首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pseudomonas aeruginosa PAK (serotype O6) produces a single polar, glycosylated flagellum composed of a-type flagellin. To determine whether or not flagellin glycosylation in this serotype requires O-antigen genes, flagellin was isolated from the wild type, three O-antigen-deficient mutants wbpL, wbpO, and wbpP, and a wbpO mutant complemented with a plasmid containing a wild-type copy of wbpO. Flagellin from the wbpO mutant was smaller (42 kDa) than that of the wild type (45 kDa), or other mutants strains, and exhibited an altered isoelectric point (pI 4.8) when compared with PAK flagellin (pI 4.6). These differences were because of the truncation of the glycan moiety in the wbpO-flagellin. Thus, flagellin glycosylation in P. aeruginosa PAK apparently requires a functional WbpO but not WbpP. Because WbpP was previously proposed to catalyze a metabolic step in the biosynthesis of B-band O-antigen that precedes the action of WbpO, these results prompted us to reevaluate the two-step pathway catalyzed by WbpO and WbpP. Results from WbpO-WbpP-coupled enzymatic assays showed that either WbpO or WbpP is capable of initiating the two-step pathway; however, the kinetic parameters favored the WbpO reaction to occur first, converting UDP-N-acetyl-D-glucosamine to UDP-N-acetyl-D-glucuronic acid prior to the conversion to UDP-N-acetyl-D-galacturonic acid by WbpP. This is the first report to show that a C4 epimerase could utilize UDP-N-acetylhexuronic acid as a substrate.  相似文献   

2.
B-band lipopolysaccharide is an important virulence factor of the opportunistic pathogen Pseudomonas aeruginosa. WbpP is an enzyme essential for B-band lipopolysaccharide production in serotype O6. Sequence analysis suggests that it is involved in the formation of N-acetylgalacturonic acid. To test this hypothesis, overexpression and biochemical characterization of WbpP were performed. By using spectrophotometric assays and capillary electrophoresis, we show that WbpP is a UDP-GlcNAc C4 epimerase. The K(m) for UDP-GlcNAc and UDP-GalNAc are 197 and 224 micrometer, respectively. At equilibrium, 70% of UDP-GalNAc is converted to UDP-GlcNAc, whereas the yield of the reverse reaction is only 30%. The enzyme can also catalyze the inter-conversion of non-acetylated substrates, although the efficiency of catalysis is significantly lower. Only 15 and 40% of UDP-Glc and UDP-Gal, respectively, are converted at equilibrium. WbpP contains tightly bound NAD(H) and does not require additional cofactors for activity. It exists as a dimer in its native state. This paper is the first report of expression and characterization of a C4 UDP-GlcNAc epimerase at the biochemical level. Moreover, the characterization of the enzymatic function of WbpP will help clarify ambiguous surface carbohydrate biosynthetic pathways in P. aeruginosa and other organisms where homologues of WbpP exist.  相似文献   

