首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As well as serving valuable biodiversity conservation roles, functioning no-take fishery reserves protect a portion of the fishery stock as insurance against future over-fishing. So long as there is adequate compliance by the fishing community, it is likely that they will also sustain and even enhance fishery yields in the surrounding area. However, there are significant gaps in scientific knowledge that must be filled if no-take reserves are to be used effectively as fishery management tools. Unfortunately, these gaps are being glossed over by some uncritical advocacy. Here, we review the science, identify the most crucial gaps, and suggest ways to fill them, so that a promising management tool can help meet the growing challenges faced by coastal marine fisheries.  相似文献   

2.
No-take marine fishery reserves sustain commercial stocks by acting as buffers against overexploitation and enhancing fishery catches in adjacent areas through spillover. Likewise, nursery habitats such as mangroves enhance populations of some species in adjacent habitats. However, there is lack of understanding of the magnitude of stock enhancement and the effects on community structure when both protection from fishing and access to nurseries concurrently act as drivers of fish population dynamics. In this study we test the separate as well as interactive effects of marine reserves and nursery habitat proximity on structure and abundance of coral reef fish communities. Reserves had no effect on fish community composition, while proximity to nursery habitat only had a significant effect on community structure of species that use mangroves or seagrass beds as nurseries. In terms of reef fish biomass, proximity to nursery habitat by far outweighed (biomass 249% higher than that in areas with no nursery access) the effects of protection from fishing in reserves (biomass 21% lower than non-reserve areas) for small nursery fish (≤ 25 cm total length). For large-bodied individuals of nursery species (>25 cm total length), an additive effect was present for these two factors, although fish benefited more from fishing protection (203% higher biomass) than from proximity to nurseries (139% higher). The magnitude of elevated biomass for small fish on coral reefs due to proximity to nurseries was such that nursery habitats seem able to overrule the usually positive effects on fish biomass by reef reserves. As a result, conservation of nursery habitats gains importance and more consideration should be given to the ecological processes that occur along nursery-reef boundaries that connect neighboring ecosystems.  相似文献   

3.
The net movement of individuals from marine reserves (also known as no-take marine protected areas) to the remaining fishing grounds is known as spillover and is frequently used to promote reserves to fishers on the grounds that it will benefit fisheries. Here we consider how mismanaged a fishery must be before spillover from a reserve is able to provide a net benefit for a fishery. For our model fishery, density of the species being harvested becomes higher in the reserve than in the fished area but the reduction in the density and yield of the fished area was such that the net effect of the closure was negative, except when the fishery was mismanaged. The extent to which effort had to exceed traditional management targets before reserves led to a spillover benefit varied with rates of growth and movement of the model species. In general, for well-managed fisheries, the loss of yield from the use of reserves was less for species with greater movement and slower growth. The spillover benefit became more pronounced with increasing mis-management of the stocks remaining available to the fishery. This model-based result is consistent with the literature of field-based research where a spillover benefit from reserves has only been detected when the fishery is highly depleted, often where traditional fisheries management controls are absent. We conclude that reserves in jurisdictions with well-managed fisheries are unlikely to provide a net spillover benefit.  相似文献   

4.
Over-exploited fisheries are a common feature of the modern world and a range of solutions including area closures (marine reserves; MRs), effort reduction, gear changes, ecosystem-based management, incentives and co-management have been suggested as techniques to rebuild over-fished populations. Historic accounts of lobster (Jasus frontalis) on the Chilean Juan Fernández Archipelago indicate a high abundance at all depths (intertidal to approximately 165 m), but presently lobsters are found almost exclusively in deeper regions of their natural distribution. Fishers' ecological knowledge (FEK) tells a story of serial depletion in lobster abundance at fishing grounds located closest to the fishing port with an associated decline in catch per unit effort (CPUE) throughout recent history. We have re-constructed baselines of lobster biomass throughout human history on the archipelago using historic data, the fishery catch record and FEK to permit examination of the potential effects of MRs, effort reduction and co-management (stewardship of catch) to restore stocks. We employed a bioeconomic model using FEK, fishery catch and effort data, underwater survey information, predicted population growth and response to MR protection (no-take) to explore different management strategies and their trade-offs to restore stocks and improve catches. Our findings indicate that increased stewardship of catch coupled with 30% area closure (MR) provides the best option to reconstruct historic baselines. Based on model predictions, continued exploitation under the current management scheme is highly influenced by annual fluctuations and unsustainable. We propose a community-based co-management program to implement a MR in order to rebuild the lobster population while also providing conservation protection for marine species endemic to the Archipelago.  相似文献   

