首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Intracellular localization and enzymatic activities of lysosomal enzymes (cathepsin B,N-acetyl-β-glucosaminidase, and β-glucuronidase) were studied in control rats and after induction of caerulein pancreatitis. In control rats high enzymatic activities were found in the postnuclear 1000g fraction (purified zymogen granules). The corresponding subcellular fraction in pancreatitis animals additionally contained larger secretory vacuoles and autophagosomes and revealed a marked increase in lysosomal enzyme activities. Immunolabelling studies at the ultrastructural level for trypsinogen and cathepsin B demonstrated a colocalization of lysosomal and digestive enzymes in zymogen granules in healthy controls. After induction of pancreatitis immunolabelling still demonstrated a colocalisation of cathepsin B and trypsinogen in secretory granules and newly formed Golgi-derived secretory vacuoles. Concomitantly appearing autophagosomes were, however, only labelled for cathepsin B. It is concluded that segregation of lysosomal and digestive enzymes is incomplete in normal acinar cells resulting in a colocalization in zymogen granules. In pancreatitis colocalization in secretory granules is maintained, whereas only lysosomal enzymes were sufficiently transferred into autophagic vacuoles. No indication for impaired mechanisms of molecular sorting of lysosomal and digestive enzymes in caerulein-induced pancreatitis was found.  相似文献   

2.
3.
Distribution of cytoplasmic vacuoles in purified T and B lymphocytes was analyzed in four cases of aspartylglucosaminuria (AGU) and in one case of neuronal ceroid lipofuscinosis (Spielmeyer-Sj?rgren type). In all cases T cells were significantly more vacuolized than B cells. The ultrastructure of the cytoplasmic vacuoles was consistent with the concept of storage lysosomes. The cytoplasmic vacuoles both in T and B cells similar to abnormal lysosomes seen in the visceral organs in these diseases.  相似文献   

4.
Our aim was to contribute to the understanding of the synthesis, maturation and activation of lysosomal enzymes in an invertebrate cellular model: the endo-lysosomal system (ELS) of mussel digestive cells. The activities of 5′–nucleotidase (AMPase), arylsulphatase (ASase) and acid phosphatase (AcPase), which are transported towards acidic compartments as membrane proteins, were localised by enzyme cytochemistry. AcPase activity was found within large heterolysosomes and residual bodies. ASase was located in endosomes, endolysosomes and heterolysosomes. AcPase and ASase activities were recorded within small vesicles and cisterns of the trans-Golgi network. Conversely, AMPase activity was primarily found in microvilli and apical vesicles and, less conspicuously, in lysosomes and the cis-side of the Golgi and the cis-Golgi network (CGN). In order to understand the processes of synthesis and maturation of these lysosomal enzymes, selected glycoconjugates were localised after lectin cytochemistry. N-acetylglucosamine, mannose and fucose residues were almost ubiquitous in the ELS, as were galactose residues, which were apparently less abundant. N-acetylglucosamine residues occurred in the inner membrane co-localised with mannose residues within the lysosomal and pre-lysosomal acidic compartments. Based on these results, glycosylation and sorting pathways are proposed for both soluble and membrane enzymes. Unlike in mammalian cells, O-glycosylation is fully completed in the CGN, mannose addition in N-glycosylation extends beyond the CGN and galactose addition is fully achieved at the intermediate side. Sorting of soluble lysosomal enzymes, as in crustaceans, is mediated by the indirect transport of membrane-linked proteins with GlcNAc1-P6Man residues that are removed in endolysosomes and heterolysosomes.This work was funded by projects UPV 075.327–EA033/92 and UPV 075.327–EA053/93 of the University of the Basque Country and by a grant to Consolidated Research Groups (UPV/EHU). Y.R. was the recipient of a MEC–DGCYT pre-doctoral fellowship.  相似文献   

5.
6.
7.
8.
Septate junctions between digestive vacuoles in human malacoplakia   总被引:1,自引:0,他引:1  
Typical septate junctions between digestive vacuoles in phagocytic cells of human malacoplakia are described in this paper. Evidence for a honeycomb pattern of hexagonal subunits is presented for their cleft material. Junctions were not observed between other organelles or in cells other than phagocytes. It is assumed that the septate junctions described here may reflect a pathological change in the organization of the membrane components of digestive organelles.  相似文献   