3.
Zhang H  Zhou Y  Bao H  Liu HW 《Biochemistry》2006,45(26):8163-8173
Vi antigen, the virulence factor of Salmonella typhi, has been used clinically as a molecular vaccine. TviB and TviC are two enzymes involved in the formation of Vi antigen, a linear polymer consisting of alpha-1,4-linked N-acetylgalactosaminuronate. Protein sequence analysis suggests that TviB is a dehydrogenase and TviC is an epimerase. Both enzymes are expected to be NAD(+) dependent. In order to verify their functions, TviB and TviC were cloned, expressed in Escherichia coli, and characterized. The C-terminal His(6)-tagged TviB protein, purified from soluble cell fractions in the presence of 10 mM DTT, shows UDP-N-acetylglucosamine 6-dehydrogenase activity and is capable of catalyzing the conversion of UDP-N-acetylglucosamine (UDP-GlcNAc) to UDP-N-acetylglucosaminuronic acid (UDP-GlcNAcA) with a k(cat) value of 15.5 +/- 1.0 min(-)(1). The K(m) values of TviB for UDP-GlcNAc and NAD(+) are 77 +/- 9 microM and 276 +/- 52 microM, respectively. TviC, purified as C-terminal hexahistidine-tagged protein, shows UDP-GlcNAcA 4-epimerase and UDP-N-acetylgalactosamine (UDP-GalNAc) 4-epimerase activities. The K(m) values of TviC for UDP-GlcNAcA and UDP-N-acetylgalactosaminuronic acid (UDP-GalNAcA) are 20 +/- 1 microM and 42 +/- 2 microM, respectively. The k(cat) value for the conversion of UDP-GlcNAcA to UDP-GalNAcA is 56.8 +/- 0.5 min(-)(1), while that for the reverse reaction is 39.1 +/- 0.6 min(-)(1). These results show that the biosynthesis of Vi antigen is initiated by the TviB-catalyzed oxidation of UDP-GlcNAc to UDP-GalNAc, followed by the TviC-catalyzed epimerization at C-4 to form UDP-GalNAcA, which serves as the building block for the formation of Vi polymer. These results set the stage for future in vitro biosynthesis of Vi antigen. These enzymes may also be drug targets to inhibit Vi antigen production.  相似文献   

4.
Pseudomonas aeruginosa and Bordetella pertussis produce lipopolysaccharide (LPS) that contains 2,3-diacetamido-2,3-dideoxy-D-mannuronic acid (D-ManNAc3NAcA). A five-enzyme biosynthetic pathway that requires WbpA, WbpB, WbpE, WbpD, and WbpI has been proposed for the production of this sugar in P. aeruginosa, based on analysis of genes present in the B-band LPS biosynthesis cluster. In the analogous B. pertussis cluster, homologs of wbpB to wbpI were present, but a putative dehydrogenase gene was missing; therefore, the biosynthetic mechanism for UDP-D-ManNAc3NAcA was unclear. Nonpolar knockout mutants of each P. aeruginosa gene were constructed. Complementation analysis of the mutants demonstrated that B-band LPS production was restored to P. aeruginosa knockout mutants when the relevant B. pertussis genes were supplied in trans. Thus, the genes that encode the putative oxidase, transaminase, N-acetyltransferase, and epimerase enzymes in B. pertussis are functional homologs of those in P. aeruginosa. Two candidate dehydrogenase genes were located by searching the B. pertussis genome; these have 80% identity to P. aeruginosa wbpO (serotype O6) and 32% identity to wbpA (serotype O5). These genes, wbpO(1629) and wbpO(3150), were shown to complement a wbpA knockout of P. aeruginosa. Capillary electrophoresis was used to characterize the enzymatic activities of purified WbpO(1629) and WbpO(3150), and mass spectrometry analysis confirmed that the two enzymes are dehydrogenases capable of converting UDP-D-GlcNAc, UDP-D-GalNAc, to a lesser extent, and UDP-D-Glc, to a much lesser extent. Together, these results suggest that B. pertussis produces UDP-D-ManNAc3NAcA through the same pathway proposed for P. aeruginosa, despite differences in the genomic context of the genes involved.  相似文献   

5.
ADP-L-glycero-D-mannoheptose 6-epimerase is required for lipopolysaccharide inner core biosynthesis in several genera of Gram-negative bacteria. The enzyme contains both fingerprint sequences Gly-X-Gly-X-X-Gly and Gly-X-X-Gly-X-X-Gly near its N terminus, which is indicative of an ADP binding fold. Previous studies of this ADP-l-glycero-D-mannoheptose 6-epimerase (ADP-hep 6-epimerase) were consistent with an NAD(+) cofactor. However, the crystal structure of this ADP-hep 6-epimerase showed bound NADP (Deacon, A. M., Ni, Y. S., Coleman, W. G., Jr., and Ealick, S. E. (2000) Structure 5, 453-462). In present studies, apo-ADP-hep 6-epimerase was reconstituted with NAD(+), NADP(+), and FAD. In this report we provide data that shows NAD(+) and NADP(+) both restored enzymatic activity, but FAD could not. Furthermore, ADP-hep 6-epimerase exhibited a preference for binding of NADP(+) over NAD(+). The K(d) value for NADP(+) was 26 microm whereas that for NAD(+) was 45 microm. Ultraviolet circular dichroism spectra showed that apo-ADP-hep 6-epimerase reconstituted with NADP(+) had more secondary structure than apo-ADP-hep 6-epimerase reconstituted with NAD(+). Perchloric acid extracts of the purified enzyme were assayed with NAD(+)-specific alcohol dehydrogenase and NADP(+)-specific isocitric dehydrogenase. A sample of the same perchloric acid extract was analyzed in chromatographic studies, which demonstrated that ADP-hep 6-epimerase binds NADP(+) in vivo. A structural comparison of ADP-hep 6-epimerase with UDP-galactose 4-epimerase, which utilizes an NAD(+) cofactor, has identified the regions of ADP-hep 6-epimerase, which defines its specificity for NADP(+).  相似文献   