5.
Marine reserves have been advocated worldwide as conservation and fishery management tools. It is argued that they can protect ecosystems and also benefit fisheries via density-dependent spillover of adults and enhanced larval dispersal into fishing areas. However, while evidence has shown that marine reserves can meet conservation targets, their effects on fisheries are less understood. In particular, the basic question of if and over what temporal and spatial scales reserves can benefit fished populations via larval dispersal remains unanswered. We tested predictions of a larval transport model for a marine reserve network in the Gulf of California, Mexico, via field oceanography and repeated density counts of recently settled juvenile commercial mollusks before and after reserve establishment. We show that local retention of larvae within a reserve network can take place with enhanced, but spatially-explicit, recruitment to local fisheries. Enhancement occurred rapidly (2 yrs), with up to a three-fold increase in density of juveniles found in fished areas at the downstream edge of the reserve network, but other fishing areas within the network were unaffected. These findings were consistent with our model predictions. Our findings underscore the potential benefits of protecting larval sources and show that enhancement in recruitment can be manifested rapidly. However, benefits can be markedly variable within a local seascape. Hence, effects of marine reserve networks, positive or negative, may be overlooked when only focusing on overall responses and not considering finer spatially-explicit responses within a reserve network and its adjacent fishing grounds. Our results therefore call for future research on marine reserves that addresses this variability in order to help frame appropriate scenarios for the spatial management scales of interest.  相似文献   

6.
Four marine fish species are among the most important on the world market: cod, salmon, tuna, and sea bass. While the supply of North American and European markets for two of these species – Atlantic salmon and European sea bass – mainly comes from fish farming, Atlantic cod and tunas are mainly caught from wild stocks. We address the question what will be the status of these wild stocks in the midterm future, in the year 2048, to be specific. Whereas the effects of climate change and ecological driving forces on fish stocks have already gained much attention, our prime interest is in studying the effects of changing economic drivers, as well as the impact of variable management effectiveness. Using a process‐based ecological–economic multispecies optimization model, we assess the future stock status under different scenarios of change. We simulate (i) technological progress in fishing, (ii) increasing demand for fish, and (iii) increasing supply of farmed fish, as well as the interplay of these driving forces under different scenarios of (limited) fishery management effectiveness. We find that economic change has a substantial effect on fish populations. Increasing aquaculture production can dampen the fishing pressure on wild stocks, but this effect is likely to be overwhelmed by increasing demand and technological progress, both increasing fishing pressure. The only solution to avoid collapse of the majority of stocks is institutional change to improve management effectiveness significantly above the current state. We conclude that full recognition of economic drivers of change will be needed to successfully develop an integrated ecosystem management and to sustain the wild fish stocks until 2048 and beyond.  相似文献   

