首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
On the cooperative and noncooperative binding of ethidium to DNA.   总被引:3,自引:2,他引:1       下载免费PDF全文
The equilibrium binding of ethidium bromide to native DNAs and to poly(dG-dC) X poly(dG-dC) has been studied by both phase partition and direct spectrophotometric techniques. The binding isotherms obtained from both experimental techniques show that ethidium binds in a cooperative manner to E. coli DNA. On the other hand, no evidence of cooperative binding was observed in the binding isotherms obtained with calf thymus, C. perfringens, M. lysodeikticus, or poly(dG-dC) X (dG-dC) under the experimental conditions used (0.1 M NaCl).  相似文献   

2.
Interaction of topotecan (TPT) with calf thymus DNA, coliphage T4 DNA, and poly(dG-dC). poly(dG-dC) was studied by optical (linear flow dichroism, UV-vis spectroscopy) and quantum chemical methods. The linear dichroism (LD) signal of TPT bound to DNA was shown to have positive sign in the range 260-295 nm. This means that the plane of quinoline fragment (rings A and B) of TPT molecule form an angle lower 54 degrees with the long axis of DNA, and hence TPT molecule can not intercalate between DNA base pairs. TPT was established to bind to calf thymus DNA as readily as to coliphage T4 DNA whose all cytosines in the major groove were glycosylated at the 5th position. Consequently, the DNA major groove does not participate in TPT binding. TPT molecule was shown to compete with distamycin for binding sites in the minor groove of DNA and poly(dG-dC). poly(dG-dC). Thus, it was demonstrated for the first time that TPT binds to DNA at its minor groove.  相似文献   

3.
Interaction of topotecan (TPT) with calf thymus DNA, coliphage T4 DNA, and poly(dGdC) · poly(dG-dC) was studied by optical (linear flow dichroism, UV-vis spectroscopy) and quantum chemical methods. The linear dichroism signal of TPT bound to DNA was shown to have positive sign in the range 260–295 nm. This means that the plane of quinoline fragment (rings A and B) of TPT forms an angle less than 54° with the long axis of DNA, and hence the TPT molecule cannot intercalate between DNA base pairs. TPT was established to bind to calf thymus DNA as readily as to coliphage T4 DNA whose cytosines in the major groove were all glycosylated at the 5th position. Consequently, the DNA major groove does not participate in TPT binding. TPT molecule was shown to compete with distamycin for binding sites in the minor groove of DNA and poly(dG-dC) · poly(dG-dC). Thus, it was demonstrated for the first time that TPT binds to DNA at its minor groove.  相似文献   

4.
Mouse monoclonal antibody was elicited with 4-nitroquinoline 1-oxide (4NQO) modified poly(dG-dC).poly(dG-dC) and was characterized using enzyme-linked immunosorbent assay and radioimmunoassay. The antibody reacted specifically for 4NQO-poly(dG-dC).poly(dG-dC) but not for 4NQO modified DNA and synthetic polynucleotides such as poly(dG).poly(dC). The antibody crossreacted slightly with brominated or N-acetoxy-2-acetylaminofluorene modified poly(dG-dC).poly(dG-dC) known to adopt Z-conformation. The antibody may recognize unique conformational change in poly(dG-dC).poly(dG-dC) modified by 4NQO. The antibody should be useful for the detection of conformational change in DNA induced by chemical carcinogens.  相似文献   

5.
D E Graves  T R Krugh 《Biochemistry》1983,22(16):3941-3947
Phase partition techniques have been used to measure the binding of the antitumor drugs adriamycin (NSC-123127) and daunorubicin (NSC-82151) to various DNAs. These methods provide reliable equilibrium binding data at the low levels of drug binding that may be expected in vivo. Both adriamycin and daunorubicin exhibit positive cooperativity (and/or allosterism) in their equilibrium binding to DNA as indicated by the positive slope in the initial region of the binding isotherms (Scatchard plots) under conditions simulating physiological ionic strengths. The cooperative binding (i.e., the appearance of initial positive curvature in the binding isotherms) is dependent upon the ionic strength, which suggests a role for DNA flexibility in the cooperative binding process. An analysis of the slope of the initial portion of the binding isotherms for the interaction of adriamycin with synthetic deoxypolynucleotides shows that the degree of cooperative binding decreases in the order poly(dGdT) X poly(dAdC) greater than or equal to poly(dAdT) X poly(dAdT) greater than poly(dGdC) X poly(dGdC). Marky and Breslauer [Marky, L.A., & Breslauer, K. J. (1982) Biopolymers 21, 2185-2194] found that the average base stacking enthalpies of these synthetic poly-nucleotides were in the same order, which also suggests that the properties of the DNA influence the cooperative binding (and/or allosteric effects). Adriamycin binds with a higher degree of cooperativity than daunorubicin (0.1 M NaCl); although this correlates with the effectiveness of the drugs as antitumor agents, the exact relationship between the observation of cooperative binding and pharmacological activity is yet to be determined.  相似文献   

