首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Naturally occurring angiogenesis inhibitors can inhibit different steps of the angiogenic process, such as endothelial cell migration. However, the mechanisms underlying this inhibition have not been elucidated. We demonstrate that migration of human umbilical vein endothelial cells induced by the potent endothelial cell chemoattractant sphingosine 1-phosphate is refractory to inhibition by well-characterized angiogenesis inhibitors such as endostatin and plasminogen-related protein-B. Our data support the contention that for effective blockage of tumor-induced angiogenesis, antagonists of both G protein-coupled receptor signaling and receptor tyrosine kinase signaling must be combined.  相似文献   

2.
Angiogenesis is regulated by both soluble growth factors and cellular interactions with the extracellular matrix (ECM). While cell adhesion via integrins has been shown to be required for angiogenesis, the effects of quantitative changes in cell adhesion and spreading against the ECM remain less clear. Here, we show that angiogenic sprouting in natural and engineered three-dimensional matrices exhibited a biphasic response, with peak sprouting when adhesion to the matrix was limited to intermediate levels. Examining changes in global gene expression to determine a genetic basis for this response, we demonstrate a vascular endothelial growth factor (VEGF)-induced upregulation of genes associated with vascular invasion and remodeling when cell adhesion was limited, whereas cells on highly adhesive surfaces upregulated genes associated with proliferation. To explore a mechanistic basis for this effect, we turned to focal adhesion kinase (FAK), a central player in adhesion signaling previously implicated in angiogenesis, and its homologue, proline-rich tyrosine kinase 2 (Pyk2). While FAK signaling had some impact, our results suggested that Pyk2 can regulate both gene expression and endothelial sprouting through its enhanced activation by VEGF in limited adhesion contexts. We also demonstrate decreased sprouting of tissue explants from Pyk2-null mice as compared to wild type mice as further confirmation of the role of Pyk2 in angiogenic sprouting. These results suggest a surprising finding that limited cell adhesion can enhance endothelial responsiveness to VEGF and demonstrate a novel role for Pyk2 in the adhesive regulation of angiogenesis.  相似文献   

3.
4.
5.
6.
Notch and its ligands play critical roles in cell fate determination. Expression of Notch and ligand in vascular endothelium and defects in vascular phenotypes of targeted mutants in the Notch pathway have suggested a critical role for Notch signaling in vasculogenesis and angiogenesis. However, the angiogenic signaling that controls Notch and ligand gene expression is unknown. We show here that vascular endothelial growth factor (VEGF) but not basic fibroblast growth factor can induce gene expression of Notch1 and its ligand, Delta-like 4 (Dll4), in human arterial endothelial cells. The VEGF-induced specific signaling is mediated through VEGF receptors 1 and 2 and is transmitted via the phosphatidylinositol 3-kinase/Akt pathway but is independent of mitogen-activated protein kinase and Src tyrosine kinase. Constitutive activation of Notch signaling stabilizes network formation of endothelial cells on Matrigel and enhances formation of vessel-like structures in a three-dimensional angiogenesis model, whereas blocking Notch signaling can partially inhibit network formation. This study provides the first evidence for regulation of Notch/Delta gene expression by an angiogenic growth factor and insight into the critical role of Notch signaling in arteriogenesis and angiogenesis.  相似文献   

7.
8.
Inhibitory effect of full-length human endostatin on in vitro angiogenesis.   总被引:21,自引:0,他引:21  
Endostatin, a C-terminal product of collagen XVIII, is a very powerful angiogenesis inhibitor. In vivo experiments in mice indicate that endostatin dramatically reduces tumor mass without causing the onset of any resistance to the treatment. Recently, a 12-aa shorter human endostatin has been purified from plasma, but is ineffective in in vitro angiogenesis assays. Here we report that the full-length human recombinant endostatin has a potent inhibitory activity in in vitro angiogenesis assays. Two powerful angiogenic factors were used to stimulate endothelial cells: FGF-2 and VEGF-165. Endostatin prevented cell growth both in the basal condition and after stimulation with FGF-2 or VEGF-165. Migration of microvascular endothelial cells toward FGF-2 or VEGF-165 was impaired, both when cells were pretreated with the inhibitor and when endostatin was added together with the growth factors. Furthermore, experiments of inhibition of proliferation performed on nonmicroendothelial cells showed that endostatin was ineffective. This study indicates that human endostatin is a potent angiogenesis inhibitor and suggests its use in human anticancer therapy.  相似文献   

