首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C R Dean  S Neshat    K Poole 《Journal of bacteriology》1996,178(18):5361-5369
PfeR (Regulator) and PfeS (Sensor), members of the superfamily of so-called two-component regulatory protein pairs, are required for the enterobactin-inducible production of the ferric enterobactin receptor (PfeA) in Pseudomonas aeruginosa. A pfeR knockout mutant failed to demonstrate enterobactin-inducible expression of a pfeA-lacZ fusion, indicating that PfeR acts at the level of pfeA gene expression. Consistent with this, PfeR overexpressed in P. aeruginosa bound, in bandshift assays, the promoter region of pfeA. Such binding was enhanced when PfeR-containing extracts were prepared from cells cultured in the presence of enterobactin, consistent with a model of PfeR as an enterobactin-responsive activator of pfeA expression. A region showing homology to the consensus binding sequence for the global iron repressor Fur was identified upstream of pfeR, suggesting that the pfeRS operon is iron regulated. As expected, expression of a pfeR-lacZ fusion in P. aeruginosa was increased under conditions of iron limitation. Enterobactin failed, however, to provide any enhancement of pfeR-lacZ expression under iron-limiting conditions, indicating that PfeR does not positively regulate pfeRS expression. A pfeA knockout mutant demonstrated enterobactin-inducible expression of a pfeA-lacZ fusion, indicating that the receptor is not required for the enterobactin inducibility of pfeA gene expression. Such mutants show growth, albeit reduced, in enterobactin-supplemented iron-limiting minimal medium, indicating that a second route of uptake across the outer membrane exists for ferric enterobactin in P. aeruginosa and may be important for the initial induction of pfeA in response to enterobactin.  相似文献   

2.
3.
Pseudomonas aeruginosa is a ubiquitous bacterium found in many natural and man-made environments. It is also a pathogen for plants, animals, and humans. As for almost all living organisms, iron is an essential nutrient for the growth of P. aeruginosa. The bacterium has evolved complex systems to access iron and maintain its homeostasis to survive in diverse natural and dynamic host environments. To access ferric iron, P. aeruginosa is able to produce two siderophores (pyoverdine and pyochelin), as well as use a variety of siderophores produced by other bacteria (mycobactins, enterobactin, ferrioxamine, ferrichrome, vibriobactin, aerobactin, rhizobactin and schizokinen). Furthermore, it can also use citrate, in addition to catecholamine neuromediators and plant-derived mono catechols, as siderophores. The P. aeruginosa genome also encodes three heme-uptake pathways (heme being an iron source) and one ferrous iron acquisition pathway. This review aims to summarize current knowledge concerning the molecular mechanisms involved in all the iron and heme acquisition strategies used by P. aeruginosa.  相似文献   

4.
5.
Quorum sensing (QS) regulates virulence and biofilm formation in Pseudomonas aeruginosa and other medically relevant bacteria. Human paraoxonases (hPONs) are a family of closely related enzymes with multiple functions, including inactivation of the QS signal molecule in P. aeruginosa. However, there is no direct evidence to show the functions of hPONs on biofilm formation and antibiotic resistance in P. aeruginosa. In the present study, hPONs (hPON1, hPON2, and hPON3) genes were respectively cloned into the pMEKm12 shuttle vector and transformed into P. aeruginosa strain PAO1. Expression of the three recombinant proteins was confirmed by Western blotting, and growth of the recombinant strains was not affected by the hPONs gene expression. Biofilm formation and antibiotics resistance of the hPONs recombinant strains were analyzed. Our results showed that biofilm formation was significantly inhibited in all of the three hPONs recombinant strains. Interestingly, this inhibition can be reverted by addition of the corresponding hPONs polyclonal antibodies in the culture media, further indicating that the inhibition of biofilm formation was due to hPONs protein expression. In addition, we also demonstrated that hPONs expression decreased resistance of P. aeruginosa to gentamicin and ceftazidima, two antibiotics clinically used for the treatment of P. aeruginosa infection.  相似文献   