7.
Coral reef fishes differ in their intrinsic vulnerability to fishing and rates of population recovery after cessation of fishing. We reviewed life history-based predictions about the vulnerability of different groups of coral reef fish and examined the empirical evidence for different rates of population recovery inside no-take marine reserves to (1) determine if the empirical data agree with predictions about vulnerability and (2) show plausible scenarios of recovery within fully protected reserves and periodically-harvested fishery closures. In general, larger-bodied carnivorous reef fishes are predicted to be more vulnerable to fishing while smaller-bodied species lower in the food web (e.g., some herbivores) are predicted to be less vulnerable. However, this prediction does not always hold true because of the considerable diversity of life history strategies in reef fishes. Long-term trends in reef fish population recovery inside no-take reserves are consistent with broad predictions about vulnerability, suggesting that moderately to highly vulnerable species will require a significantly longer time (decades) to attain local carrying capacity than less vulnerable species. We recommend: (1) expanding age-based demographic studies of economically and ecologically important reef fishes to improve estimates of vulnerability; (2) long term (20–40 years), if not permanent, protection of no-take reserves to allow full population recovery and maximum biomass export; (3) strict compliance to no-take reserves to avoid considerable delays in recovery; (4) carefully controlling the timing and intensity of harvesting periodic closures to ensure long-term fishery benefits; (5) the use of periodically-harvested closures together with, rather than instead of, permanent no-take reserves.  相似文献   

8.
Highly protected marine reserves are areas of the sea in which human disturbances are minimised so that the full natural biological diversity is maintained or, more often, allowed to recover to a more natural state. Europe has very few marine reserves; they are very small and almost all are in the Mediterranean. There are at present no official plans to create effective systems of marine reserves. Europe has many so-called Marine Protected Areas (MPAs). These are marine areas with some extra regulations or planning procedures. MPAs aim to make human activities more efficient and more sustainable. MPAs are user-orientated, knowledge-based, locality-dependent, problem-solving extensions of standard marine planning and management. Marine reserves are quite different. All extractive and potentially disturbing human activities are prohibited. The burden of proof is reversed; no evidence of damage or danger to particular species or habitats is required; all marine life is protected on principle. The concept of marine reserves is simple and practical, but because it is new, different and additional to existing marine management, the idea is seen by many as revolutionary. Basic biological principles and practical experience in many countries make it clear that marine reserves are important to science and education, essential for conservation and useful in resource management. These features apply in all regions and ecosystems. They are independent of climate, biogeography, current human activities and the present management. Representative and viable systems of marine reserves are needed in all regions. Fishing and other human disturbances have been widespread and intensive for so long that it is very difficult to predict the stages of recovery that occur in marine reserves. Furthermore, while some features change rapidly (e.g. numbers of previously targeted species), recovery continues for a long time (e.g. fourth- and fifth-order trophic and structural changes after >25 years). None of this alters the fact that, in scientific terms, marine reserves are controls not manipulations. Such controls are required if scientists are to understand the intrinsic processes and obtain data that are not confounded by human activities (e.g. separating natural variation from fishing effects). No significant progress will be made to establish marine reserves in Europe until scientists speak out strongly and clearly on the issue. We consider it is part of our professional duty as marine biologists to state publicly and frequently the need for a representative, replicated, networked and sustainable system of highly protected marine reserves. We doubt if our grandchildren will accept any excuses if we fail. Guest editors: J. Davenport, G. Burnell, T. Cross, M. Emmerson, R. McAllen, R. Ramsay & E. Rogan Challenges to Marine Ecosystems  相似文献   

9.
The excessive and unsustainable exploitation of our marine resources has led to the promotion of marine reserves as a fisheries management tool. Marine reserves, areas in which fishing is restricted or prohibited, can offer opportunities for the recovery of exploited stock and fishery enhancement. This study examines the impact of the creation of marine protected areas, from both economic and biological perspectives. The consequences of reserve establishment on the long-run equilibrium fish biomass and fishery catch levels are evaluated. We include reserve size as control variable to maximize catch at equilibrium. A continuous time model is used to simulate the effects of reserve size on fishing catch. Fish movements between the sites is assumed to take place at a faster time scale than the variation of the stock and the change of the fleet size. We take advantage of these two time scales to derive a reduced model governing the dynamics of the total fish stock and the fishing effort. Simulation results suggest that the establishment of a protected marine reserve will always lead to an increase in total fish biomass, an optimal size of a marine reserve can achieve to maximize the catch at equilibrium.  相似文献   

