首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HCO-3 modulation of histamine release and its relationship with the Ca2+ signal were studied in serosal rat mast cells. Histamine release was induced by Ca2+ mobilizing stimuli, namely compound 48/80, thapsigargin, Ca2+ chelators, ionophore A23187, and PMA and ionophore A23187 in a HCO-3-buffered medium or a HCO-3-free medium. The presence of HCO-3 reduced histamine release by 48/80, Ca2+ chelators, A23187, and PMA/A23187, but increased histamine release induced by thapsigargin. Histamine release by PMA was significantly higher in a HCO-3-free medium than in a HCO-3-free medium, as it was the PMA potentiation of histamine release by A23187. [Ca2+]i changes induced by these drugs were measured in fura-2-loaded mast cells. In thapsigargin and EGTA or BAPTA preincubated mast cells [Ca2+]i increase was higher in a HCO-3-buffered medium than in a HCO-3-free medium in the presence of Ca2+. On the contrary, in compound 48/80 and PMA/A23187 activated mast cells the [Ca2+]i increase is the same both in the presence and in the absence of HCO-3. The effect of HCO-3 on histamine release in serosal rat mast cells depends on the stimulus, but it is not related to the presence of Cl-. In thapsigargin-stimulated mast cells the effect of HCO-3 on histamine release may be related to the Ca2+ signal, but in compound 48/80, EGTA, and PMA/A23187-activated mast cells there is no relationship between intracellular Ca2+ and the inhibitory effect of HCO-3 on histamine release. Additionally, the PKC pathway is implicated in the inhibitory effect of HCO-3 on histamine release, the higher the chelation of calcium rendering the higher the enhancement of the response after adding calcium in the absence of HCO-3.  相似文献   

2.
In this study, we investigated the effect of Amomum xanthiodes (Zingiberaceae) extract (AXE) on the mast cell-mediated allergy model and studied the possible mechanism of action. We found that AXE inhibited compound 48/80-induced systemic reactions and plasma histamine release in mice. Additionally, AXE decreased immunoglobulin E (IgE)-mediated local allergic reactions and passive cutaneous anaphylaxis (PCA), and AXE dose-dependently attenuated the release of histamine from rat peritoneal mast cells (RPMC) activated by compound 48/80 or IgE. The amounts of AXE needed for inhibition of compound 48/80-induced plasma histamine release and PCA were similar to disodium cromoglycate, the known anti-allergic drug. We found that AXE increased the cAMP levels and decreased the compound 48/80-induced intracellular Ca2+. Furthermore, AXE attenuated the phorbol 12-myristate 13-acetate (PMA) plus calcium ionophore (A23187)-stimulated tumor necrosis factor-alpha (TNF-alpha) and interleukin (IL)-6 secretion in human mast cells. The inhibitory effect of AXE on the proinflammatory cytokines was nuclear factor-kappaB (NF-kappaB)-dependent. In addition, AXE decreased PMA plus A23187-induced degradation of IkappaBalphaand the nuclear translocation of NF-kappaB. Our findings provide evidence that AXE inhibits mast cell-derived immediate-type allergic reactions, and that cAMP, intracellular Ca2+, proinflammatory cytokines, and NF-kappaB are involved in these effects.  相似文献   

3.
Changes in intracellular and extracellular rat mast cell adenosine 3':5' monophosphate (cAMP) concentrations during stimulation of histamine release by 48/80 were studied. There was a rapid and progressive fall in intracellular cAMP beginning within 10 sec after the addition of 48/80. The lowest cAMP values were obtained at 10 min, with return to control levels by 30 min. The fall in cAMP was dose-related with progressive decreases in 10-min cAMP measurements as the 48/80 concentration was increased from 0.25 to 1.00 mug/ml. There was a graded increase in histamine release over the same concentration range. Attempts to demonstrate significant amounts of cAMP in the medium during 48/80 stimulation were unsuccessful, indicating that the changes in cAMP intracellularly are not due to altered cellular permeability. There was a general correlation between the ability of pharmacologic agents to sustain high intracellular levels of cAMP in the presence of 48/80, and inhibition of histamine release. Theophylline (20 mM) which increased cAMP levels 2- 3-fold prevented a detectable decrease in cAMP after 1 mug/ml 48/80 (measured at 10 min) and almost completely inhibited histamine release. Prostaglandin E1 (27 muM) also raised cAMP levels, decreased the 48/80-induced fall in cAMP (by 42%). Epinephrine increased mast cell cAMP levels, but did not prevent the subsequent 48/80-induced decrease in cAMP and did not inhibit histamine release. Carbamylcholine (1 nM), adenine (1 muM), and diazoxide (10 muM) lowered mast cell cAMP and potentiated 48/80 induced release. In view of previous studies from this laboratory indicating that 48/80 stimulates mast cell phosphodiesterase, it seems likely that the 48/80-induced fall in cAMP is due, at least in part, to increased cAMP destruction. Since agents which prevent the fall in cAMP inhibit histamine release, it is apparent that cAMP is an important part of the control mechanism of histamine secretion. On the other hand, it cannot be concluded that a decrease in cAMP alone is sufficient to produce a response since carbamylcholine, diazoxide, and adenine which lower cAMP do not alter histamine release unless 48/80 is also present.  相似文献   

