首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Vein loading in unifoliate leaves of white bean seedlings exposed to excess Co2+, Ni2+, or Zn2+ for 1 to 4 days was studied by incubating leaf discs in [14C]sucrose. The discs from plants exposed to metal exhibited an increased total uptake of radiosucrose but reduced vein loading. Differences between treatments due to infiltration of disc margins were eliminated by analyzing 7-millimeter discs cut from the center of incubated 14-millimeter discs. Uptake of radiosucrose was greater particularly in discs from seedlings exposed to excess Ni2+ and Zn2+. The effect increased as exposure of the seedlings to metal increased up to 4 days. Autoradiographs showed vein loading in control leaf tissues with most of the radiosucrose accumulating in minor veins and little remaining in the mesophyll. In discs from metal-treated plants, most of the sucrose remained in the mesophyll without accumulating preferentially in the minor veins. This effect was evident within 24 hours of exposure to excess metal and intensified with longer exposures to metal. The inhibition of vein loading was also evident in situ. Both the preferential accumulation of sucrose into the minor veins of control tissues and the accumulation into mesophyll of metal exposed tissues were sensitive to 2,4-dinitrophenol and the blockage of sulfhydryl groups. It is concluded that the inhibition of vein loading contributes markedly to the observed toxicological effects of reduced photoassimilate export and of accumulation of carbohydrates in fully expanded leaves of bean seedlings exposed to excess metal ions.  相似文献   

2.
Turgeon R  Gowan E 《Plant physiology》1990,94(3):1244-1249
Phloem loading in Coleus blumei Benth. leaves cannot be explained by carrier-mediated transport of export sugar from the apoplast into the sieve element-companion cell complex, the mechanism by which sucrose is thought to load in other species that have been studied in detail. Uptake profiles of the export sugars sucrose, raffinose, and stachyose into leaf discs were composed of two components, one saturable and the other not. Saturable (carrier-mediated) uptake of all three sugars was almost completely eliminated by the inhibitor p-chloromercuribenzenesulfonic acid (PCMBS). However, when PCMBS was introduced by transpiration into mature leaves it did not prevent accumulation of 14C-photosynthate in minor veins or translocation of labeled photosynthate from green to nonchlorophyllous regions of the leaf following exposure to 14CO2. The efficacy of introducing inhibitor solutions in the transpiration stream was proven by observing saffranin O and calcofluor white movement in the minor veins and leaf apoplast. PCMBS introduced by transpiration completely inhibited phloem loading in tobacco leaves. Phloem loading in C. blumei was also studied in plasmolysis experiments. The carbohydrate content of leaves was lowered by keeping plants in the dark and then increased by exposing them to light. The solute level of intermediary cells increased in the light (phloem loading) in both PCMBS-treated and control tissues. A mechanism of symplastic phloem loading is proposed for species that translocate the raffinose series of oligosaccharides.  相似文献   

3.
Robert Turgeon 《Planta》1984,161(2):120-128
Mature leaves import limited amounts of nutrient when darkened for prolonged periods. We tested the hypothesis that import is restricted by the apoplast-phloem loading mechanism, ie., as sucrose exits the phloem of minor veins it is retrieved by the same tissue, thus depriving the mesophyll of nutrient. When single, attached, mature leaves of tobacco (Nicotiana tabacum L.) plants were darkened, starch disappeared from the mesophyll cells, indicating that the supply of solute to the mesophyll was limited. Starch was synthesized in mesophyll cells of darkened tissue when sucrose was applied to the apoplast at 0.1–0.3 mM concentration. Efflux from minor veins was studied by incubating leaf discs on [14C]sucrose to load the minor veins and then measuring subsequent 14C release. Efflux was rapid for the first hour and continued at a gradually decreasing rate for over 13 h. Net efflux increased when loading was inhibited by p-chloromercuribenzene-sulfonic acid, anoxia, isotope-trapping, or reduction of the pH gradient. Neither light nor potassium had a significant effect on the rate of labeled sucrose release. The site of labeled sucrose release was investigated by measuring efflux from discs in which sucrose had previously been loaded preferentially by either the minor veins or mesophyll cells. Efflux occurred primarily from minor veins.Abbreviations Mes 2(N-morpholino)ethanesulfonic acid - Mops 3(N-morpholino)propanesulfonic acid - PCMBS p-chloromercuribenzenesulfonic acid - SE-CC sieve element-companion cell complex  相似文献   