10.
Gaines  S.  & Kinlan  B. 《Journal of phycology》2003,39(S1):18-19
In response to major changes in coastal ecosystems in recent decades, a number of governmental agencies around the world are establishing marine reserves – areas where removal of animals or plants is prohibited. Although marine reserves are touted as an ecosystem based approach to management of marine resources, the vast majority of attention on reserve design and impact focuses solely on fish. Although a few species of algae are commercially harvested, most are not. As a result, they will receive little direct benefit from protection by reserves aside from habitat protection. From the perspective of a seaweed, the primary impacts of marine reserves will therefore be indirect through species interactions. We examine the rapidly growing theoretical and empirical literature on marine reserves to anticipate the likely responses of seaweeds to exclusion of fishing. The key issues that emerge are: the trophic level of prior fishing and the dispersal scales of seaweeds relative to their competitors and consumers. The latter issue is poorly understood and poses a key challenge to phycologists if we are to effectively incorporate seaweeds into future marine reserve design.  相似文献   

11.
Abstract Establishing permanent ‘no-take’ marine reserves, areas where fishing and all other extractive activities are prohibited, is an attractive but under-utilized tool for fisheries management. Marine reserves could potentially deal with many fishery problems that are not effectively addressed by other traditional management measures; they also offer numerous social, economic, and scientific benefits not directly related to fisheries. Limited but growing research has shown beneficial biological and economic effects of marine reserves on fisheries. More research is needed, especially at larger scales, to determine the ideal marine reserve size, number and location necessary to optimize fisheries productivity and resource conservation. Sufficient evidence is available to justify the expanded use of marine reserves in an adaptive approach to fisheries management.  相似文献   

12.
Well‐designed and effectively managed networks of marine reserves can be effective tools for both fisheries management and biodiversity conservation. Connectivity, the demographic linking of local populations through the dispersal of individuals as larvae, juveniles or adults, is a key ecological factor to consider in marine reserve design, since it has important implications for the persistence of metapopulations and their recovery from disturbance. For marine reserves to protect biodiversity and enhance populations of species in fished areas, they must be able to sustain focal species (particularly fishery species) within their boundaries, and be spaced such that they can function as mutually replenishing networks whilst providing recruitment subsidies to fished areas. Thus the configuration (size, spacing and location) of individual reserves within a network should be informed by larval dispersal and movement patterns of the species for which protection is required. In the past, empirical data regarding larval dispersal and movement patterns of adults and juveniles of many tropical marine species have been unavailable or inaccessible to practitioners responsible for marine reserve design. Recent empirical studies using new technologies have also provided fresh insights into movement patterns of many species and redefined our understanding of connectivity among populations through larval dispersal. Our review of movement patterns of 34 families (210 species) of coral reef fishes demonstrates that movement patterns (home ranges, ontogenetic shifts and spawning migrations) vary among and within species, and are influenced by a range of factors (e.g. size, sex, behaviour, density, habitat characteristics, season, tide and time of day). Some species move <0.1–0.5 km (e.g. damselfishes, butterflyfishes and angelfishes), <0.5–3 km (e.g. most parrotfishes, goatfishes and surgeonfishes) or 3–10 km (e.g. large parrotfishes and wrasses), while others move tens to hundreds (e.g. some groupers, emperors, snappers and jacks) or thousands of kilometres (e.g. some sharks and tuna). Larval dispersal distances tend to be <5–15 km, and self‐recruitment is common. Synthesising this information allows us, for the first time, to provide species, specific advice on the size, spacing and location of marine reserves in tropical marine ecosystems to maximise benefits for conservation and fisheries management for a range of taxa. We recommend that: (i) marine reserves should be more than twice the size of the home range of focal species (in all directions), thus marine reserves of various sizes will be required depending on which species require protection, how far they move, and if other effective protection is in place outside reserves; (ii) reserve spacing should be <15 km, with smaller reserves spaced more closely; and (iii) marine reserves should include habitats that are critical to the life history of focal species (e.g. home ranges, nursery grounds, migration corridors and spawning aggregations), and be located to accommodate movement patterns among these. We also provide practical advice for practitioners on how to use this information to design, evaluate and monitor the effectiveness of marine reserve networks within broader ecological, socioeconomic and management contexts.  相似文献   