4.
Human lymphocytes and rat mast cells, two non-excitable cellular models, were used to investigate membrane potential changes accompanying Ca2+ signals. Cells were stimulated with agents known to induce both Ca2+ release from internal stores and influx of extracellular Ca2+, namely thapsigargin, ionomycin and compound 48/80. Thapsigargin and ionomycin were used to activate lymphocytes, while compound 48/80 was used to stimulate mast cells. Membrane potential changes and Ca2+ concentration were monitored with the fluorescent dyes bis-oxonol and fura-2, respectively. In lymphocytes, thapsigargin induced a hyperpolarization temporally correlated with the increase in intracellular Ca2+ concentration. This hyperpolarization is due to activation of a K+ conductance which consists of two phases, a first phase independent on external Ca2+ and a second one blocked in a Ca2+-free medium. Ionomycin induced a Ca2+-dependent depolarization attributed to a massive influx of external Ca2+. On the other hand, stimulation of mast cells with compound 48/80 produced a fast hyperpolarization and an increase in intracellular Ca2+ levels. Besides different time-courses, this hyperpolarization differs from that induced by thapsigargin in lymphocytes in two aspects, it is mainly due to a Cl(-)-entry current and exit of K+ and it is completely inhibited in the absence of extracellular Ca2+. Compound 48/80-induced histamine release is not related to membrane potential changes.  相似文献   

5.
Rat mast cells preincubated with chelating agent and bathed in calcium-free medium fail to release histamine when stimulated by compound 48/80 and show elevated levels of cyclic AMP. When calcium is added to the bathing medium, these cells undergo a prompt secretory response yet cyclic AMP levels do not fall. It is suggested that the level of cyclic AMP may not regulate the change in membrane permeability believed produced by compound 48/80.  相似文献   

6.
We have previously demonstrated that snake venom phospholipases A2 (PLA2s) and mammalian PLA2s induced inflammatory processes. This effect was correlated with the activity of the enzymes and the release of lipid mediators. We have now determined the role of lysophosphatidylserine (LysoPS) as an inflammatory lipid mediator. Thus, we have studied the possibility that intracellular calcium concentration, phosphoinositide hydrolysis, and the subsequent histamine release in mast cells is due to the action of lysophosphatidylserine. Lysophosphatidylserine-stimulated release of histamine was significantly higher than release by other lysophospholipids. The contribution of increased phospholipase C activity and the intracellular Ca2+ influx were therefore examined. LysoPS increased mast cell calcium concentration, and this increment was associated with phospholipase C activation and release of inositol phosphates. The increase in intracellular calucium and histamine degranulation induced by LysoPS were inhibited by apomorphine. Pretreatment of mast cells with pertussis toxin decreased the secretagogic effect of LysoPS and compound 48/80 without modifying the effect of the ionophore A23187. These results suggest that pertussis toxinsensitive G-protein might be involved in the mast cell degranulation produced by lysophosphatidylserine and allow the increase in phospholipase C activity, thus enhancing intracellular calcium concentration, which then induces exocytosis of histamine. © 1995 Wiley-Liss Inc.  相似文献   