6.
The opportunistic pathogen Pseudomonas aeruginosa produces type 4 fimbriae which promote adhesion to epithelial cells and are associated with a form of surface translocation called twitching motility. Transposon mutagenesis was used to identify loci required for fimbrial assembly or function by screening for mutants that lack the spreading colony morphology characteristic of twitching motility. Six mutants were isolated that contain transposon insertions upstream of the previously characterized gene pilQ. This region contains four genes: pilM-P, which encode proteins with predicted sizes of 37.9, 22.2, 22.8 and 19.0 kDa, respectively, pilM-P appear to form an operon and to be expressed from a promoter in the intergenic region between pilM and the divergently transcribed upstream gene ponA. PilM-P were found to be required for fimbrial biogenesis by complementation studies using twitching motility and sensitivity to fimbrial-specific phage as indicators of the presence of functional fimbriae. This was confirmed by electron microscopy. PilO and PilP did not have homologues in the sequence databases, but the predicted PilN amino acid sequence displayed similarity to XpsL from Xanthamonas campestris, a protein required for protein secretion. PilP contained a hydro-phobic leader sequence characteristic of lipoproteins, while PilN and PilO have long internal hydrophobic domains which may serve to localize them to the cytoplasmic membrane. PilM has shared sequence motifs with the cell division protein FtsA from Bacillus subtilis and Escherichia coli, as well as the rod-shapedetermining protein MreB from E. coli. These motifs are also conserved in eukaryotic actin, in which they are involved in forming an ATPase domain. Deletion mutants of pilM and pilQ displayed a dominant negative phenotype when transformed into wild-type cells, suggesting that these genes encode proteins involved in multimeric structures.  相似文献   

7.
Aims: To examine the mechanism of ozone‐induced damage to cytoplasmic membrane and cell ultrastructure of Pseudomonas aeruginosa ATCC27853. Methods and Results: Cell suspensions of Ps. aeruginosa ATCC27853 were treated with ozonated water. The leakages of cellular potassium (K+), magnesium (Mg2+) and adenosine triphosphate (ATP), determined by inductively coupled plasma/mass spectrometry (ICP/MS) and a commercial bioluminescence assay kit, were to assess ozone‐induced damage to the cytoplasmic membrane. Maximum leakages of K+ and Mg2+ were attained, respectively, at 0·53 mg l?1 ozone after 0·5 and 2 min with >99% inactivation of culturable bacteria, while that of ATP was achieved at 0·67 mg l?1 ozone after 1 min. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) revealed that treated cells retained intact shapes and cytoplasm agglutinations and vacuoles occurred. Conclusions: Ozone inactivates Ps. aeruginosa ATCC27853 by the combined results of increased cytoplasmic membrane permeability and cytoplasm coagulation, rather than by severe membrane disruption and cell lysis. Significance and Impact of the Study: Pseudomonas aeruginosa is a common water‐related pathogen. These insights into the leakage of cytoplasmic components and ultrastructural changes provide evidence for the mechanisms of ozone‐mediated inactivation.  相似文献   

8.
Pseudomonas aeruginosa is an opportunistic human pathogen producing a variety of virulence factors. One of them is lipopolysaccharide, consisting of endotoxic lipid A and long‐chain O‐antigen polysaccharide, which are connected together through a short linker region, called core oligosaccharide. Chemical structures of the core oligosaccharide are well conserved, with one exception, in that certain strains of P. aeruginosa add a terminal glucose residue (GlcIV) to core by a transferase reaction, due to the activity of a glucosyltransferase, WapB. Here, we investigated the regulation of wapB expression. Our results showed that while the majority of analysed genomes of P. aeruginosa contain wapB, many of these have a conserved identical 5‐nucleotide deletion in the upstream region that inactivated the promoter. This deletion is within the ?10 hexamer that is recognized by a principle sigma factor (RpoD, or σ70) as proven by data from an electromobility shift assay. These results provide the molecular basis of why LPS core of many P. aeruginosa strains is lacking GlcIV. In addition, we show that absence of GlcIV due to an inactive wapB promoter confers resistance to killing by R3‐pyocin, a phage tail‐like bacteriocin of P. aeruginosa.  相似文献   