9.
Glioblastoma are rapidly proliferating brain tumors in which hypoxia is readily recognizable, as indicated by focal or extensive necrosis and vascular proliferation, two independent diagnostic criteria for glioblastoma. Gene expression profiling of glioblastoma revealed a gene expression signature associated with hypoxia-regulated genes. The correlated gene set emerging from unsupervised analysis comprised known hypoxia-inducible genes involved in angiogenesis and inflammation such as VEGF and BIRC3, respectively. The relationship between hypoxia-modulated angiogenic genes and inflammatory genes was associated with outcome in our cohort of glioblastoma patients treated within prospective clinical trials of combined chemoradiotherapy. The hypoxia regulation of several new genes comprised in this cluster including ZNF395, TNFAIP3, and TREM1 was experimentally confirmed in glioma cell lines and primary monocytes exposed to hypoxia in vitro. Interestingly, the cluster seems to characterize differential response of tumor cells, stromal cells and the macrophage/microglia compartment to hypoxic conditions. Most genes classically associated with the inflammatory compartment are part of the NF-kappaB signaling pathway including TNFAIP3 and BIRC3 that have been shown to be involved in resistance to chemotherapy.Our results associate hypoxia-driven tumor response with inflammation in glioblastoma, hence underlining the importance of tumor-host interaction involving the inflammatory compartment.  相似文献   

10.
Genome wide DNA expression profiling coupled with antibody array experiments using endostatin to probe the angiogenic signaling network in human endothelial cells were performed. The results reveal constraints on the measuring process that are of a similar kind as those implied by the uncertainty principle of quantum mechanics as described by Werner Heisenberg. We describe this analogy and argue for its heuristic utility in the conceptualization of angiogenesis as an important step in tumor formation.  相似文献   

11.
12.
MAGE-D1 is a member of the MAGE family of proteins, and functions as an adaptor that mediates multiple signaling pathways. The current study for the first time provides evidence for a role of MAGE-D1 in the negative regulation of angiogenic activity in vitro and in vivo models. Our findings showed that MAGE-D1 over-expression significantly suppressed the angiogenic key events such as endothelial cell migration and invasion, adhesion on collagen I substrate, and in vitro differentiation into tube-like structures under both normoxic and hypoxic conditions. MAGE-D1 over-expression also inhibited in vivo angiogenesis in Matrigel plugs that were implanted subcutaneously in mice. With further experiments, we revealed that MAGE-D1 over-expression disrupted actin cytoskeleton organization and lamellipodia formation, and down-regulated HIF-1-dependent gene expression in endothelial cells under hypoxic conditions. These findings demonstrate a new function of MAGE-D1 in the regulation of angiogenesis and provide new insight into the ability of MAGE-D1 to suppress the growth and angiogenic response of endothelial cells by interfering with HIF-1-dependent gene expression, and actin cytoskeleton reorganization, suggesting that MAGE-D1 might be a novel inhibitor of angiogenesis in vitro and in vivo.  相似文献   

13.
Apelin and its G protein-coupled receptor APJ play important roles in blood pressure regulation, body fluid homeostasis, and possibly the modulation of immune responses. Here, we report that apelin-APJ signaling is essential for embryonic angiogenesis and upregulated during tumor angiogenesis. A detailed expression analysis demonstrates that both paracrine and autocrine mechanisms mark areas of embryonic and tumor angiogenesis. Knockdown studies in Xenopus reveal that apelin-APJ signaling is required for intersomitic vessel angiogenesis. Moreover, ectopic expression of apelin but not vascular endothelial growth factor A (VEGFA) is sufficient to trigger premature angiogenesis. In vitro, apelin is non-mitogenic for primary human endothelial cells but promotes chemotaxis. Epistasis studies in Xenopus embryos suggest that apelin-APJ signaling functions downstream of VEGFA. Finally, we show that apelin and APJ expression is highly upregulated in microvascular proliferations of brain tumors such as malignant gliomas. Thus, our results define apelin and APJ as genes of potential diagnostic value and promising targets for the development of a new generation of anti-tumor angiogenic drugs.  相似文献   

14.
Schistosomiasis is one disease produced by helminths, which affect many people in tropical areas. Granuloma formation is the main mechanism involved in the pathogenesis of this disease. Experimental studies have demonstrated angiogenesis (blood vessels formation from pre-existing vessels) in the initial phase of granuloma formation. In the present work, VEGF (vascular endothelial growth factor) levels were analyzed in sera from people diagnosed with different helminthic infections. Patients with schistosomiasis and filariasis had significantly high VEGF levels in compared with healthy people and patients diagnosed with hookworms. In addition, the effects of angiogenesis inhibition using anti-angiogenic factors (endostatin) were evaluated in a schistosomiasis murine model. A lesion decrease was observed in mice infected with Schistosoma mansoni and treated with endostatin. Finally, mechanisms of angiogenesis induction were studied and observed that cercariae antigens stimulated the angiogenic factors by host alveolar macrophages.  相似文献   