4.
The sink-source conversion in developing leaves of tobacco (Nicotiana tabacum L.) was studied to determine whether import termination is caused by the onset of export or is related to achievement of positive carbon balance. Albino shoots were grown in vitro and grafted to detopped stems of green tobacco plants. Termination of import was studied by providing mature leaves of the stock plant with 14CO2 and detecting the presence of labeled nutrient in developing albino leaves by whole-leaf autoradiography. In albino leaves, import terminated progressively in the basipetal direction at the same stage of development as in leaves of green shoots. Starch was not present in the plastids of mesophyll cells of mature albino leaves but starch was synthesized when discs were cut from these leaves and incubated on 3 millimolar sucrose. Import ceased progressively in developing green leaves even when photosynthesis was prevented by darkening. It was concluded that cessation of import does not require achievement of positive carbon balance and is not the direct result of export initiation.

To determine whether vein loading capacity develops in albino leaves, discs were cut from mature leaves and floated on [14C]sucrose solution. Uptake of label into the veins was detected by autoradiography and this uptake was sensitive to the phloem loading inhibitor p-chloromercuribenzenesulfonic acid. However, the amount of label taken up by veins in albino leaves was less than that taken up by veins of mature green leaves.

  相似文献   

5.
Robert Turgeon  Esther Gowan 《Planta》1992,187(3):388-394
Sugar-synthesis and -transport patterns were analyzed in Coleus blumei Benth. leaves to determine where galactinol, raffinose, and stachyose are made and whether phloem loading includes an apoplastic (extracellular) step or occurs entirely within the symplast (plasmodesmata-connected cytoplasm). To clarify the sequence of steps leading to stachyose synthesis, a pulse (15 s) of 14CO2 was given to attached leaves followed by a 5-s to 20-min chase: sucrose was rapidly labeled while galactinol, raffinose and stachyose were labeled more slowly and, within the first few minutes, to approximately the same degree. Leaf tissue was exposed to either 14CO2 or [14C]glucose to identify the sites of synthesis of the different sugars. A 2-min exposure of peeled leaf tissue to [14C]glucose resulted in preferential labeling of the minor veins, as opposed to the mesophyll; galactinol, raffinose and stachyose were more heavily labeled than sucrose in these preparations. In contrast, when leaf tissue was exposed to 14CO2 for 2 min for preferential labeling of the mesophyll, sucrose was more heavily labeled than galactinol, raffinose or stachyose. We conclude that sucrose is synthesized in mesophyll cells while galactinol, raffinose and stachyose are made in the minorvein phloem. Competition experiments were performed to test the possibility that phloem loading involves monosaccharide uptake from the apoplast. Two saturable monosaccharide carriers were identified, one for glucose, galactose and 3-O-methyl glucose, and the other for fructose. Washing the apoplast of peeled leaf pieces with buffer or saturating levels of 3-O-methyl glucose, after providing a pulse of 14CO2, did not inhibit vein loading or change the composition of labeled sugars, and less than 0.5% of the assimilated label was recovered in the incubation medium. These and previous results (Turgeon and Gowan, 1991, Plant Physiol. 94, 1244–1249) indicate that the phloem loading pathway in Coleus is probably symplastic.Abbreviations 3-OMG 3-O-methyl glucose - PCMBS p-chloromercuribenzenesulfonic acid - SE-CCC sieve-element-companion-cell complex This research was supported by National Science Foundation Grant DCB-9104159, U.S. Department of Agriculture Competetive Grant 90000854, and Hatch funds.  相似文献   

6.
Leaflets of Vicia faba L. were pulse labeled with 14CO2 and the kinetics of 14C-sucrose redistribution among individual tissues was followed. Sucrose specific activity in the whole leaf peaked about 15 minutes after labeling and declined with a half-time of about 80 minutes. In one experiment, leaflet discs taken at various times during the 12CO2 chase were quick frozen, freeze-substituted, and embedded in plastic. The tissue was sectioned paradermally and sections of palisade parenchyma, of spongy parenchyma, and of spongy parenchyma that contained veins were collected. Water extracts from these sections were assayed for sucrose specific activity. Sucrose specific activity in the palisade parenchyma was higher than that of the spongy parenchyma and reached a maximum in both tissues 9 to 15 minutes after labeling. Sucrose specific activity initially declined rapidly in the palisade parenchyma followed by a period during which little or no loss occurred. Sucrose specific activity in sections containing veins peaked at 15 minutes with a maximum value substantially higher than either mesophyll tissue, indicating that recently synthesized sucrose was preferentially exported from the mesophyll. Decline of activity in these sections containing veins continued for the remainder of the experiment. Sucrose specific activity in lower epidermal peels peaked several minutes after that of the whole leaflet and remained lower. Sucrose specific activity in upper epidermal peels was variable (probably due to contamination), but the limited data suggest that the sucrose specific activity there reached somewhat higher values than those of the lower epidermis. The experiments indicate that each leaf tissue contains a kinetically identifiable sucrose pool (which we refer to as “histological compartmentation”), and that further compartmentation may occur at the intracellular level. A simulation of leaf sucrose compartmentation is presented.  相似文献   