9.
OprJ, overproduced in nfxB multidrug-resistant strains of Pseudomonas aeruginosa, and OprK, overproduced in the multidrug-resistant strain K385, were demonstrated to be immunologically cross-reactive using an OprJ-specific monoclonal antibody. Treatment of the purified proteins with trypsin or chymotrypsin yielded virtually indistinguishable digestion patterns, and the N-terminal sequence of two trypsin fragments was identical for both proteins, indicating that OprJ and OprK share identity. The N-terminal amino acid sequences were used to facilitate cloning of the oprJ gene on a 5kbp KpnI fragment and a 10kbp BamHI fragment. Nucleotide sequencing of portions of these fragments revealed that oprJ was the terminal gene in a putative three-gene operon, The predicted mexC–mexD–oprJ gene products exhibit homology to the MexA–MexB–OprM components of the multidrug-resistance efflux pump of P. aeruginosa (43–46% identity). Consistent with an implied role for mexC–mexD–oprJ in drug efflux, the mexC–mexD–oprJ-hyperexpressing strain K385 showed reduced accumulation of a variety of antibiotics as compared with its parent strain, and this drug ‘exclusion’ was abrogated by energy inhibitors. The mexC and oprJ products are putative lipoproteins of a molecular mass of 40707 and 51742Da, respectively, while mexD was predicted to encode a protein of 111936Da. Sequencing upstream of mexC revealed the presence of the nfxB gene transcribed divergently from the efflux genes. Overproduction of OprJ and the attendant multiple-antibiotic resistance of strain K385 was shown to result from a point mutation in nfxB, resulting in a H87→R change in the predicted NfxB polypeptide. OprJ overproduction and multidrug resistance in K385 was reversed by the cloned nfxB gene, suggesting that nfxB encodes a repressor of mexC–mexD–oprJ expression. Consistent with this, the cloned nfxB gene repressed synthesis of a mexClacZ fusion in Escherichia coli. nfxB also repressed expression of a nfxBlacZ fusion, indicating that NfxB negatively regulates its own expression. These data indicate that the multidrug resistance of nfxB strains is due to overexpression of an efflux operon, mexC–mexD–oprJ, encoding components of a second efflux pump in P. aeruginosa.  相似文献   

10.
11.
Pseudomonas aeruginosa K407, a mutant lacking a high-affinity 80,000-molecular-weight ferric enterobactin receptor protein (80K protein), exhibited poor growth (small colonies) on iron-deficient succinate minimal medium containing ethylenediamine-di(o-hydroxyphenylacetic acid) (EDDHA) and enterobactin. The gene encoding the ferric enterobactin receptor was cloned by complementation of this growth defect. The complementing DNA was subsequently localized to a 7.1-kilobase-pair (kb) SstI-HindIII fragment which was able to restore synthesis of the 80K protein in strain K407 and also to direct the synthesis of high levels of a protein of the same molecular weight in the outer membranes of Escherichia coli fepA strains MT912 and IR20. Moreover, the fragment complemented the fepA mutation in MT912, restoring both growth in EDDHA-containing medium and enterobactin-dependent uptake of 55Fe3+. Expression of the P. aeruginosa receptor in E. coli IR20 was shown to be regulated by both iron and enterobactin. The complementing DNA was further localized to a 5.3-kb SphI-SstI fragment which was then subjected to deletion analysis to obtain the smallest fragment capable of directing the synthesis of the 80K protein in the outer membrane of strain K407. A 3.2-kb DNA fragment that restored production of the receptor in strain K407 was subsequently isolated. The fragment also directed synthesis of the protein in E. coli MT912 but at levels much lower than those previously observed. Nucleotide sequencing of the fragment revealed an open reading frame (designated pfeA for Pseudomonas ferric enterobactin) of 2,241 bp capable of encoding a 746-amino-acid protein with a molecular weight of 80,967. The PfeA protein showed more than 60% homology to the E. coli FepA protein. Consistent with this, the two proteins showed significant immunological cross-reactivity.  相似文献   