6.
The interactions of methylene blue, azure B, and thionine with calf thymus DNA, [poly (dG-dC)]2, [poly(dA-dT)]2, and the constituent mononucleotides 2′-deoxyguanosine-5′-monophosphate(dGMP), 2′-deoxyadenosine-5′-monophosphate(dAMP), 2′-deoxycytidine-5′-monophosphate(dCMP), and thymidine-5′-monophosphate(dTMP) have been studied by steady-state absorption spectroscopy and with equilibrium dialysis. Scatchard plots for binding of the dyes to the nucleic acid polymers were convex downward at low binding ratios, characteristic of intercalation, and binding constants for this mode were calculated under conditions of varying ionic strength. For each of the dyes, binding constants with [poly(dG-dC)]2 and [poly(dA-dT)]2 were of the same order of magnitude, so that previously reported (G-C) preferentially is not very marked. At high binding ratios, the Scatchard plots did not return to the abscissa but curved upward, indicative of a weaker cooperative binding mode, occurring under conditions where the dye is in excess, which is suggested to be external stacking of the dye molecules promoted by the polyanion. The dependence of the absorption spectra on added salt demonstrated a shift in the strong binding mode for the three dyes with [poly(dA-dT)]2 with increasing ionic strength, while with [poly(dG-dC)]2 this does not occur. The dyes were found to bind to purine but not pyrimidine mononucleotides with dGMP and dAMP, 1:1 complexes were formed initially and also 1:2 dye/nucleotide complexes with increasing nucleotide concentrations. Under low salt conditions, binding to dAMP was slightly stronger than to dGMP for the three dyes studied, while at high ionic strength, when the binding constants are significantly lower, all binding constants become very similar. Binding to mononucleotides is suggested to be primarily stabilised by π-π stacking interactions between the planar dyes and the nucleobases: for thionine and azure B there also appears to be H-bonds between the exocyclic amines and the sugar–phosphates conferring extra stability. Neither increasing the number of phosphate groups on the nucleotides nor changing from deoxyribose to ribose sugars had any significant effect on the binding constants. © 1995 John Wiley & Sons, Inc.  相似文献   

7.
NMR studies of chromomycin A3 interaction with DNA   总被引:3,自引:0,他引:3  
E Berman  S C Brown  T L James  R H Shafer 《Biochemistry》1985,24(24):6887-6893
The binding of chromomycin A3 to calf thymus DNA and poly(dG-dC) has been studied by 13C and 1H NMR with emphasis on the mode of binding, the role of Mg2+, and pH effects. The most prominent changes in the DNA base pair 13C NMR resonances upon complexation with chromomycin were observed for G and C bases, consistent with the G-C preference exhibited by this compound. Comparison of the 13C spectrum of DNA-bound chromomycin A3 with that of DNA-bound actinomycin D, a known intercalator, showed many similarities in the base pair resonances. This suggested the possibility that chromomycin A3 binds via an intercalative mechanism. 1H NMR studies in the imino proton, low-field region of the spectrum provided additional evidence in support of this binding mode. In the low-field spectrum of chromomycin A3 bound to calf thymus DNA, a small shoulder was observed on the upfield side of the G-C imino proton peak. Similarly, in the chromomycin A3 complex with poly(dG-dC), a well-resolved peak was found upfield from the G-C imino proton peak. These results are expected for ligands that bind by intercalation. Furthermore, in both the calf thymus and poly(dG-dC) drug complexes (in the presence of Mg2+) a broad peak was also present downfield (approximately 16 ppm from TSP) from the DNA imino protons. This was attributed to the C-9 phenolic hydroxyl proton on the chromomycin chromophore. Visible absorbance spectra at different pH values showed that the role of Mg2+ in the binding of chromomycin A3 to DNA is more than simple neutralization of the drug's anionic change.  相似文献   