13.
Small-scale fisheries are the primary users of many coastal fish stocks; yet, spatial and temporal patterns of recreational and subsistence fishing in coastal marine ecosystems are poorly documented. Knowledge about the spatial distribution of fishing activities can inform place-based management that balances species conservation with opportunities for recreation and subsistence. We used a participatory mapping approach to document changes in spatial fishing patterns of 80 boat-based recreational anglers from 1950 to 2010 in Puget Sound, Washington, USA. Hand-drawn fishing areas for salmon, rockfishes, flatfishes, and crabs were digitized and analyzed in a Geographic Information System. We found that recreational fishing has spanned the majority of Puget Sound since the 1950s, with the heaviest use limited to small areas of central and northern Puget Sound. People are still fishing in the same places they were decades ago, with relatively little change in specific locations despite widespread declines in salmon and bottomfish populations during the second half of the 20th century. While the location of core fishing areas remained consistent, the size of those areas and intensity of use changed over time. The size of fishing areas increased through the 2000s for salmon but declined after the 1970s and 1980s for rockfishes, flatfishes, and crabs. Our results suggest that the spatial extent of recreational bottomfishing increased after the 1960s, when the availability of motorized vessels and advanced fish-finding technologies allowed anglers to expand their scope beyond localized angling from piers and boathouses. Respondents offered a wide range of reasons for shifts in fishing areas over time, reflecting substantial individual variation in motivations and behaviors. Changes in fishing areas were most commonly attributed to changes in residence and declines in target species and least tied to fishery regulations, despite the implementation of at least 25 marine preserves since 1970.  相似文献   

14.
Coral grouper (genus Plectropomus), or coral trout, are members of the grouper family (Epinephelidae) and are one of the largest and most conspicuous predatory fishes on Indo-Pacific coral reefs. They are highly-prized food fishes that are targeted by subsistence, artisanal, commercial and recreational fisheries throughout their geographic range. Plectropomus have broadly similar diets and habitat requirements to other tropical groupers, but typically have faster growth and higher natural mortality rates. Although these characteristics are expected to increase population turnover and reduce innate vulnerability to environmental and anthropogenic impacts relative to other groupers, many Plectropomus populations are in decline due to the combined effects of overfishing and habitat degradation. In many locations, stock depletion from uncontrolled fishing, particularly at spawning aggregation sites, has resulted in local fishery collapse. Therefore, improved management of wild populations is urgently required to ensure conservation and sustainable fisheries of Plectropomus. Where possible, a combination of no-take marine reserves, market-based management approaches, and allocation or resurrection of property rights systems are recommended to complement conventional fishery management actions that limit catch and effort. Additional investment in aquaculture propagation is also needed to reduce fishing pressure on wild stocks and support management initiatives. This global synthesis of information pertaining to the biology, fisheries and management of Plectropomus will assist in guiding future management actions that are attempting to address a range of stressors including fishing, reef habitat degradation, and the escalating effects of climate change.  相似文献   

