首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is composed of small subunits (SSs) encoded by rbcS on the nuclear genome and large subunits (LSs) encoded by rbcL on the chloroplast genome, and it is localized in the chloroplast stroma. Constitutive knockdown of the rbcS gene reportedly causes a reduction in LS quantity and the level of translation in tobacco and the unicellular green alga Chlamydomonas. Constitutively knockdown of the rbcS gene also causes a reduction in photosynthesis, which influences the expression of photosynthetic genes, including the rbcL gene. Here, to investigate the influence of the knockdown of the rbcS gene on the expression of the rbcL gene under normal photosynthetic conditions, we generated transgenic tobacco plants in which the amount of endogenous rbcS mRNA can be reduced by inducible expression of antisense rbcS mRNA with dexamethasone (DEX) treatment at later stages of growth. In already expanded leaves, after DEX treatment, the level of photosynthesis, RuBisCO quantity and the chloroplast ultrastructure were normal, but the amount of rbcS mRNA was reduced. An in vivo pulse labeling experiment and polysome analysis showed that LSs were translated at the same rate as in wild-type leaves. On the other hand, in newly emerging leaves, the rbcS mRNA quantity, the level of photosynthesis and the quantity of RuBisCO were reduced, and chloroplasts failed to develop. In these leaves, the level of LS translation was inhibited, as previously described. These results suggest that LS translation is regulated in an SS-independent manner in expanded leaves under normal photosynthetic conditions.  相似文献   

9.
10.
11.
12.
13.
14.
Zhu  X.Y.  Chen  G.C.  Zhang  C.L. 《Photosynthetica》2001,39(2):183-189
We compared chloroplast photochemical properties and activities of some chloroplast-localised enzymes in two ecotypes of Phragmites communis, swamp reed (SR, C3-like) and dune reed (DR, C4-like) plants growing in the desert region of north-west China. Electron transport rates of whole electron transport chain and photosystem (PS) 2 were remarkably lower in DR chloroplasts. However, the electron transport rate for PS1 in DR chloroplasts was more than 90 % of the activity similar in the SR chloroplasts. Activities of Mg2+-ATPase and cyclic and non-cyclic photophosphorylations were higher in DR chloroplasts than in the SR ones. The activities of chloroplast superoxide dismutase (SOD) and ascorbate peroxidase (APX), both localised at or near the PS1 complex and serving to scavenge active oxygen around PS1, and the content of ascorbic acid, a special substrate of APX in chloroplast, were all higher in DR chloroplasts. Hence reed, a hydrophytic plant, when subjected to intense selection pressure in dune habitat, elevates its cyclic electron flow around PS1. In consequence, it provides extra ATP required by C4 photosynthesis. Combined high activities of active oxygen scavenging components in DR chloroplasts might improve protection of photosynthetic apparatus, especially PS1, from the damage of reactive oxygen species. This offers new explanation of photosynthetic performance of plant adaptation to long-term natural drought habitat, which is different from those, subjected to the short-term stress treatment or even to the artificial field drought.  相似文献   

15.
16.
17.
18.
19.
The genes encoding the beta (atpB) and epsilon (atpE) subunits of the ATPase from the cyanobacterium Anabaena sp. strain PCC 7120 were cloned, and their sequences were determined. atpB and atpE are each single-copy genes in the Anabaena genome. The two genes are separated by a 96-base-pair intergenic spacer and transcribed as a single mRNA of 2.3 kilobases that initiates approximately 200 base pairs upstream of the atpB coding region. The predicted translation product of atpB has 81 and 68% amino acid identity with the corresponding proteins from spinach chloroplasts and Escherichia coli, respectively. The atpE gene product is less conserved, with 41 and 33% amino acid identity with the corresponding proteins from spinach chloroplasts and E. coli, respectively. The organization of the Anabaena atpB and atpE genes relative to adjacent genes differs from that of both E. coli and chloroplasts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号