9.
Virtually all of the polyphosphate (PP) present in yeast protoplasts can be recovered in a crude particulate fraction if polybase-induced lysis is used for disrupting the protoplasts. This fraction contains most of the vacuoles, mitochondria and nuclei. Upon the purification of vacuoles the PP is enriched to the same extent as are the vacuolar markers. The amount of PP per vacuole is comparable to the amount of PP per protoplast.The possibility that PP is located in the cell wall is also considered. In the course of the incubation necessary for preparing protoplasts, 20% of the cellular PP is broken down. As this loss of PP occurs to the same extent in the absence of cell wall degrading enzymes, it is inferred that internal PP is metabolically degraded, no PP being located in the cell walls.It is concluded that in Saccharomyces cerevisiae most if not all of the PP is located in the vacuoles, at least under the growth conditions used.Non-Standard Abbreviations PIPES piperazine-N,N-bis-2-ethanolsulfonic acid - DEAE-dextran diethylaminoethyl-dextran  相似文献   

10.
Trafficking of lysosomal enzymes   总被引:37,自引:0,他引:37  
S Kornfeld 《FASEB journal》1987,1(6):462-468
The targeting of lysosomal enzymes from their site of synthesis in the rough endoplasmic reticulum (RER) to their final destination in lysosomes is directed by a series of protein and carbohydrate recognition signals on the enzymes. Lysosomal enzymes, along with secretory and plasma membrane proteins, contain amino-terminal signal sequences that direct the vectorial discharge of the nascent proteins into the lumen of the RER. The three classes of proteins also share a common peptide signal for asparagine glycosylation. The next signal is unique to lysosomal enzymes and permits their high-affinity binding to a specific phosphotransferase that catalyzes the formation of the mannose 6-phosphate recognition marker. This carbohydrate determinant allows binding to specific receptors that translocate the lysosomal enzymes from the Golgi complex to an acidified prelysosomal compartment. There the lysosomal enzymes are discharged for final packaging into lysosomes. Two distinct mannose 6-phosphate receptors have been identified, and cDNAs encoding their entire sequences have been cloned. An analysis of the deduced amino acid sequences of the receptors shows that each is composed of four structural domains: a signal sequence, an extracytoplasmic amino-terminal domain, a hydrophobic membrane-spanning region, and a cytoplasmic domain. The entire extracytoplasmic region of the small receptor is homologous to the 15 repeating domains that constitute the extracytoplasmic portion of the large receptor.  相似文献   

11.
Chromatography of lysosomal enzymes   总被引:4,自引:0,他引:4  
  相似文献   

12.
Tissue biopsies from (1) some chronic inflammatory diseases, (2) a necrotic tumoral process, (3) normal human lymphatic ganglia, and (4) two congenital diseases of the adrenal cortex were selected for study. A block from each biopsy was fixed in glutaraldehyde-paraformaldehyde; a second block was fixed in 10% formaldehyde. In all cases septate junctions between digestive vacuoles did occur in phagocytic cells and some adrenal cortex cells fixed in formaldehyde. These junctions were similar to those reported recently for malakoplakia phagocytes. Consistently, they were not found to attach organelles other than lysosomes derivatives. Both phagocytes and adrenal cortex cells in the material fixed in glutaraldehyde-paraformaldehyde did not display adhesive specializations between digestive vacuoles. This suggests that the septate junctions described herein are artifactuous structures induced by formaldehyde. There is, however, a certain degree of specificity of cells having the capability of developing these septate junctions. It is assumed that the coating material of digestive organelles in phogocytes and some other cells would be responsible for both cell specificity and organelle specificity of the formaldehyde-induced septate junctions.  相似文献   