6.
Two malic enzymes in Pseudomonas aeruginosa   总被引:1,自引:1,他引:0       下载免费PDF全文
Cell-free extract supernatant fluids of Pseudomonas aeruginosa were shown to lack malic dehydrogenase but possess a nicotinamide adenine dinucleotide (NAD)- or NAD phosphate (NADP)-dependent enzymatic activity, with properties suggesting a malic enzyme (malate + NAD (NADP) --> pyruvate + reduced NAD (NADH) (reduced NADP [NADPH] + CO(2)), in agreement with earlier findings. This was confirmed by determining the nature and stoichiometry of the reaction products. Differences in heat stability and partial purification of these activities demonstrated the existence of two malic enzymes, one specific for NAD and the other for NADP. Both enzymes require bivalent metal cations for activity, Mn(2+) being more effective than Mg(2+). The NADP-dependent enzyme is activated by K(+) and low concentrations of NH(4) (+). Both reactions are reversible, as shown by incubation with pyruvate, CO(2), NADH, or NADPH and Mn(2+). The molecular weights of the enzymes were estimated by gel filtration (270,000 for the NAD enzyme and 68,000 for the NADP enzyme) and by sucrose density gradient centrifugation (about 200,000 and 90,000, respectively).  相似文献   

7.
Pichia stipitis NAD(+)-dependent xylitol dehydrogenase (XDH), a medium-chain dehydrogenase/reductase, is one of the key enzymes in ethanol fermentation from xylose. For the construction of an efficient biomass-ethanol conversion system, we focused on the two areas of XDH, 1) change of coenzyme specificity from NAD(+) to NADP(+) and 2) thermostabilization by introducing an additional zinc atom. Site-directed mutagenesis was used to examine the roles of Asp(207), Ile(208), Phe(209), and Asn(211) in the discrimination between NAD(+) and NADP(+). Single mutants (D207A, I208R, F209S, and N211R) improved 5 approximately 48-fold in catalytic efficiency (k(cat)/K(m)) with NADP(+) compared with the wild type but retained substantial activity with NAD(+). The double mutants (D207A/I208R and D207A/F209S) improved by 3 orders of magnitude in k(cat)/K(m) with NADP(+), but they still preferred NAD(+) to NADP(+). The triple mutant (D207A/I208R/F209S) and quadruple mutant (D207A/I208R/F209S/N211R) showed more than 4500-fold higher values in k(cat)/K(m) with NADP(+) than the wild-type enzyme, reaching values comparable with k(cat)/K(m) with NAD(+) of the wild-type enzyme. Because most NADP(+)-dependent XDH mutants constructed in this study decreased the thermostability compared with the wild-type enzyme, we attempted to improve the thermostability of XDH mutants by the introduction of an additional zinc atom. The introduction of three cysteine residues in wild-type XDH gave an additional zinc-binding site and improved the thermostability. The introduction of this mutation in D207A/I208R/F209S and D207A/I208R/F209S/N211R mutants increased the thermostability and further increased the catalytic activity with NADP(+).  相似文献   