12.
The recA gene of Rhodobacter sphaeroides 2.4.1 has been isolated by complementation of a UV-sensitive RecA mutant of Pseudomonas aeruginosa. Its complete nucleotide sequence consists of 1032 bp, encoding a polypeptide of 343 amino acids. The deduced amino acid sequence displayed highest identity to the RecA proteins from Rhizobium mehloti, Rhizobium phaseoli, and Agrobacterium tumefaciens. An Escherichia coli-like SOS consensus region, which functions as a binding site for the LexA repressor molecule was not present in the 215 by upstream region of the R. sphaeroides recA gene. Nevertheless, by using a recA-lacZ fusion, we have shown that expression of the recA gene of R. sphaeroides is inducible by DNA damage. A recA-defective strain of R. sphaeroides was obtained by replacement of the active recA gene by a gene copy inactived in vitro. The resulting recA mutant exhibited increased sensitivity to UV irradiation, and was impaired in its ability to perform homologous recombination as well as to trigger DNA damage-mediated expression. This is the first recA gene from a Gram-negative bacterium that lacks an E. coli-like SOS box but whose expression has been shown to be DNA damage-inducible and auto-regulated.  相似文献   

13.
Pyoverdin production by Pseudomonas aeruginosa strain 7NSK2 was induced by Zn(II) in the presence of iron. A mutant was isolated in which Zn(II) no longer induced pyoverdin production. The sss gene which was inactivated in this mutant was cloned and sequenced. Its protein sequence showed 50% identity to the XerC protein of Escherichia coli, which is a member of the lambda integrase family of site-specific recombinases. An open reading frame was found upstream of sss whose protein sequence showed strong identity to DapF, the diaminopimelate epimerase. In E. coli, xerC is part of a multicistronic unit that also contains dapF. The sss gene of P. aeruginosa could restore site-specific recombination at cer in an E. coii xerC mutant and the E. coii xerC gene could complement a genomic sss mutation in P. aeruginosa.  相似文献   

14.
15.
The ligand-gated outer membrane porin FepA serves Escherichia coli as the receptor for the siderophore ferric enterobactin. We characterized the ability of seven analogs of enterobactin to supply iron via FepA by quantitatively measuring the binding and transport of their 59Fe complexes. The experiments refuted the idea that chirality of the iron complex affects its recognition by FepA and demonstrated the necessity of an unsubstituted catecholate coordination center for binding to the outer membrane protein. Among the compounds we tested, only ferric enantioenterobactin, the synthetic, left-handed isomer of natural enterobactin, and ferric TRENCAM, which substitutes a tertiary amine for the macrocyclic lactone ring of ferric enterobactin but maintains an unsubstituted catecholate iron complex, were recognized by FepA (Kd ≈ 20 nM). Ferric complexes of other analogs (TRENCAM-3,2-HOPO; TREN-Me-3,2-HOPO; MeMEEtTAM; MeME-Me-3,2-HOPO; K3MECAMS; agrobactin A) with alterations to the chelating groups and different net charge on the iron center neither adsorbed to nor transported through FepA. We also compared the binding and uptake of ferric enterobactin by homologs of FepA from Bordetella bronchisepticus, Pseudomonas aeruginosa, and Salmonella typhimurium in the native organisms and as plasmid-mediated clones expressed in E. coli. All the transport proteins bound ferric enterobactin with high affinity (Kd ≤ 100 nM) and transported it at comparable rates (≥50 pmol/min/109 cells) in their own particular membrane environments. However, the FepA and IroN proteins of S. typhimurium failed to efficiently function in E. coli. For E. coli, S. typhimurium, and P. aeruginosa, the rate of ferric enterobactin uptake was a sigmoidal function of its concentration, indicating a cooperative transport reaction involving multiple interacting binding sites on FepA.  相似文献   