7.
Serosal mast cells (MC) from 6 month old spontaneously hypertensive rats (SHR) were compared to MC from 6 month old Wistar Kyoto rats (WKYR) for their ability to release nitric oxide (NO). The relationship between histamine release and NO-like activity from these cells was also investigated. MC from SHR released less NO-like factor than MC from WKYR as assessed by the use of platelet aggregation and soluble guanylate cyclase activation as bioassays for NO. Sodium nitroprusside elevated the concentrations of cGMP to a similar extent in MC from SHR or WKYR. No changes in the levels of cAMP were observed. The release of histamine from MC induced by compound 48/80 or the calcium ionophore A23187 was greater in MC from SHR than in MC from WKYR. Thus, MC from SHR show a decreased production of NO-like activity which is reflected by a decreased ability to inhibit platelet aggregation. The decreased production of cGMP in the MC leads to an increased stimulated release of histamine.  相似文献   

8.
Cyclic AMP has been implicated in the regulation of the immunologic release of histamine from lung and other tissues and cell types. The mechanism whereby intracellular levels of cAMP are altered during mediator release was investigated. Measurements of histamine, adenylate cyclase, and cAMP phosphodiesterase activities were made in actively and passively sensitized guinea pig lung after challenge with antigen. A transient decrease in basal adenylate cyclase activity occurred which returned to control levels after histamine release. There was no change in cAMP phosphodiesterase activity determined at substrate concentrations of 1 mM and 0.01 mM. The adenylate cyclase response did not occur under the following conditions: 1) incubation of nonsensitized lung with antigen, 2) incubation of sensitized lung with antigen in the absence of extracellular calcium, and 3) incubation of nonsensitized lung with compound 48/80. These observations indicate 1) the adenylate cyclase response and the immunologic release of histamine are intimately related, and 2) the reduction in intracellular levels of cAMP which have been reported to occur during immunologic histamine release are mediated via adenylate cyclase.  相似文献   

9.
T Johansen 《Life sciences》1980,27(5):369-375
The effect of magnesium and EDTA on compound 4880-induced histamine release and adenosine triphosphate (ATP) content of mast cells has been studied. Inhibition of histamine release after preincubation of the cells with or without EDTA in the absence of calcium and the reversal by calcium indicate that calcium is required for compound 4880-induced histamine release. The presence of magnesium potentiate the inhibition caused by the lack of calcium. The inhibition of histamine release is not related to changes in cellular ATP content. The observations with EDTA suggest that calcium may be provided for the release process from intracellular sources.  相似文献   

10.
To explore effects of Forsythia koreana methanol extract (FKME) on mast cell-mediated allergic and inflammatory properties, the effect of FKME was evaluated on compound 48/80-induced systemic anaphylaxis, ear swelling, and anti-dinitrophenyl (DNP) immunoglobulin E (IgE)-induced passive cutaneous anaphylaxis (PCA). In addition, the effect of FKME was investigated on the histamine release from rat peritoneal mast cells (RPMCs) stimulated by compound 48/80, which promotes histamine release. The human mast cell line HMC-1 was stimulated by phorbol 12-myristate 13-acetate plus calcium ionophore A23187. Activated HMC-1 can produce several proinflammatory and chemotactic cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, and IL-8. Cytokine levels in the culture supernatant were measured by an enzyme-linked immunosorbent assay. Cytotoxicity by FKME was determined by a 3-(4,5-dimethylthiazol-2-yl)-diphenyl-tetrazolium bromide (MTT) assay. FKME inhibited compound 48/80-induced systemic anaphylactic shock and ear swelling in mice. When 1 g/kg FKME was pretreated or posttreated with mice, compound 48/80-induced mice morality was 50 and 66.7%, respectively. One gram per kilogram of FKME pretreatment inhibited ear-swelling responses derived from compound 48/80 by 29.75%. A PCA reaction was inhibited by 17.9%. In an in vitro model, FKME (1 mg/ml) inhibited histamine release from the RPMCs by 13.8% and TNF-α, IL-6, and IL-8 production from HMC-1 cells by 71.16% (P < 0.001), 86.72% (P < 0.001), and 44.6%, respectively. However, FKME had no cytotoxic effects on cell viability. In conclusion, FKME inhibited not only systemic anaphylaxis and ear swelling induced by compound 48/80 but also inhibited a PCA reaction induced by anti-DNP IgE in vivo. Treatment with FKME showed significant inhibitory effects on histamine, TNF-α, IL-6, and IL-8 release from mast cells.  相似文献   