15.
Community-based management and the establishment of marine reserves have been advocated worldwide as means to overcome overexploitation of fisheries. Yet, researchers and managers are divided regarding the effectiveness of these measures. The “tragedy of the commons” model is often accepted as a universal paradigm, which assumes that unless managed by the State or privatized, common-pool resources are inevitably overexploited due to conflicts between the self-interest of individuals and the goals of a group as a whole. Under this paradigm, the emergence and maintenance of effective community-based efforts that include cooperative risky decisions as the establishment of marine reserves could not occur. In this paper, we question these assumptions and show that outcomes of commons dilemmas can be complex and scale-dependent. We studied the evolution and effectiveness of a community-based management effort to establish, monitor, and enforce a marine reserve network in the Gulf of California, Mexico. Our findings build on social and ecological research before (1997–2001), during (2002) and after (2003–2004) the establishment of marine reserves, which included participant observation in >100 fishing trips and meetings, interviews, as well as fishery dependent and independent monitoring. We found that locally crafted and enforced harvesting rules led to a rapid increase in resource abundance. Nevertheless, news about this increase spread quickly at a regional scale, resulting in poaching from outsiders and a subsequent rapid cascading effect on fishing resources and locally-designed rule compliance. We show that cooperation for management of common-pool fisheries, in which marine reserves form a core component of the system, can emerge, evolve rapidly, and be effective at a local scale even in recently organized fisheries. Stakeholder participation in monitoring, where there is a rapid feedback of the systems response, can play a key role in reinforcing cooperation. However, without cross-scale linkages with higher levels of governance, increase of local fishery stocks may attract outsiders who, if not restricted, will overharvest and threaten local governance. Fishers and fishing communities require incentives to maintain their management efforts. Rewarding local effective management with formal cross-scale governance recognition and support can generate these incentives.  相似文献   

16.
Designing marine protected areas for migrating fish stocks   总被引:1,自引:0,他引:1  
This paper extends an earlier analysis and presents an investigation of how migration rates affect the performance of various types of management regimes with respect to economic yield and conservation benefits. Particular emphasis is placed on evaluating the geometric design of marine protected areas (MPAs). Earlier results have shown that MPAs are only likely to provide significant benefits when they are used in conjunction with direct catch or effort controls, unless they are quite large and cover most of the resource in question. Conversely, catch and effort controls are far more effective when protected areas are included in the management regime as a buffer against uncertainty. Dispersal of reproduction (recruitment) to other areas is an important expected benefit of protected areas, but such dispersal increases the variability of the effects of the area protection. If fishing mortality rates outside of the protected area are not controlled then dispersal can result in nullifying some of the benefits of the protected area. Similarly, adult migration increases the variability in the results when an area is protected and critically depends upon an overall control of fishing mortality outside the area. For both dispersal and migration separately or in combination, however, there are clear benefits to using MPAs in conjunction with catch or effort controls. These benefits are expressed in terms of long-term yield and recovery probabilities. In addition, short-term yield declines relatively slowly with increasing area protected. Design of the protected areas is seen to be important since using contiguous areas provide greater protection against overfishing than protected areas in isolation.  相似文献   

17.
Evidence that marine reserves enhance resilience to climatic impacts   总被引:1,自引:0,他引:1  
Establishment of marine protected areas, including fully protected marine reserves, is one of the few management tools available for local communities to combat the deleterious effect of large scale environmental impacts, including global climate change, on ocean ecosystems. Despite the common hope that reserves play this role, empirical evidence of the effectiveness of local protection against global problems is lacking. Here we show that marine reserves increase the resilience of marine populations to a mass mortality event possibly caused by climate-driven hypoxia. Despite high and widespread adult mortality of benthic invertebrates in Baja California, Mexico, that affected populations both within and outside marine reserves, juvenile replenishment of the species that supports local economies, the pink abalone Haliotis corrugata, remained stable within reserves because of large body size and high egg production of the protected adults. Thus, local protection provided resilience through greater resistance and faster recovery of protected populations. Moreover, this benefit extended to adjacent unprotected areas through larval spillover across the edges of the reserves. While climate change mitigation is being debated, coastal communities have few tools to slow down negative impacts of global environmental shifts. These results show that marine protected areas can provide such protection.  相似文献   