13.
The digestive-lysosomal system in Tetrahymena has been extensively studied; however, the various vacuole stages and the existence of a required processing period prior to defecation have not been clearly defined. In this study the presence of such a required processing period and the rate of DV defecation in Tetrahymena thermophila were determined. Like the cycle in Paramecium, a digestive cycle in Tetrahymena consisted of two periods: the processing period was 45 min and the defecation period was approximately 2 h, making the complete cycle approximately 3 h. During the defecation period vacuole egestion followed the kinetics of a first-order rate reaction and had a rate constant of 0.0187/min and a t1/2 of 37 min (82 min into the cycle). Using the naphthol AS-TR phosphate-hexazotized rosanilin method to visualize acid phosphatase activity at the light microscopic level, DVs became positive beginning at 10 min. The number of positive DVs increased to a maximum of 13% when DVs were 20-min old and declined to 5-7% beyond 30 min. Although dichloroisoproterenol (DCI) has been reported by others to stimulate vacuole defecation, we found it inhibited the defecation rate. The extent of inhibition depended on the age of the DVs when exposed to DCI. Vacuole formation was completely blocked in cells preexposed to 40 microM DCI for only 10 min; however, upon further exposure, cells could recover from this inhibition. The time required for complete recovery increased with increasing DCI concentrations. If DCI was given to cells simultaneously with latex beads, it was found to exert a dose-dependent inhibitory effect on DV formation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Kodama Y  Fujishima M 《Protoplasma》2005,225(3-4):191-203
Summary. Each symbiotic Chlorella sp. of the ciliate Paramecium bursaria is enclosed in a perialgal vacuole derived from the host digestive vacuole, and thereby the alga is protected from digestion by lysosomal fusion. Algae-free cells can be reinfected with algae isolated from algae-bearing cells by ingestion into digestive vacuoles. To examine the timing of acidification and lysosomal fusion of the digestive vacuoles and of algal escape from the digestive vacuole, algae-free cells were mixed with isolated algae or yeast cells stained with pH indicator dyes at 25 ± 1 °C for 1.5 min, washed, chased, and fixed at various time points. Acidification of the vacuoles and digestion of Chlorella sp. began at 0.5 and 2 min after mixing, respectively. All single green Chlorella sp. that had been present in the host cytoplasm before 0.5 h after mixing were digested by 0.5 h. At 1 h after mixing, however, single green algae reappeared in the host cytoplasm, arising from those digestive vacuoles containing both nondigested and partially digested algae, and the percentage of such cells increased to about 40% at 3 h. At 48 h, the single green algae began to multiply by cell division, indicating that these algae had succeeded in establishing endosymbiosis. In contrast to previously published studies, our data show that an alga can successfully escape from the host’s digestive vacuole after acidosomal and lysosomal fusion with the vacuole has occurred, in order to produce endosymbiosis. Correspondence and reprints: Biological Institute, Faculty of Science, Yamaguchi University, Yoshida 1677-1, Yamaguchi 753-8512, Japan.  相似文献   

15.
Summary Chloroplastic and cytoplasmic forms of pea (Pisum sativum L.) leaf carbonic anhydrase were separated by isoelectric focusing. The two forms have identical pH optima, 7.0 for the hydration reaction and 7.5 for the dehydration reaction, and identical Michaelis constants for CO2, 0.03 M. Neither isozyme is affected by any of several compounds involved in carbon metabolism in the green plant.IV=Anderson and Pacold (1972).  相似文献   

16.
T. R. Ricketts 《Protoplasma》1979,100(3-4):317-322
Summary Studies using cells ofTetrahymena pyriformis GL-9 (which had been grown in and maintained in proteose-peptone/yeast extract medium and then presented first with 0.48 m diameter latex particles for 70 minutes and then with excess carmine particles, or with the particles added in reverse sequence) have shown that there is temporal sequencing in the movement of digestive vacuoles. Under the conditions employed the digestive vacuoles are egested from the cells in approximately the order in which they were formed.  相似文献   

17.
Localization of a flavonoid biosynthetic polyphenol oxidase in vacuoles   总被引:1,自引:0,他引:1  
Aureusidin synthase, a polyphenol oxidase (PPO), specifically catalyzes the oxidative formation of aurones from chalcones, which are plant flavonoids, and is responsible for the yellow coloration of snapdragon (Antirrhinum majus) flowers. All known PPOs have been found to be localized in plastids, whereas flavonoid biosynthesis is thought to take place in the cytoplasm [or on the cytoplasmic surface of the endoplasmic reticulum (ER)]. However, the primary structural characteristics of aureusidin synthase and some of its molecular properties argue against localization of the enzyme in plastids and the cytoplasm. In this study, the subcellular localization of the enzyme in petal cells of the yellow snapdragon was investigated. Sucrose-density gradient and differential centrifugation analyses suggested that the enzyme (the 39-kDa mature form) is not located in plastids or on the ER. Transient assays using a green fluorescent protein (GFP) chimera fused with the putative propeptide of the PPO precursor suggested that the enzyme was localized within the vacuole lumen. We also found that the necessary information for vacuolar targeting of the PPO was encoded within the 53-residue N-terminal sequence (NTPP), but not in the C-terminal sequence of the precursor. NTPP-mediated ER-to-Golgi trafficking to vacuoles was confirmed by means of the co-expression of an NTPP-GFP chimera with a dominant negative mutant of the Arabidopsis GTPase Sar1 or with a monomeric red fluorescent protein (mRFP)-fused Golgi marker (an H+-translocating inorganic pyrophosphatase of Arabidopsis). We identified a sequence-specific vacuolar sorting determinant in the NTPP of the precursor. We have demonstrated the biosynthesis of a flavonoid skeleton in vacuoles. The findings of this metabolic compartmentation may provide a strategy for overcoming the biochemical instability of the precursor chalcones in the cytoplasm, thus leading to the efficient accumulation of aurones in the flower.  相似文献   

18.
19.
This paper reviews the experimental evidence for the proposal that hydrolytic enzymes are introduced into lysosomes of cultured fibroblasts only after secretion and receptormediated recapture.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号