7.
The contribution to solute uptake by mesophyll cells and veinsin leaf discs, was assessed through a study of uptake in relationto concentration for 14C-labelled substrates (sucrose, glucose,arginine, proline, valine and -aminoisobutyric acid) using isolatedmesophyll cells and stripped leaf discs of Commelina benghalensisL. Uptake per unit fresh weight was higher in mesophyll cellsthan in discs at low substrate concentrations (lower than about0·5 mol m–3). At higher concentrations, uptakeby discs exceeded that by mesophyll cells except for glucoseuptake which was higher in mesophyll cells over the whole concentrationrange. The profiles of uptake versus concentration displayedbiphasic kinetics in mesophyll cells and discs. Comparison ofthe uptake characteristics obtained by iterative fitting confirmedthat the high-affinity systems of uptake prevail in the mesophyllcells, whereas the low-affinity systems are dominant in theveins. The results provide good evidence that, supplementaryto direct vein loading, a pathway via the mesophyll contributesstrongly to the photosynthate loading by veins in stripped discs. Key words: Commelina benghalensis L., amino acid uptake, mesophyll, minor veins, phloem loading, sugar uptake  相似文献   

8.
The nonchlorophyllous (albino) tissue of mature C. blumei leaves is a sink for photoassimilate. Transport from the green to the albino region of the same leaf was inhibited by cold and anoxia. When the green tissue of mature leaves was removed, the remaining albino portion imported labeled translocate from other mature leaves in the phloem. Photoassimilate unloading in the albino region of mature leaves was studied by quantitative autoradiography. The unloading was inhibited by cold but not by anoxia. No labeled photoassimilate could be detected in the free space of mature albino tissue by compartmental efflux analysis as phloem unloading proceeded in a N2 atmosphere, indicating that unloading, may occur by a symplastic pathway as it apparently does in sink leaves of other species. The minor veins of mature albino leaf tissue did not accumulate exogenous [14C]sucrose. Minor veins of green tissue in the same leaves accumulated [14C]sucrose but, in contrast to other species studied to date, this accumulation was insensitive to the inhibitor p-chloromercuribenzensulfonic acid (PCMBS).In its capacity to import and unload photoassimilate, and in the inability, of the minor veins to accumulate exogenous sucrose, the albino region of the mature C. blumei lamina differs from mature albino tobacco leaves and darkened mature leaves of other species. This, together with evidence indicating that phloem loading in C. blumei and other species may occur by different routes and with different sensitivity to PCMBS, indicates that the mechanism of transfer of photoassimilates between veins and surrounding tissues, and the mechanism of the sink-source transition, may not be the same in the leaves of all species. It is speculated that the unusual properties of the C. blumei leaf may be a consequence of the presence, in the minor veins, of intermediary cells, large companion cells connected to the bundle sheath by abundant plasmodesmata.Abbreviation PCMBS p-chloromercuribenzenesulfonic acid  相似文献   

9.
Physiological and transport data are presented in support of a symplastic pathway of phloem unloading in importing leaves of Beta vulgaris L. (`Klein E multigerm'). The sulfhydryl reagent p-chloromercuribenzene sulfonic acid (PCMBS) at concentration of 10 millimolar inhibited uptake of exogenous [14C]sucrose by sink leaf tissue over sucrose concentrations of 0.1 to 5.0 millimolar. Inhibited uptake was 24% of controls. The same PCMBS treatment did not affect import of 14C-label into sink leaves during steady state labeling of a source leaf with 14CO2. Lack of inhibition of import implies that sucrose did not pass through the free space during unloading. A passively transported xenobiotic sugar, l-[14C]glucose, imported by a sink leaf through the phloem, was evenly distributed throughout the leaf as seen by whole-leaf autoradiography. In contrast, l-[14C]glucose supplied to the apoplast through the cut petiole or into a vein of a sink leaf collected mainly in the vicinity of the major veins with little entering the mesophyll. These patterns are best explained by transport through the symplast from phloem to mesophyll.  相似文献   