18.
The scientific and applied problem of the ecosystem approach to the management of marine biological resources arose during the last quarter of the 20th century as a component of the Rational Nature Use Concept. This occurred mostly because the existing fishery rules and concepts of the optimum yield theory, which were introduced in the practice of fishery regulations, have proven to be insufficiently effective to conserve biological resources and provide stability of the fishery resource base. The ecosystem approach to biological-resource management implies a change of the autecological studies of commercial stock units (populations) and the managerial single-species models for the sustainable-sized management, taking the impacts of the fishery on marine ecosystems into account, as well as those of marine ecosystems on the fishery. At present, the ecosystem-based biological-resource management includes a complex of ecological topics and issues, such as biodiversity conservation, effect of climate changes, sustainability of stocks and communities, interspecies relationships, multi-species fishery, conservation of rare species, protection of especially important water bodies and landscapes, biotope degradation, anti-pollution measures, invasive species, ranching aquaculture, genetic diversity, etc. The main current problem, besides insufficient knowledge of many of these issues, is how to practically integrate such a large number of parameters into the management system. Thus, the complicated and long-term problem of ecosystem management of marine biological resources should be solved step-by-step, following the progress in the technical capabilities and concepts of natural processes. As well, certain better-studied elements of the ecosystem approach should be implemented first in the practice of management, while taking the regional specifics into account.  相似文献   

19.
No-take marine reserves can be powerful management tools, but only if they are well designed and effectively managed. We review how ecological guidelines for improving marine reserve design can be adapted based on an area’s unique evolutionary, oceanic, and ecological characteristics in the Gulf of California, Mexico. We provide ecological guidelines to maximize benefits for fisheries management, biodiversity conservation and climate change adaptation. These guidelines include: representing 30% of each major habitat (and multiple examples of each) in marine reserves within each of three biogeographic subregions; protecting critical areas in the life cycle of focal species (spawning and nursery areas) and sites with unique biodiversity; and establishing reserves in areas where local threats can be managed effectively. Given that strong, asymmetric oceanic currents reverse direction twice a year, to maximize connectivity on an ecological time scale, reserves should be spaced less than 50–200 km apart depending on the planktonic larval duration of target species; and reserves should be located upstream of fishing sites, taking the reproductive timing of focal species in consideration. Reserves should be established for the long term, preferably permanently, since full recovery of all fisheries species is likely to take?>?25 years. Reserve size should be based on movement patterns of focal species, although marine reserves?>?10 km long are likely to protect?~?80% of fish species. Since climate change will affect species’ geographic range, larval duration, growth, reproduction, abundance, and distribution of key recruitment habitats, these guidelines may require further modifications to maintain ecosystem function in the future.  相似文献   

20.
 The histories of management of the Sumilon and Apo marine reserves in the Philippines provide a stark contrast. Both began with marine conservation and education programs at the community level, initiated by the Marine Laboratory of Silliman University in 1973 at Sumilon, and in 1976 at Apo. At both islands community support for the “no take” reserve concept evolved gradually, via perceived benefits of increased local fish yields and income from tourism. However, Sumilon reserve has been fished down twice (in 1984,1992), and was still being fished in December 1998. Apo reserve has been protected from fishing successfully for 16 y (1982–1998). The management histories of these two marine reserves are the longest and most detailed available for coral reefs. Scientific data spanning 1976–1993 for Sumilon and 1980–1993 for Apo have provided some of the best available evidence of the utility of such reserves as management tools in coral reef fisheries. At Sumilon, collapse of reserve protection in 1984, after 9.5 y of restrictions on fishing, led to significant declines in reef fisheries yields in areas adjacent to the reserve. At Apo, continuous protection from 1982 to 1993 has led to consistent build up of fish in the reserve and some evidence that local fish yields have increased. The unique time series of scientific data obtained from Sumilon and Apo islands are the result of their distinct management histories. The greater success of management at Apo was due to community support for the reserve concept being actively maintained for the past 16 y. Socio-political factors caused the level of community support for the Sumilon reserve to wax and wane over this period. Both case histories have had a profound effect on marine resource management in the Philippines. As marine reserve models they had substantial influence on the design of the National Integrated Protected Area System (NIPAS). Policy now encourages co-management between the National government and local communities, with a strong emphasis on decentralization of decision making and recognition of local territorial use rights in fisheries. Accepted: 14 May 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号