CD results showed that the laser-irradiated insulin solution maintained mainly an α-helical conformation, but the laser-off insulin solution formed bulk fibrils followed by a significant increase in β-sheet content for 106 h incubation. These findings provide an inhibition method for insulin amyloid fibrillation using the laser irradiation and demonstrate that the online long-time laser measurements should be carefully used in the study of amyloid proteins because they may change the original results.  相似文献   

15.
Today, the investigation of the structure of ordered protein aggregates-amyloid fibrils, the influence of the native structure of the protein and the external conditions on the process of fibrillation-is the subject of intense investigations. The aim of the present work is to study the kinetics of formation of insulin amyloid fibrils at low pH values (conditions that are used at many stages of the isolation and purification of the protein) using the fluorescent probe thioflavin T. It is shown that the increase of the fluorescence intensity of ThT during the formation of amyloid fibrils is described by a sigmoidal curve, in which three areas can be distinguished: the lag phase, growth, and a plateau, which characterize the various stages of fibril formation. Despite the variation in the length of the lag phase at the same experimental conditions (pH and temperature), it is seen to drop during solution stirring and seeding. Data obtained by electron microscopy showed that the formed fibrils are long, linear filaments ~20 nm in diameter. With increasing incubation time, the fibril diameter does not change, while the length increases to 2–3 μm, which is accompanied by a significant increase in the number of fibril aggregates. All the experimental data show that, irrespective of the kinetics of formation of amyloid fibrils, their properties after the completion of the fibrillation process are identical. The results of this work, together with the previous studies of insulin amyloid fibrils, may be important for clarification the mechanism of their formation, as well as for the treatment of amyloidosis associated with the aggregation of insulin.  相似文献   

16.
The formation of amyloid fibrils proceeds via a nucleation-dependent mechanism in which nucleation phase is generally associated with a high free energy resulting in the rate-limiting step. On the basis of this kinetic feature, the nucleation is one of the most crucial phases controlling the pathogenesis of amyloidoses, but little is known about the details of how protein molecules and surrounding environment vary at this stage. Here, we applied near infrared (NIR) spectral monitoring of water structural changes in real time during the nucleation-dependent fibrillation of insulin. Whilst multivariate spectral analysis in the 2050–2350 nm spectral region indicated cross-β formation, characteristic transformations of water structure have been detected in the spectral region 1300–1600 nm corresponding to the first overtone of water OH stretching vibrations. Furthermore, specific water spectral patterns (aquagrams) related to different water molecular conformations have been found along the course of protein nucleation and aggregation. Right in the beginning, dissociation of hydrogen-bonded network in bulk water and coinstantaneous protein and ion hydration were observed, followed by water hydrogen-bonded networks development, presumably forcing the nucleation. These specific transformations of water spectral pattern could be used further as a biomarker for early non-invasive diagnosis of amyloidoses prior to explosive amplification and deposits of amyloid fibrils.  相似文献   

17.
《朊病毒》2013,7(4):224-235
Propagation and infectivity of prions in human prionopathies are likely associated with conversion of the mainly α-helical human prion protein, HuPrP, into an aggregated form with amyloid-like properties. Previous reports on efficient conversion of recombinant HuPrP have used mild to harsh denaturing conditions to generate amyloid fibrils in vitro. Herein we report on the in vitro conversion of four forms of truncated HuPrP (sequences 90-231 and 121-231 with and without an N-terminal hexa histidine tag) into amyloid-like fibrils within a few hours by using a protocol (phosphate buffered saline solutions at neutral pH with intense agitation) close to physiological conditions. The conversion process monitored by thioflavin T, ThT, revealed a three stage process with lag, growth and equilibrium phases. Seeding with preformed fibrils shortened the lag phase demonstrating the classic nucleated polymerization mechanism for the reaction. Interestingly, comparing thioflavin T kinetics with solubility and turbidity kinetics it was found that the protein initially formed non-thioflavionophilic, morphologically disordered aggregates that over time matured into amyloid fibrils. By transmission electron microscopy and by fluorescence microscopy of aggregates stained with luminescent conjugated polythiophenes (LCPs); we demonstrated that HuPrP undergoes a conformational conversion where spun and woven fibrils protruded from morphologically disordered aggregates. The initial aggregation functioned as a kinetic trap that decelerated nucleation into a fibrillation competent nucleus, but at the same time without aggregation there was no onset of amyloid fibril formation. The agitation, which was necessary for fibril formation to be induced, transiently exposes the protein to the air-water interface suggests a hitherto largely unexplored denaturing environment for prion conversion.  相似文献   