10.
Autoradiographic, plasmolysis, and 14C-metabolite distribution studies indicate that the majority of exogenously supplied 14C-sucrose enters the phloem directly from the apoplast in source leaf discs of Beta vulgaris. Phloem loading of sucrose is pH-dependent, being markedly inhibited at an apoplast pH of 8 compared to pH 5. Kinetic analyses indicate that the apparent Km of the loading process increases at the alkaline pH while the maximum velocity, Vmax, is pH-independent. The pH dependence of sucrose loading into source leaf discs translates to phloem loading in and translocation of sucrose from intact source leaves. Studies using asymmetrically labeled sucrose 14C-fructosyl-sucrose, show that sucrose is accumulated intact from the apoplast and not hydrolyzed to its hexose moieties by invertase prior to uptake. The results are discussed in terms of sucrose loading being coupled to the co-transport of protons (and membrane potential) in a manner consistent with the chemiosmotic hypothesis of nonelectrolyte transport.  相似文献   

11.
Site of Monoterpene Biosynthesis in Majorana hortensis Leaves   总被引:4,自引:3,他引:1       下载免费PDF全文
Croteau R 《Plant physiology》1977,59(3):519-520
Excised epidermis of Majorana hortensis Moench (sweet marjoram) leaves incorporates label from [U-14C]sucrose into monoterpenes as efficiently as do leaf discs, while mesophyll tissue has only a very limited capacity to synthesize monoterpenes from exogenous sucrose. These results strongly suggest that epidermal cells, presumably the epidermal oil glands, are the primary site of monoterpene biosynthesis in marjoram. Using a leaf disc assay, it was demonstrated that label from [U-14C]sucrose is incorporated into monoterpenes most efficiently in very young leaves.  相似文献   

12.
Sink demand was abruptly changed for an illuminated sugar beet source leaf by shading the six to ten other source leaves. Export of recently assimilated, labeled material underwent a transient increase and then returned to a steady rate approximately equal to the pretreatment rate. Uncovering the darkened leaves caused a transient decrease in export of 14C; following recovery there was a gradual decline. It remains to be established whether export of unlabeled reserves occurs in response to increased sink demand. The possibility that phloem loading increases in response to decreased sieve tube turgor was tested. Phloem loading of exogenous 14C-sucrose increased when turgor in leaf cells was decreased by floating leaf discs on solutions with up to 1 M mannitol osmoticum. However, the increase appeared to be the result of plasmolysis of mesophyll cells possibly resulting from easier access to minor veins via the free space. Phloem loading in leaf discs continued undiminished even though sieve tube-companion cell sucrose concentration exceeded a calculated value of 1 M. Regulation of export to meet sink demand by a direct response of phloem loading to a turgor or concentration set point does not appear to occur. Phloem loading may be promoted by the influx of water which drives mass flow, increasing phloem loading in response to increased velocity of transport.  相似文献   

13.
Vicia faba leaf discs without epidermis were pretreated with parachloromercuribenzenesulfonic acid (PCMBS), rinsed and incubated on [14C]sucrose (1 or 40 millimolar). Those sucrose concentrations were chosen as representative of the apparent uptake system 1 (1 millimolar) and system 2 (40 millimolar) previously characterized. Pretreatment with 0.5 millimolar PCMBS for 20 minutes inhibited system 1 and system 2 by about 70%.

Addition of unlabeled sucrose during PCMBS-pretreatment protected the carrier(s) from the inhibition, whereas glucose, fructose, and sucrose analogs were unable to afford protection. At 1 millimolar [14C]sucrose, the protection resulted in a small but consistent reduction of normal inhibition (from 63 to 45%) for sucrose concentrations of 50 millimolar and more during pretreatment. Contrarily, at 40 millimolar [14C]sucrose, the protection increased linearly with the sucrose concentration in the pretreatment medium, and complete prevention of inhibition was reached for 250 millimolar sucrose.

The protection was not due to exchange diffusion and was located in the veins. Michaelian kinetics indicated that PCMBS and sucrose compete with each other at the active site of the carrier.

Among 14 compounds tested (sugars, amino-acids, hormones, 32P), sucrose uptake was by far the most sensitive to PCMBS. Sucrose preferentially protected its carrier(s) from inhibition. Treatment with 20 millimolar cysteine or 20 millimolar dithioerythreitol reversed inhibition by PCMBS pretreatment.