11.
Triton X-100 at concentrations preceding those which liberated histamine, produced dose-dependent inhibition of compound 48/80-induced histamine release from rat mast cells. Triton X-100 (0.00002 1/1) depleted ATP content in the mast cells and blocked compound 48/80-induced histamine release. The inhibition of compound 48/80-induced histamine release and depletion of the ATP content in the mast cells was reversed by glucose (10 mmole). It is concluded that inhibition by Triton X-100 of histamine release induced by compound 48/80 is dependent on inhibition of energy production.  相似文献   

12.
Antiallergic effects of Vitis amurensis on mast cell-mediated allergy model   总被引:1,自引:0,他引:1  
In this study, we investigated the effect of the methanol extract of fruits of Vitis amurensis Rupr. (Vitaceae; MEVA) on the mast cell-mediated allergy model and studied the possible mechanism of action. Mast cell-mediated allergic disease is involved in many diseases, such as asthma and sinusitis. The discovery of drugs for the treatment of allergic disease is an important subject in human health. MEVA inhibited compound 48/80-induced systemic reactions and serum histamine release in a dose-dependent manner in mice. MEVA decreased immunoglobulin E (IgE)-mediated local allergic reactions, passive cutaneous anaphylaxis. MEVA dose-dependently reduced histamine release from mast cells activated by compound 48/80 or IgE. The inhibitory effect of MEVA on histamine release was mediated by the modulation of intracellular calcium. In addition, MEVA attenuated the phorbol 12-myristate 13-acetate and calcium ionophore A23187 (PMACI)-stimulated secretion of tumor necrosis factor-alpha, interleukin-6 (IL-6), and IL-8 in human mast cells. The inhibitory effect of MEVA on these proinflammatory cytokines was p38 mitogen-activated protein kinase and nuclear factor-kappaB (NF-kappaB) dependent. Our findings provide evidence that MEVA inhibits mast cell-derived, immediate-type allergic reactions and involvement of proinflammatory cytokines, p38 MAPK, and NF-kappaB in these effects.  相似文献   

13.
It has recently been reported that phycocyanin, a biliprotein found in the blue-green microalgae Spirulina, exerts anti-inflammatory effects in some animal models of inflammation. Taking into account these findings, we decided to elucidate whether phycocyanin might exert also inhibitory effects in the induced allergic inflammatory response and on histamine release from isolated rat mast cells. In in vivo experiments, phycocyanin (100, 200 and 300mg/kg post-orally (p.o.)) was administered 1 h before the challenge with 1 microg of ovalbumin (OA) in the ear of mice previously sensitized with OA. One hour later, myeloperoxidase activity and ear edema were assessed. Phycocyanin significantly reduced both parameters. In separate experiments, phycocyanin (100 and 200 mg/kg p.o.) also reduced the blue spot area induced by intradermal injections of histamine, and the histamine releaser compound 48/80 in rat skin. In concordance with the former results, phycocyanin also significantly reduced histamine release induced by compound 48/80 from isolated peritoneal rat mast cells. The inhibitory effects of phycocyanin were dose dependent. Taken together, our results suggest that inhibition of allergic inflammatory response by phycocyanin is mediated, at least in part, by inhibition of histamine release from mast cells.  相似文献   

14.
Rat lung mast cells were stimulated with drugs with distinct mechanisms of action, namely concanavalin A, compound 48/80 ionophore A23187, in the presence of the beta adrenergic agonist (-)isoproterenol. Cells show a high response when they are stimulated with FNa-calcium. Isoproterenol does not inhibit histamine release induced by any stimuli, but enhances the response to concanavalin A and compound 48/80. Results point to the lack of beta activity on rat lung mast cells.  相似文献   

15.
The direct inhibition of secretion by pancreastatin was investigated in rabbit isolated parietal cells. Pancreastatin exerted no influence on basal aminopyrine uptake. Pancreastatin inhibited histamine stimulated aminopyrine uptake through a decrease in intracellular cAMP. Pancreastatin inhibition of histamine stimulated uptake was blocked in the presence of pertussis toxin. Pancreastatin also inhibited the carbachol stimulated increase in aminopyrine accumulation. However, the effects of pancreastatin on carbachol stimulation were not reversed by pertussis toxin. Pancreastatin did not alter the carbachol induced increase in cytosolic free calcium. Thus, pancreastatin appears to inhibit parietal cell signal transduction at multiple points along the second messenger pathways.  相似文献   