8.
Aminopropionaldehyde dehydrogenase was purified to apparent homogeneity from 1,3-diaminopropane-grown cells of Arthrobacter sp. TMP-1. The native molecular mass and the subunit molecular mass of the enzyme were approximately 20,5000 and 52,000, respectively, suggesting that the enzyme is a tetramer of identical subunits. The apparent Michaelis constant (K(m)) for 1,3-diaminopropane was approximately 3 microM. The enzyme equally used both NAD(+) and NADP(+) as coenzymes. The apparent K(m) values for NAD(+) and NADP(+) were 255 microM and 108 microM, respectively. The maximum reaction rates (V(max)) for NAD(+) and NADP(+) were 102 and 83.3 micromol min(-1) mg(-1), respectively. Some tested aliphatic aldehydes and aromatic aldehydes were inert as substrates. The optimum pH was 8.0-8.5. The enzyme was sensitive to sulfhydryl group-modifying reagents.  相似文献   

9.
The O antigen of lipopolysaccharide in Gram-negative bacteria plays a critical role in bacterium-host interactions, and for pathogenic bacteria it is a major virulence factor. In Pseudomonas aeruginosa serotype O6 one of the initial steps in O-antigen biosynthesis is catalyzed by a saccharide epimerase, WbpP. WbpP is a member of the UDP-hexose 4-epimerase family of enzymes and exists as a homo-dimer. This enzyme preferentially catalyzes the conversion between UDP-GlcNAc and UDPGalNAc above UDP-Glc and UDP-Gal, using NAD(+) as a cofactor. The crystal structures of WbpP in complex with cofactor and either UDP-Glc or UDP-GalNAc were determined at 2.5 and 2.1 A, respectively, which represents the first structural studies of a genuine UDP-GlcNAc 4-epimerase. These structures in combination with complementary mutagenesis studies suggest that the basis for the differential substrate specificity of WbpP is a consequence of the presence of a pliable solvent network in the active site. This information allows for a comprehensive analysis of the relationship between sequence and substrate specificity for UDP-hexose 4-epimerases and enables the formulation of consensus sequences that predict substrate specificity of UDP-hexose 4-epimerases yet to be biochemically characterized. Furthermore, the examination indicates that as little as one residue can dictate substrate specificity. Nonetheless, phylogenetic analysis suggests that this substrate specificity is an evolutionary and highly conserved property within UDP-hexose 4-epimerases.  相似文献   

10.
Transhydrogenase couples the redox reaction between NAD(H) and NADP(H) to proton translocation across a membrane. Coupling is achieved through changes in protein conformation. Upon mixing, the isolated nucleotide-binding components of transhydrogenase (dI, which binds NAD(H), and dIII, which binds NADP(H)) form a catalytic dI(2).dIII(1) complex, the structure of which was recently solved by x-ray crystallography. The fluorescence from an engineered Trp in dIII changes when bound NADP(+) is reduced. Using a continuous flow device, we have measured the Trp fluorescence change when dI(2).dIII(1) complexes catalyze reduction of NADP(+) by NADH on a sub-millisecond scale. At elevated NADH concentrations, the first-order rate constant of the reaction approaches 21,200 s(-1), which is larger than that measured for redox reactions of nicotinamide nucleotides in other, soluble enzymes. Rather high concentrations of NADH are required to saturate the reaction. The deuterium isotope effect is small. Comparison with the rate of the reverse reaction (oxidation of NADPH by NAD(+)) reveals that the equilibrium constant for the redox reaction on the complex is >36. This high value might be important in ensuring high turnover rates in the intact enzyme.  相似文献   