8.
The equilibrium binding of the antitumor compound DHAQ, or mitoxantrone [1,4-dihydroxy-5,8-bis[[2-[(2-hydroxyethyl)amino]ethyl]amino]-9,10- anthracenedione], to various DNAs has been examined by optical titration and equilibrium dialysis methods. At low r (bound drug/DNA base pair) values, r less than 0.03, DHAQ binds, in a highly cooperative manner, to calf thymus and Micrococcus lysodeikticus DNAs. The binding isotherms for the interaction of DHAQ with Clostridium perfringens DNA and poly(dA-dT).poly(dA-dT) exhibit a small positive slope at low r values, suggestive of cooperative binding. In contrast, the binding of DHAQ to poly(dG-dC).poly(dG-dC) shows no evidence of cooperative binding even at very low r values. At higher r values (r greater than 0.05), the binding of DHAQ to all the DNAs studied is characterized by a neighbor-exclusion process. A model is proposed to account for the two modes of binding exhibited in the cooperative binding isotherms. The main feature of the proposed model is that local sequence and structural heterogeneity of the DNA give rise to sets of binding sites to which DHAQ binds in a highly cooperative manner, while the majority of the DNA sites bind DHAQ via a neighbor-exclusion process. This two-site model reproduces the observed binding isotherms and leads to the conclusion that DHAQ binds in clusters to selected regions of DNA. It is suggested that clustering may play a role in the physiological activity of drugs.  相似文献   

9.
The acridine dye quinacrine and its interactions with calf thymus DNA, poly(dA-dT) · poly (dA-dT), and poly (dG-dC) · poly(dG-dC) were studied by light absorption, linear dichroism, and fluorescence spectroscopy. The transition moments of quinacrine give rise to absorption bands polarized along the short axis (400–480-nm band), and the long axis (345-nm and 290-nm bands) of the molecule, respectively. Linear dichroism studies show that quinacrine intercalates into calf thymus DNA as well as into the polynucleotides, displaying fairly homogeneous binding to poly (dA-dT) · poly (dA-dT), but more than one type of intercalation site for calf thymus DNA and poly (dG-dC) · poly(dG-dC). Fluorescence spectroscopy shows that for free quinacrine the pK = 8.1 between the mono- and diprotonated states also remains unchanged in the excited state. Quinacrine bound to calf thymus DNA and polynucleotides exhibits light absorption typical for the intercalated diprotonated form. The fluorescence enhancement of quinacrine bound to poly (dA-dT) · poly(dA-dT) may be due to shielding from water interactions involving transient H-bond formation. The fluorescence quenching in poly(dG-dC) · poly(dG-dC) may be due to excited state electron transfer from guanine to quinacrine. © 1993 John Wiley & Sons, Inc.  相似文献   

10.
The equilibrium binding of the cytotoxic plant alkaloid berberine to various DNAs and energetics of the interaction have been studied. At low ratios of bound alkaloid to base pair, the binding exhibited cooperativity to natural DNAs having almost equal proportions of AT and GC sequences. In contrast, the binding was non-cooperative to DNAs with predominantly high AT or GC sequences. Among the synthetic DNAs, cooperative binding was observed with poly(dA).poly(dT) and poly(dG).poly(dC) while non-cooperative binding was seen with poly(dA-dT).poly(dA-dT) and poly(dG-dC).poly(dG-dC). Both cooperative and non-cooperative bindings were remarkably dependent on the salt concentration of the media. Linear plots of ln K(a) versus [Na(+)] for poly(dA).poly(dT) and poly(dA-dT).poly(dA-dT) showed the release of 0.56 and 0.75 sodium ions respectively per bound alkaloid. Isothermal titration calorimetry results revealed the binding to be exothermic and favoured by both enthalpy and entropy changes in all DNAs except the two AT polymers and AT rich DNA, where the same was predominantly entropy driven. Heat capacity values (DeltaCp(o)) of berberine binding to poly(dA).poly(dT), poly(dA-dT).poly(dA-dT), Clostridium perfringens and calf thymus DNA were -98, -140, -120 and -110 cal/mol K respectively. This study presents new insights into the binding dependent base pair heterogeneity in DNA conformation and the first complete thermodynamic profile of berberine binding to DNAs.  相似文献   