15.
Antiangiogenesis signals by endostatin.   总被引:49,自引:0,他引:49  
M Shichiri  Y Hirata 《FASEB journal》2001,15(6):1044-1053
  相似文献   

16.
17.
Endothelial cells lining blood vessels are exposed to various hemodynamic forces associated with blood flow. These include fluid shear, the tangential force derived from the friction of blood flowing across the luminal cell surface, tensile stress due to deformation of the vessel wall by transvascular flow, and normal stress caused by the hydrodynamic pressure differential across the vessel wall. While it is well known that these fluid forces induce changes in endothelial morphology, cytoskeletal remodeling, and altered gene expression, the effect of flow on endothelial organization within the context of the tumor microenvironment is largely unknown. Using a previously established microfluidic tumor vascular model, the objective of this study was to investigate the effect of normal (4 dyn/cm2), low (1 dyn/cm2), and high (10 dyn/cm2) microvascular wall shear stress (WSS) on tumor-endothelial paracrine signaling associated with angiogenesis. It is hypothesized that high WSS will alter the endothelial phenotype such that vascular permeability and tumor-expressed angiogenic factors are reduced. Results demonstrate that endothelial permeability decreases as a function of increasing WSS, while co-culture with tumor cells increases permeability relative to mono-cultures. This response is likely due to shear stress-mediated endothelial cell alignment and tumor-VEGF-induced permeability. In addition, gene expression analysis revealed that high WSS (10 dyn/cm2) significantly down-regulates tumor-expressed MMP9, HIF1, VEGFA, ANG1, and ANG2, all of which are important factors implicated in tumor angiogenesis. This result was not observed in tumor mono-cultures or static conditioned media experiments, suggesting a flow-mediated paracrine signaling mechanism exists with surrounding tumor cells that elicits a change in expression of angiogenic factors. Findings from this work have significant implications regarding low blood velocities commonly seen in the tumor vasculature, suggesting high shear stress-regulation of angiogenic activity is lacking in many vessels, thereby driving tumor angiogenesis.  相似文献   

18.
The Down syndrome critical region 1 (DSCR1) gene (also known as MCIP1, Adapt78) encodes a regulatory protein that binds to calcineurin catalytic A subunit and acts as a regulator of the calcineurin-mediated signaling pathway. We show in this study that DSCR1 is greatly induced in endothelial cells in response to VEGF, TNF-alpha, and A23187 treatment, and that this up-regulation is inhibited by inhibitors of the calcineurin-NFAT (nuclear factor of activated T cells) signaling pathway as well as by PKC inhibition and a Ca(2+) chelator. We hypothesized that the up-regulation of DSCR1 gene expression in endothelial cells could act as an endogenous feedback inhibitor for angiogenesis by regulating the calcineurin-NFAT signaling pathway. Our transient transfection analyses confirm that the overexpression of DSCR1 abrogates the up-regulation of reporter gene expression driven by both the cyclooxygenase 2 and DSCR1 promoters in response to stimulators. Our results indicate that DSCR1 up-regulation may represent a potential molecular mechanism underlying the regulation of angiogenic genes activated by the calcineurin-NFAT signaling pathway in endothelial cells.  相似文献   

19.
Knowledge about biological factors involved in exercise-induced angiogenesis is to date still scanty. The present study aimed to investigate the angiogenic stimulus of resistance exercise with and without superimposed whole-body vibrations. Responses to the exercise regimen before and after a 6-week training intervention were investigated in twenty-six healthy male subjects. Serum was collected at the initial and final exercise sessions and circulating levels of matrix metalloproteinases (MMP) -2 and -9, Vascular Endothelial Growth Factor (VEGF) and endostatin were determined via ELISA. Furthermore, we studied the proliferative effect of serum-treated human umbilical vein endothelial cells in vitro via BrdU-incorporation assay. It was found that circulating MMP-2, MMP-9, VEGF and endostatin levels were significantly elevated (P<0.001) from resting levels after both exercise interventions, with higher post-exercise VEGF concentrations in the resistance exercise (RE) group compared to the resistive vibration exercise (RVE) group. Moreover, RE provoked increased endothelial cell proliferation in vitro and higher post-exercise circulating endostatin concentrations after 6 weeks of training. These effects were elusive in the RVE group. The present findings suggest that resistance exercise leads to a transient rise in circulating angiogenic factors and superimposing vibrations to this exercise type might not further trigger a potential signaling of angiogenic stimulation in skeletal muscle.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号