16.
Pseudomonas aeruginosa can express two distinct forms of lipopolysaccharide (LPS), called A-band and B-band. As an attempt to understand the molecular biology of the synthesis and regulation of these LPS antigens, a recombinant plasmid, pFV3, containing genes for A-band expression was isolated previously. In the present study, P. aeruginosa strain PAO1 was mutagenized with transposon Tn5-751 and yielded a B-band-deficient mutant, called ge6. This mutant was mated with a PAO1 genomic library, and transconjugants were screened for complementation of B-band using B-band-specific monoclonal antibody MF15-4. Recombinant plasmid pFV100 was subsequently isolated by its ability to complement B-band expression in ge6. SDS-PAGE analysis of LPS from ge6 and ge6(pFV100) revealed that ge6 was deficient in expression of B-band, while ge6(pFV100) had an LPS profile similar to that of the parent strain PA01. With A-band and B-band genes cloned in separate plasmids, pFV3 and pFV100 respectively, we were able to determine the map location of these LPS genes on the P. aeruginosa PAO1 chromosome using pulsed-field gel electrophoresis. A-band genes mapped at 5.75 to 5.89 Mbp (Spel fragment SpK; Dpnl fragment DpF2), while genes involved with expression of B-band LPS mapped at 1.9 Mbp (Spel fragments SpC, Spl and SpAl; Dpnl fragment DpD) on the 5.9 Mbp chromosome. We also performed initial characterization of a gene involved with synthesis of A-band present on pFV3. We previously reported that recombinant plasmid pFV3 and subcloned plasmid pFV36 complemented A-band synthesis in rd7513, an A? mutant derived from A+ strain AK1401. pFV36 was mutagenized with transposon Tn1000 to reveal a one-kilobase region capable of complementing the expression of A-band in the A? strain rd7513. This region was subcloned as a 1.6 kb Kpnl fragment into plasmid vector pAK1900 and the resulting clone named pFV39. Labelling of proteins encoded by pAK1900 and pFV39 in Escherichia coli maxicells revealed a single unique polypeptide of approximately 37kDa expressed by pFV39. Supernatants from disrupted cells of rd7513(pFV39) and AK1401 converted 14C-labelled-guanosine diphospho (GDP)-D-mannose to GDP-rhamnose, while supernatants from rd7513 did not show synthesis of GDP-rhamnose. The data therefore suggest that conversion of GDP-D-mannose to GDP-rhamnose is required for synthesis of A-band LPS, and that a 37kDa protein is involved in this conversion.  相似文献   

17.
Pseudomonas aeruginosa as an opportunistic pathogen causes lethal infections in immunocompromised individuals. This bacterium possesses a polar flagellum made up of flagellin subunits. Flagella have important roles in motility, chemotaxis, and establishment of P. aeruginosa in acute phase of infections. Isolation, cloning, and expression of flagellin were aimed at in this study. Flagellin gene (fliC) of P. aeruginosa strain 8821M was isolated by PCR and cloned into a pET expression vector. The recombinant flagellin (46 kDa) was overexpressed as inclusion bodies (IBs). IBs were solubilized in guanidine hydrochloride (GuHCl) followed by affinity-purification and renatured using Ni2+-Sepharose resin. Recombinant flagellins reacted with the serum from a rabbit previously immunized with native flagellin. In addition, polyclonal antiserum raised against the recombinant flagellin was shown to significantly inhibit the cell motility of P. aeruginosa strain 8821M in vitro.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号