18.
Recent work suggests that protein fibrillation mechanisms and the structure of the resulting protein fibrils are very sensitive to environmental conditions such as temperature and ionic strength. Here we report the effect of several inorganic salts on the fibrillation of glucagon. At acidic pH, fibrillation is much less influenced by cations than anions, for which the effects follow the electroselectivity series; e.g., the effect of sulfate is approximately 65-fold higher than that of chloride per mole. Increased salt concentrations generally accelerate fibrillation, but result in formation of an alternate type of fibrils. Stability of these fibrils is highly affected by changes in anion concentration; the apparent melting temperature is increased by approximately 22 degrees C for any 10-fold concentration increase, indicating that the fibrils cannot exist without anions. In contrast, fibrillation under alkaline conditions is more affected by cations than anions. We conclude that ions interact directly as structural ligands with glucagon fibrils where they coordinate charges and assist in formation of new fibrils. As ex vivo amyloid plaques often contain large amounts of highly sulfated organic molecules, the specific effects of sulfate ions on glucagon may have general relevance in the study of amyloidosis and other protein deposition diseases.  相似文献   

19.
Protein crystals form in supersaturated solutions via a nucleation and growth mechanism. The amyloid fibrils of denatured proteins also form via a nucleation and growth mechanism. This similarity suggests that, although protein crystals and amyloid fibrils are distinct in their morphologies, both processes can be controlled in a similar manner. It has been established that ultrasonication markedly accelerates the formation of amyloid fibrils and simultaneously breaks them down into fragmented fibrils. In this study, we investigated the effects of ultrasonication on the crystallization of hen egg white lysozyme and glucose isomerase from Streptomyces rubiginosus. Protein crystallization was monitored by light scattering, tryptophan fluorescence, and light transmittance. Repeated ultrasonic irradiations caused the crystallization of lysozyme and glucose isomerase after cycles of irradiations. The size of the ultrasonication-induced crystals was small and homogeneous, and their numbers were larger than those obtained under quiescent conditions. Switching off ultrasonic irradiation when light scattering or tryptophan fluorescence began to change resulted in the formation of larger crystals due to the suppression of the further nucleation and fractures in preformed crystals. The results indicate that protein crystallization and amyloid fibrillation are explained on the basis of a common phase diagram in which ultrasonication accelerates the formation of crystals or crystal-like amyloid fibrils as well as fragmentation of preformed crystals or fibrils.  相似文献   

20.
Amyloid fibrils form in supersaturated solutions of precursor proteins by a nucleation and growth mechanism characterized by a lag time. Although the lag time provides a clue to understanding the complexity of nucleation events, its long period and low reproducibility have been obstacles for exact analysis. Ultrasonication is known to effectively break supersaturation and force fibrillation. By constructing a Handai amyloid burst inducer, which combines a water bath-type ultrasonicator and a microplate reader, we examined the ultrasonication-forced fibrillation of several proteins, with a focus on the fluctuation in the lag time. Amyloid fibrillation of hen egg white lysozyme was examined at pH 2.0 in the presence of 1.0–5.0 M guanidine hydrochloride (GdnHCl), in which the dominant species varied from the native to denatured conformations. Although fibrillation occurred at various concentrations of GdnHCl, the lag time varied largely, with a minimum being observed at ∼3.0 m, the concentration at which GdnHCl-dependent denaturation ended. The coefficient of variation of the lag time did not depend significantly on the GdnHCl concentration and was 2-fold larger than that of the ultrasonication-dependent oxidation of iodide, a simple model reaction. These results suggest that the large fluctuation observed in the lag time for amyloid fibrillation originated from a process associated with a common amyloidogenic intermediate, which may have been a relatively compact denatured conformation. We also suggest that the Handai amyloid burst inducer system will be useful for studying the mechanism of crystallization of proteins because proteins form crystals by the same mechanism as amyloid fibrils under supersaturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号