11.
An isocitrate dehydrogenase from Zymomonas mobilis was overexpressed in Escherichia coli as a fused protein (ZmIDH). The molecular mass of recombinant ZmIDH, together with its 6× His partner, was estimated to be 74 kDa by gel filtration chromatography, suggesting a homodimeric structure. The purified recombinant ZmIDH displayed maximal activity at 55 °C, pH 8.0 with Mn(2+) and pH 8.5 with Mg(2+). Heat inactivation studies showed that the recombinant ZmIDH was rapidly inactivated above 40 °C. In addition, the recombinant ZmIDH activity was completely dependent on the divalent cation and Mn(2+) was the most effective cation. The recombinant ZmIDH displayed a 165-fold (k(cat)/K(m)) preference for NAD(+) over NADP(+) with Mg(2+), and a 142-fold greater specificity for NAD(+) than NADP(+) with Mn(2+). Therefore, the recombinant ZmIDH has remarkably high coenzyme preference for NAD(+). The catalytic efficiency (k(cat)/K(m)) of the recombinant ZmIDH was found to be much lower than that of its NADP(+)-dependent counterparts. The poor performance of the recombinant ZmIDH in decarboxylating might be improved by protein engineering techniques, thus making ZmIDH a potential genetic modification target for the development of optimized Z. mobilis strains.  相似文献   

12.
The goal was to determine whether endogenous cytosolic NAD(P)H:quinone oxidoreductase 1 (NQO1) preferentially uses NADPH or NADH in intact pulmonary arterial endothelial cells in culture. The approach was to manipulate the redox status of the NADH/NAD(+) and NADPH/NADP(+) redox pairs in the cytosolic compartment using treatment conditions targeting glycolysis and the pentose phosphate pathway alone or with lactate, and to evaluate the impact on the intact cell NQO1 activity. Cells were treated with 2-deoxyglucose, iodoacetate, or epiandrosterone in the absence or presence of lactate, NQO1 activity was measured in intact cells using duroquinone as the electron acceptor, and pyridine nucleotide redox status was measured in total cell KOH extracts by high-performance liquid chromatography. 2-Deoxyglucose decreased NADH/NAD(+) and NADPH/NADP(+) ratios by 59 and 50%, respectively, and intact cell NQO1 activity by 74%; lactate restored NADH/NAD(+), but not NADPH/NADP(+) or NQO1 activity. Iodoacetate decreased NADH/NAD(+) but had no detectable effect on NADPH/NADP(+) or NQO1 activity. Epiandrosterone decreased NQO1 activity by 67%, and although epiandrosterone alone did not alter the NADPH/NADP(+) or NADH/NAD(+) ratio, when the NQO1 electron acceptor duroquinone was also present, NADPH/NADP(+) decreased by 84% with no impact on NADH/NAD(+). Duroquinone alone also decreased NADPH/NADP(+) but not NADH/NAD(+). The results suggest that NQO1 activity is more tightly coupled to the redox status of the NADPH/NADP(+) than NADH/NAD(+) redox pair, and that NADPH is the endogenous NQO1 electron donor. Parallel studies of pulmonary endothelial transplasma membrane electron transport (TPMET), another redox process that draws reducing equivalents from the cytosol, confirmed previous observations of a correlation with the NADH/NAD(+) ratio.  相似文献   

13.
The O-specific polysaccharide from the lipopolysaccharide of Pseudomonas aeruginosa NCTC 8505 (IATS serotype O:3) consists of a tetrasaccharide repeating unit comprising L-rhamnose, N-acetyl-D-glucosamine (GlcNAc), bacillosamine, and N-acetyl-L-galactosaminuronic acid (L-GalNAcA) (Y. Tahara and S. G. Wilkinson, Eur. J. Biochem. 134:299-304, 1983). Incubation of GlcN or UDP-GlcNAc with cell extracts or EDTA-treated cells of P. aeruginosa NCTC 8505 yielded a mixture of UDP-ManNAc, UDP-GalNAc, UDP-GlcNAcA, UDP-ManNAcA, UDP-L-GalNAc, and UDP-L-GalNAcA. The last two compounds, here identified for the first time, may be intermediates in the synthesis of the L-GalNAcA moiety of the O-specific portion of the lipopolysaccharide of P. aeruginosa.  相似文献   