11.
G T Walker  M P Stone  T R Krugh 《Biochemistry》1985,24(25):7471-7479
The interaction of actinomycin D and actinomine with poly(dG-dC).poly(dG-dC) and poly(dG-m5dC).poly(dG-m5dC) under B- and Z-form conditions has been investigated by optical and phase partition techniques. Circular dichroism data show that the conformation at the binding site is right-handed, even though adjacent regions of the polymer have a left-handed conformation. Actinomycin D binds in a cooperative manner to poly(dG-dC).poly(dG-dC) under both B-form and Z-form conditions. Analysis of the circular dichroism data shows that 5 +/- 1 base pairs of left-handed poly(dG-dC).poly(dG-dC) in 4.4 M NaCl switch to a right-handed conformation for each bound actinomycin D. When the left-handed form of poly(dG-dC).poly(dG-dC) is stabilized by the presence of 40 microM [Co(NH3)6]Cl3, 25 +/- 5 base pairs switch from a left-handed to a right-handed conformation for each bound actinomycin D. Actinomine binds cooperatively to left-handed poly(dG-dC).poly(dG-dC) in 40 microM [Co(NH3)6]Cl3 and to left-handed poly(dG-m5dC).poly(dG-m5dC) in 2 mM MgCl2. Actinomine does not bind to left-handed poly(dG-dC).poly(dG-dC) in 4.4 M NaCl at concentrations as high as 100 microM. Each bound actinomine converts 11 +/- 3 base pairs of left-handed poly(dG-dC).poly(dG-dC) in 40 microM [Co(NH3)6]Cl3 and 7 +/- 2 base pairs of left-handed poly(dG-m5dC).poly(dG-m5dC) in 2 mM MgCl2. The binding isotherm data also indicate that the binding site has a right-handed conformation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Equilibrium binding is believed to play an important role in directing the subsequent covalent attachment of many carcinogens to DNA. We have utilized UV spectroscopy to examine the non-covalent interactions of aflatoxin B1 and B2 with calf thymus DNA, poly(dAdT):poly(dAdT), and poly(dGdC):poly(dGdC), and have utilized NMR spectroscopy to examine non-covalent interactions of aflatoxin B2 with the oligodeoxynucleotide d(ATGCAT)2. UV-VIS binding isotherms suggest a greater binding affinity for calf thymus DNA and poly(dAdT):poly(dAdT) than for poly(dGdC):poly(dGdC). Scatchard analysis of aflatoxin B1 binding to calf thymus DNA in 0.1 M NaCl buffer indicates that binding of the carcinogen at levels of bound aflatoxin less than 1 carcinogen per 200 base pairs occurs with positive cooperativity. The cooperative binding effect is dependent on the ionic strength of the medium; when the NaCl concentration is reduced to 0.01 M, positive cooperativity is observed at carcinogen levels less than 1 carcinogen per 500 base pairs. The Scatchard data may be fit using a "two-site" binding model [L.S. Rosenberg, M.J. Carvlin, and T.R. Krugh, Biochemistry 25, 1002-1008 (1986)]. This model assumes two independent sets of binding sites on the DNA lattice, one a high affinity site which binds the carcinogen with positive cooperativity, the second consisting of lower affinity binding sites to which non-specific binding occurs. NMR analysis of aflatoxin B2 binding to d(ATGCAT)2 indicates that the aflatoxin B2/oligodeoxynucleotide complex is in fast exchange on the NMR time scale. Upfield chemical shifts of 0.1-0.5 ppm are observed for the aflatoxin B2 4-OCH3, H5, and H6a protons. Much smaller chemical shift changes (less than or equal to 0.06 ppm) are observed for the oligodeoxynucleotide protons. The greatest effect for the oligodeoxynucleotide protons is observed for the adenine H2 protons, located in the minor groove. Nonselective T1 experiments demonstrate a 15-25% decrease in the relaxation time for the adenine H2 protons when aflatoxin B2 is added to the solution. This result suggests that aflatoxin B2 protons in the bound state may be in close proximity to these protons, providing a source of dipolar relaxation. Further experiments are in progress to probe the nature of the aflatoxin B1 and B2 complexes with polymeric DNA and oligodeoxynucleotides, and to establish the relationship between the non-covalent DNA-carcinogen complexes observed in these experiments, and covalent aflatoxin B1-guanine N7 DNA adducts.  相似文献   