16.
E Alm  G D Bloom 《Life sciences》1982,30(3):213-218
Secretory events in cells in general are accompanied by increased levels of cyclic AMP. In mast cells, however, the pattern is reversed. Thus histamine release is associated with a fall in cAMP. It has been suggested that the lowered levels of cAMP lead to an increase in membrane permeability towards calcium and that an influx of such ions triggers the release mechanisms. It has further been reported that high levels of cAMP inhibit histamine release by decreasing the permeability. However, evidence has now accumulated indicating that this general concept is far too simplistic. Studies are reviewed which imply that there is little or no correlation between histamine release and intracellular levels of cyclic nucleotides. A new working hypothesis with respect to the role of these nucleotides in mast cell secretion is proposed.  相似文献   

17.
A human mast cell line (HMC-1) has been used to study the effect of cytosolic alkaline pH in exocytosis. Compound 48/80, concanavalin A, and thapsigargin do not induce histamine release in HMC-1 cells. Although thapsigargin does not activate histamine release, it does show a large increase in cytosolic Ca(2+), and no change in cytosolic pH. However, when HMC-1 cells were activated with ionomycin, a significant histamine release takes place, and this effect is higher in the presence of thapsigargin. Both drugs show an additive effect on cytosolic Ca(2+) levels. Ammonium chloride (NH(4)Cl) does activate cytosolic alkalinization and histamine release, with no increase in cytosolic Ca(2+). NH(4)Cl does block the release of internal Ca(2+) by thapsigargin, not by ionomycin, and decreases Ca(2+) influx stimulated by these drugs. Under conditions in which the alkalinization induced by NH(4)Cl is blocked by acidification with sodium propionate, histamine release is inhibited. The release of histamine is also observed when NH(4)Cl is added after propionate addition, regardless of the final pH value attained. Our results show that a shift in pH alkaline values, even with final pH below 7.2 is enough to activate histamine release. A shift to less acidic values is a sufficient signal to activate the cells.  相似文献   

18.
Enzymatically isolated dog lung and gut mast cells were stimulated with compound 48/80, ionophore A23187, concanavalin A and FNa-Ca. Cell response elicited by A23187, concanavalin A or 48/80 is almost completely inhibited by isoproterenol. Concanavalin A induced histamine release on gut mast cells is high, indicating an elevated degree of sensitization of these cells. Results point to the existence of beta adrenergic inhibitory activity on dog lung and gut mast cells.  相似文献   

19.
We investigated G protein-stimulated release of ATP from human umbilical vein endothelial cells (HUVECs) using the G protein stimulant compound 48/80. Application of compound 48/80 resulted in dose-dependent ATP evolution from cultured HUVECs. This release was not cytotoxic as demonstrated by a lactate dehydrogenase assay and the ability of the cells to load and retain the viability dye calcein following stimulation. Mastoparan also stimulated release of ATP, further suggesting the process was G-protein initiated. This G protein was insensitive to pertussis toxin and appeared to be of the Gq-subtype. The ATP efflux was completely abolished in the presence of EGTA and thapsigargin signifying a strict Ca2+ dependence. Furthermore, compound 48/80-induced release was significantly decreased in cells pretreated with the phospholipase C inhibitor U73122. Thus, the release pathway appears to proceed through an increase in intracellular Ca2+ via PLC activation. Additionally, the G protein-initiated release was attenuated by pretreatment of the cells with either phorbol ester or indolactam V, both activators of protein kinase C. Finally, ATP release was not affected by treating HUVECs with nitric oxide synthase (NOS) inhibitors or glybenclamide.  相似文献   

20.
The function of contractile system of microtubules on the mechanism of mast cell exocytosis by using colchicine, a depolymerizing alkaloid of the microtubular system, has been studied. The response of histamine release and 45Ca-uptake in isolated rat mast cells treated with colchicine has been determined. The incubation of mast cells in the presence of 10(-8)-10(-3) M colchicine slightly inhibits histamine secretion induced by the stimulant concentration 50 micrograms/ml of compound 48/80 (35 +/- 5%). Similarly colchicine does not significantly affect histamine values spontaneously elicited in unstimulated mast cells; the percentages of secretion are never greater than 10%. However, high doses of this alkaloid are found to markedly inhibit entry of calcium ions into the cell. These results suggest that microtubules do not participate in the secretory process of mast cells, although they significantly decrease calcium uptake. The microtubules might be connected to the membrane, so that the depolymerization of this contractile system could damage the membrane structures through which Ca2+ is transported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号