14.
Clostridial glutamate dehydrogenase mutants, designed to accommodate the 2'-phosphate of disfavoured NADPH, showed the expected large specificity shifts with NAD(P)H. Puzzlingly, similar assays with oxidized cofactors initially revealed little improvement with NADP(+) , although rates with NAD(+) were markedly diminished. This article reveals that the enzyme's discrimination in favour of NAD(+) and against NADP(+) had been greatly underestimated and has indeed been abated by a factor of >?16,000 by the mutagenesis. Initially, stopped-flow studies of the wild-type enzyme showed a burst increase of A(340) with NADP(+) but not NAD(+), with amplitude depending on the concentration of the coenzyme, rather than enzyme. Amplitude also varied with the commercial source of the NADP(+). FPLC, HPLC and mass spectrometry identified NAD(+) contamination ranging from 0.04 to 0.37% in different commercial samples. It is now clear that apparent rates of NADP(+) utilization mainly reflected the reduction of contaminating NAD(+), creating an entirely false view of the initial coenzyme specificity and also of the effects of mutagenesis. Purification of the NADP(+) eliminated the burst. With freshly purified NADP(+), the NAD(+) : NADP(+) activity ratio under standard conditions, previously estimated as 300 : 1, is 11,000. The catalytic efficiency ratio is even higher at 80,000. Retested with pure cofactor, mutants showed marked specificity shifts in the expected direction, for example, 16 200 fold change in catalytic efficiency ratio for the mutant F238S/P262S, confirming that the key structural determinants of specificity have been successfully identified. Of wider significance, these results underline that, without purification, even the best commercial coenzyme preparations are inadequate for such studies.  相似文献   

15.
Woodyer R  van der Donk WA  Zhao H 《Biochemistry》2003,42(40):11604-11614
Homology modeling was used to identify two particular residues, Glu175 and Ala176, in Pseudomonas stutzeri phosphite dehydrogenase (PTDH) as the principal determinants of nicotinamide cofactor (NAD(+) and NADP(+)) specificity. Replacement of these two residues by site-directed mutagenesis with Ala175 and Arg176 both separately and in combination resulted in PTDH mutants with relaxed cofactor specificity. All three mutants exhibited significantly better catalytic efficiency for both cofactors, with the best kinetic parameters displayed by the double mutant, which had a 3.6-fold higher catalytic efficiency for NAD(+) and a 1000-fold higher efficiency for NADP(+). The cofactor specificity was changed from 100-fold in favor of NAD(+) for the wild-type enzyme to 3-fold in favor of NADP(+) for the double mutant. Isoelectric focusing of the proteins in a nondenaturing gel showed that the replacement with more basic residues indeed changed the effective pI of the protein. HPLC analysis of the enzymatic products of the double mutant verified that the reaction proceeded to completion using either substrate and produced only the corresponding reduced cofactor and phosphate. Thermal inactivation studies showed that the double mutant was protected from thermal inactivation by both cofactors, while the wild-type enzyme was protected by only NAD(+). The combined results provide clear evidence that Glu175 and Ala176 are both critical for nicotinamide cofactor specificity. The rationally designed double mutant might be useful for the development of an efficient in vitro NAD(P)H regeneration system for reductive biocatalysis.  相似文献   