13.
Both the initial velocity and the overall methylation of Ac-4HAQO modified DNA by a calf brain DNA (cytosine-5-)-methyltransferase are increased as compared to native DNA. The affinity of the modified DNA for the enzyme decreases as a function of the extent of the modification. Heat-denatured, single-stranded DNA shows exactly the opposite results: the more it is modified, the less it is methylated. The poly(dG-dC) X poly(dG-dC) modified by 4NQO is as well methylated as the non-modified one. The carcinogen may induce a tertiary structure favouring the 'walking' of the enzyme along the DNA. The hypermethylation caused by this carcinogen could have a significance in gene activity and cellular differentiation.  相似文献   

14.
The binding heterogeneity, conformational aspects, and energetics of the interaction of the cytotoxic plant alkaloid palmatine have been studied with various natural and synthetic DNAs. The alkaloid binds to calf thymus and Escherichia coli DNA that have mixed AT and GC sequences in almost equal proportions with positive cooperativity, while, with Clostridium perfringens and Micrococcus lysodeikticus DNA with predominantly high AT and GC sequences, respectively, noncooperative binding was observed. On further investigation with synthetic DNAs, the binding was observed to be cooperative with polymers like poly(dA).poly(dT) and poly(dG).poly(dC) having poly(purine)poly(pyrimidine) sequences, while with polymers poly(dA-dT).poly(dA-dT), poly(dA-dC).poly(dG-dT) and poly(dG-dC).poly(dG-dC), which have alternating purine-pyrimidine sequences, a non-cooperative binding phenomenon was observed. This suggests the binding heterogeneity of palmatine to the two types of sequences of base pairs. Circular dichroism (CD) studies revealed that the binding induced conformational changes in all the DNAs, but more importantly, the bound alkaloid molecules acquired induced optical activity, and the extent was dependent on the AT content and showed AT base-pair specificity. Energetics of the interaction of the alkaloid studied by highly sensitive isothermal titration calorimetry revealed that the binding was in most cases exothermic and favored by both enthalpy and entropy changes, while, in the case of the homo and hetero AT polymers, the same was predominantly entropy-driven. This study defines base-pair-dependent heterogeneity, conformational aspects, and energetics of palmatine binding to DNA.  相似文献   

15.
K Kubo  H Ide  S S Wallace  Y W Kow 《Biochemistry》1992,31(14):3703-3708
Free radicals produce a wide spectrum of damages; among these are DNA base damages and abasic (AP) sites. Although several methods have been used to detect and quantify AP sites, they either are relatively laborious or require the use of radioactivity. A novel reagent for detecting abasic sites in DNA was prepared by reacting O-(carboxymethyl)hydroxylamine with biotin hydrazide in the presence of carbodiimide. This reagent, called Aldehyde Reactive Probe (ARP), specifically tagged AP sites in DNA with biotin residues. The number of biotin-tagged AP sites was then determined colorimetrically by an ELISA-like assay using avidin/biotin complex conjugated to horseradish peroxidase as the indicator enzyme. With heat/acid-depurinated calf thymus or bacteriophage f1 DNA, ARP detected femtomoles of AP sites in DNA. Using this assay, DNA damages generated in calf thymus, phi X174 RF, and f1 single-stranded DNA, X-irradiated in phosphate buffer, were easily detectable at 10 rad (0.1 Gy). Furthermore, ARP sites were detectable in DNA isolated from heat-inactivated X-irradiated (10 Gy) and methyl methanesulfonate (MMS)-treated (5 microM) Escherichia coli cells. The rate of production of ARP sites was proportional to the X-ray dose as well as to the concentration of MMS. Thus, the sensitivity and simplicity of the ARP assay should provide a potentially powerful method for the quantitation of AP sites or other DNA lesions containing an aldehyde group.  相似文献   

16.
The interaction between a novel aromatic thiolato derivative from the family of DNA-intercalating platinum complexes, phenylthiolato-(2,2',2"-terpyridine)platinum(II)-[PhS(ter py)Pt+], and nucleic acids was studied by using viscosity, equilibrium-dialysis and kinetic measurements. Viscosity measurements with sonicated DNA provide direct evidence for intercalation, and show that at binding ratios below 0.2 molecules per base-pair PhS(terpy)Pt+ causes an increase in contour length of 0.2 nm per bound molecule. However, helix extension diminishes at greater extents of binding, indicating the existence of additional, non-intercalated, externally bound forms of the ligand. The ability of PhS(terpy)Pt+ to aggregate in neutral aqueous buffers at a range of ionic strengths and temperatures was assessed by using optical-absorption methods. Scatchard plots for binding to calf thymus DNA at ionic strength 0.01 (corrected for dimerization) are curvilinear, concave upward, providing further evidence for two modes of binding. The association constant decreases at higher ionic strengths, in accord with the expectations of polyelectrolyte theory, although the number of cations released per bound unipositive ligand molecule is substantially greater than 1. Stopped-flow kinetic measurements confirm the complexity of the binding reaction by revealing multiple bound forms of the ligand whose kinetic processes are both fast and closely coupled. Thermal denaturation of DNA radically alters the shapes of binding isotherms and either has little effect on, or enhances, the affinity of potential binding sites, depending on experimental conditions. Scatchard plots for binding to natural DNA species with differing nucleotide composition show that the ligand has a requirement for a single G X C base-pair at the highest-affinity intercalation sites.  相似文献   

17.
F M Chen 《Biochemistry》1984,23(25):6159-6165
Comparative studies on the salt titration and the related kinetics for poly(dG-dC) X poly(dG-dC) in pH 7.0 and 3.8 solutions clearly suggest that base protonation facilitates the kinetics of B-Z interconversion although the midpoint for such a transition in acidic solution (2.0-2.1 M NaCl) is only slightly lower than that of neutral pH. The rates for the salt-induced B to Z and the reverse actinomycin D induced Z to B transitions in pH 3.8 solutions are at least 1 order of magnitude faster than the corresponding pH 7.0 counterparts. The lowering of the B-Z transition barrier is most likely the consequence of duplex destabilization due to protonation as indicated by a striking decrease (approximately 40 degrees C) in melting temperature upon H+ binding in low salt. The thermal denaturation curve for poly(dG-dC) X poly(dG-dC) in a pH 3.8, 2.6 M NaCl solution indicates an extremely cooperative melting at 60.5 degrees C for protonated Z DNA, which is immediately followed by aggregate formation and subsequent hydrolysis to nucleotides at higher temperatures. The corresponding protonated B-form poly(dG-dC) X poly(dG-dC) in 1 M NaCl solution exhibits a melting temperature about 15 degrees C higher, suggesting further duplex destabilization upon Z formation.  相似文献   

18.
The conformation of synthetic or natural DNAs modified in vitro by covalent binding of N-AcO-A-Glu-P-3 was investigated by fluorescence and circular dichroism. In all cases, substitution occurs mainly on the C8 of guanine residues. In modified poly(dG-dC).poly(dG-dC) or poly(dA-dC).poly(dG-dT) in B conformation, A-Glu-P-3 residues interact strongly with the bases whereas in Z conformation these residues are largely exposed to the solvent and interact weakly with the bases. A-Glu-P-3 and N-acetyl-2-aminofluorene (AAF) residues are equally efficient to induce the B-Z transition of poly(dG-dC).poly(dG-dC) and of poly(dA-dC).poly(dG-dT). Modifications of poly(dG).poly(dC) and calf thymus DNA indicate strong interactions between A-Glu-P-3 and the bases.  相似文献   

19.
The binding of sodium n-dodecyl sulphate (SDS) to calf thymus histone H2B was studied in the pH range 3.2-10 by equilibrium dialysis at 27 and 37 degrees C. The binding data have been used in terms of the Scatchard equation showing unusual plots with minima. No theoretical model gives Scatchard plots with such conditions, except for a combination of two types of binding with large differences in the Hill coefficients and binding affinity, i.e. a combination of negatively and positively cooperative binding sites.  相似文献   

20.
Protein n, essential in forming the primosome for the in vitro conversion of phi X174 single-stranded (SS) DNA to the duplex replicative form (RF), has been purified about 5000-fold to near homogeneity from Escherichia coli. Protein n is heat- and acid-resistant and N-ethyl-maleimide-sensitive. It appears to be a dimer of 12,000 (+/- 2000)-dalton polypeptides. About 80 molecules of protein n are present/cell. Protein n binding to phi X SS DNA depends on the presence of single-strand binding protein (SSB). This requirement for SSB reflects a direct interaction of protein n and SSB. About 30 protein n monomers can be bound to an SSB-coated circle. However, in forming the primosome on an SSB-coated phi X circle, an input of only 2-3 protein n monomers is required and 1 monomer bound/circle. Retention of this low level of protein n on SSB-coated phi X SS DNA is dependent upon protein n', a DNA-dependent ATPase (dATPase) that guides primosome assembly. This single protein n monomer is retained in the assembled primosome, which is conserved on the completed parental RF and participates in the next stage of the replicative cycle, production of progeny RF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号