16.
Fungal metabolism of biphenyl.   总被引:9,自引:0,他引:9       下载免费PDF全文
gamma-Glutamyl phosphate reductase, the second enzyme of proline biosynthesis, catalyses the formation of l-glutamic acid 5-semialdehyde from gamma-glutamyl phosphate with NAD(P)H as cofactor. It was purified 150-fold from crude extracts of Pseudomonas aeruginosa PAO 1 by DEAE-cellulose chromatography and hydroxyapatite adsorption chromatography. The partially purified preparation, when assayed in the reverse of the biosynthetic direction, utilized l-1-pyrroline-5-carboxylic acid as substrate and reduced NAD(P)(+). The apparent K(m) values were: NAD(+), 0.36mm; NADP(+), 0.31mm; l-1-pyrroline-5-carboxylic acid, 4mm with NADP(+) and 8mm with NAD(+); P(i), 28mm. 3-(Phosphonoacetylamido)-l-alanine, a structural analogue of gamma-glutamyl phosphate, inhibited this enzyme competitively (K(i)=7mm). 1-Pyrroline-5-carboxylate reductase (EC 1.5.1.2), the third enzyme of proline biosynthesis, was purified 56-fold by (NH(4))(2)SO(4) fractionation, Sephadex G-150 gel filtration and DEAE-cellulose chromatography. It reduced l-1-pyrroline-5-carboxylate with NAD(P)H as a cofactor to l-proline. NADH (K(m)=0.05mm) was a better substrate than NADPH (K(m)=0.02mm). The apparent K(m) values for l-1-pyrroline-5-carboxylate were 0.12mm with NADPH and 0.09mm with NADH. The 3-acetylpyridine analogue of NAD(+) at 2mm caused 95% inhibition of the enzyme, which was also inhibited by thio-NAD(P)(+), heavy-metal ions and thiol-blocking reagents. In cells of strain PAO 1 grown on a proline-medium the activity of gamma-glutamyl kinase and gamma-glutamyl phosphate reductase was about 40% lower than in cells grown on a glutamate medium. No repressive effect of proline on 1-pyrroline-5-carboxylate reductase was observed.  相似文献   

17.
L Zhang  B Ahvazi  R Szittner  A Vrielink  E Meighen 《Biochemistry》1999,38(35):11440-11447
The fatty aldehyde dehydrogenase from the luminescent bacterium, Vibrio harveyi (Vh-ALDH), is unique with respect to its high specificity for NADP(+) over NAD(+). By mutation of a single threonine residue (Thr175) immediately downstream of the beta(B) strand in the Rossmann fold, the nucleotide specificity of Vh-ALDH has been changed from NADP(+) to NAD(+). Replacement of Thr175 by a negatively charged residue (Asp or Glu) resulted in an increase in k(cat)/K(m) for NAD(+) relative to that for NADP(+) of up to 5000-fold due to a decrease for NAD(+) and an increase for NADP(+) in their respective Michaelis constants (K(a)). Differential protection by NAD(+) and NADP(+) against thermal inactivation and comparison of the dissociation constants of NMN, 2'-AMP, 2'5'-ADP, and 5'-AMP for these mutants and the wild-type enzyme clearly support the change in nucleotide specificity. Moreover, replacement of Thr175 with polar residues (N, S, or Q) demonstrated that a more efficient NAD(+)-dependent enzyme T175Q could be created without loss of NADP(+)-dependent activity. Analysis of the three-dimensional structure of Vh-ALDH with bound NADP(+) showed that the hydroxyl group of Thr175 forms a hydrogen bond to the 2'-phosphate of NADP(+). Replacement with glutamic acid or glutamine strengthened interactions with NAD(+) and indicated why threonine would be the preferred polar residue at the nucleotide recognition site in NADP(+)-specific aldehyde dehydrogenases. These results have shown that the size and the structure of the residue at the nucleotide recognition site play the key roles in differentiating between NAD(+) and NADP(+) interactions while the presence of a negative charge is responsible for the decrease in interactions with NADP(+) in Vh-ALDH.  相似文献   

18.
This study describes the enzymatic characterization of dihydrolipoamide dehydrogenase (DLDH) from Streptococcus pneumoniae and is the first characterization of a DLDH that carries its own substrate (a lipoic acid covalently attached to a lipoyl protein domain) within its own sequence. Full-length recombinant DLDH (rDLDH) was expressed and compared with enzyme expressed in the absence of lipoic acid (rDLDH(-LA)) or with enzyme lacking the first 112 amino acids constituting the lipoyl protein domain (rDLDH(-LIPOYL)). All three proteins contained 1 mol of FAD/mol of protein, had a higher activity for the conversion of NAD(+) to NADH than for the reaction in the reverse direction, and were unable to use NADP(+) and NADPH as substrates. The enzymes had similar substrate specificities, with the K(m) for NAD(+) being approximately 20 times higher than that for dihydrolipoamide. The kinetic pattern suggested a Ping Pong Bi Bi mechanism, which was verified by product inhibition studies. The protein expressed without lipoic acid was indistinguishable from the wild-type protein in all analyses. On the other hand, the protein without a lipoyl protein domain had a 2-3-fold higher turnover number, a lower K(I) for NADH, and a higher K(I) for lipoamide compared with the other two enzymes. The results suggest that the lipoyl protein domain (but not lipoic acid alone) plays a regulatory role in the enzymatic characteristics of pneumococcal DLDH.  相似文献   

19.
The cytochrome p450-dependent formation and subsequent interconversion of dehydroepiandrosterone (DHEA) metabolites 7 alpha-hydroxy-DHEA (7 alpha-OH-DHEA), 7 beta-hydroxy-DHEA (7 beta-OH-DHEA), and 7-oxo-DHEA was observed in human, pig, and rat liver microsomal fractions. Rat liver mitochondria and nuclei also converted DHEA to 7 alpha-OH-DHEA and 7-oxo-DHEA, but at a lower rate. With NADP(+), and less so with NAD(+), rat, pig, and human liver microsomes and rat liver mitochondria and nuclei converted 7 alpha-OH-DHEA to 7-oxo-DHEA. This reaction was inhibited by corticosterone and the 11 beta-hydroxysteroid dehydrogenase (11 betaHSD) inhibitor carbenoxolone (CBX). The conversion of 7 alpha-OH-DHEA to 7-oxo-DHEA by rat kidney occurred at higher rates with NAD(+) than with NADP(+) and was inhibited by corticosterone. With NADPH, 7-oxo-DHEA was converted to unidentified hydroxylated metabolites and low levels of 7 alpha-OH-DHEA by rat liver microsomes. In contrast, pig liver microsomal fractions reduced 7-oxo-DHEA to nearly equal amounts of 7 alpha- and 7 beta-OH-DHEA, while human fractions produced mainly 7 beta-OH-DHEA. Dehydrocorticosterone inhibited the reduction to both isomers by pig liver microsomes, but only to 7 alpha-OH-DHEA by human microsomes; CBX inhibited both reactions. Rat kidney did not reduce 7-oxo-DHEA with either NADPH or NADH. These results demonstrate that DHEA is first converted in liver to 7 alpha-OH-DHEA, which is subsequently oxidized to 7-oxo-DHEA in both liver and kidney. In liver, interconversion of 7-oxo-DHEA and 7-OH-DHEA isomers is largely catalyzed by 11 betaHSD1, while in kidney 11 betaHSD2 (NAD(+)-dependent) and 11 betaHSD3 (NADP(+)-dependent) likely catalyze the unidirectional oxidation of 7 alpha-hydroxy-DHEA to 7-oxo-DHEA. Distinct species-specific routes of metabolism of DHEA and the interconversion of its metabolites obviate extrapolation of animal studies to humans.  相似文献   

20.
Malic enzymes are widely distributed in nature, and have important biological functions. They catalyze the oxidative decarboxylation of malate to produce pyruvate and CO(2) in the presence of divalent cations (Mg(2+), Mn(2+)). Most malic enzymes have a clear selectivity for the dinucleotide cofactor, being able to use either NAD(+) or NADP(+), but not both. Structural studies of the human mitochondrial NAD(+)-dependent malic enzyme established that malic enzymes belong to a new class of oxidative decarboxylases. Here we report the crystal structure of the pigeon cytosolic NADP(+)-dependent malic enzyme, in a closed form, in a quaternary complex with NADP(+), Mn(2+), and oxalate. This represents the first structural information on an NADP(+)-dependent malic enzyme. Despite the sequence conservation, there are large differences in several regions of the pigeon enzyme structure compared to the human enzyme. One region of such differences is at the binding site for the 2'-phosphate group of the NADP(+) cofactor, which helps define the cofactor selectivity of the enzymes. Specifically, the structural information suggests Lys362 may have an important role in the NADP(+) selectivity of the pigeon enzyme, confirming our earlier kinetic observations on the K362A mutant. Our structural studies also revealed differences in the organization of the tetramer between the pigeon and the human enzymes, although the pigeon enzyme still obeys 222 symmetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号