  相似文献   

14.
Sets of discs were taken from leaves of destarched tobacco plants(Nicotiana tabacum L. cv. xanthii) and floated on solutionsof sucrose or glucose in the dark. Abundant starch was formedin the youngest leaves but there was a marked decline with leafage.By contrast, when replicate sets of discs were floated on waterand illuminated, photosynthetic starch formation was similarin the differently aged leaves. Uptake of sugar, measured bydry weight increases and incorporation of [14C]sucrose, wasnot dependent on leaf age. The possibility that physiologicalchanges, relating to ageing and import/export status of theleaf, regulate the metabolism of sugar to starch was examined.Increasing retention of sugar in the minor veins is likely tobe a major factor. Invertase activities were measured and foundto be similar in the differently aged leaves. Respiration ratesdeclined with increasing leaf age. Speculations concerning changesin selective permeability of the chloroplast membrane are alsodiscussed.  相似文献   

15.
Leaf structure and translocation in sugar beet   总被引:17,自引:12,他引:5       下载免费PDF全文
Anatomical and ultrastructural details of a translocating 10-cm leaf of sugar beet (Beta vulgaris L. var. Klein Wanzleben) were correlated with translocation rate data. The minor veins were found to be 13 times as extensive as the major veins and measure 70 cm/cm2 leaf lamina. Measurements disclosed that a 33-μ length of minor vein services 29 mesophyll cells with the result that translocate moves an average of 73 μ or 2.2 cell diameters during transport from mesophyll cells to a minor vein. High-resolution, freeze-dry autoradiography revealed that assimilates accumulate in organelle-rich cells of the minor vein phloem. Correlation of phloem volume and loading rate for minor veins yielded an uptake rate of 735 μmoles of sucrose per g fresh weight of phloem. The arrangement and structural features of minor veins appeared to be consistent with the concept that vein loading precedes translocation.  相似文献   

16.
Kinetin and carbohydrate metabolism in chinese cabbage   总被引:2,自引:2,他引:0       下载免费PDF全文
The effects of kinetin on starch and sugar levels and on 14CO2 and 32P-orthophosphate labeling patterns of floated Chinese cabbage (Brassica pekinensis) leaf discs were investigated. Kinetin caused gross starch degradation. Neutral sugars were depressed by 30 to 40% in leaf tissue treated with kinetin for 24 hours. 14CO2 labeling of leaf discs pretreated with kinetin for 24 hours showed increased radioactivity in chloroform-soluble material and most sugar phosphates, and a 35 to 40% decrease in radioactivity in the neutral sugars, glucose, sucrose, and fructose. Incorporation into ATP was increased by 40% by kinetin. 32P-Orthophosphate uptake was inhibited 30% by kinetin. When corrected for uptake, kinetin stimulated incorporation into chloroform-soluble material but had little effect on other cell fractions. These results indicate that kinetin mobilizes starch reserves and increases the flow of sugars required for the synthesis of lipids and structural materials in floated discs.  相似文献   

17.
Madore MA 《Plant physiology》1990,93(2):617-622
Mature, variegated leaves of Coleus blumei Benth. contained stachyose and other raffinose series sugars in both green, photosynthetic and white, nonphotosynthetic tissues. However, unlike the green tissues, white tissues had no detectable level of galactinol synthase activity and a low level of sucrose phosphate synthase indicating that stachyose and possibly sucrose present in white tissues may have originated in green tissues. Uptake of exogenously supplied [14C]stachyose or [14C]sucrose into either tissue type showed conventional kinetic profiles indicating combined operation of linear first-order and saturable systems. Autoradiographs of white discs showed no detectable minor vein labelling with [14C]stachyose, but some degree of vein labeling with [14C]sucrose. Autoradiographs of green discs showed substantial vein loading with either sugar. In both tissues, p-chloromercuribenzenesulfonic acid had no effect on the linear component of sucrose or stachyose uptake but inhibited the saturable component. Both tissues contained high levels of invertase, sucrose synthase and α-galactosidase and extensively metabolized exogenously supplied 14C-sugars. In green tissues, label from exogenous sugars was recovered as raffinose-series sugars. In white tissues, exogenous sugars were hydrolysed and converted to amino acids and organic acids. The results indicate that variegated Coleus leaves may be useful for studies on both phloem loading and phloem unloading processes in stachyose-transporting species.  相似文献   

18.
Energetics of Amino Acid Uptake by Vicia faba Leaf Tissues   总被引:7,自引:5,他引:2  
The uptake of [U-14C]threonine and of (α-14C]aminoisobutyrate (α-AIB) by Vicia faba leaf discs is strongly pH dependent (optimum: pH 4.0) and exhibits biphasic saturation kinetics. Kinetics of α-AIB uptake at different pH values indicate that acidic pH values decrease the Km of the carriers while the maximal velocity remains nearly unaffected. Similar results were obtained for both system 1 (from 0.5 to 5 millimolar) and system 2 (from 20 to 100 millimolar).

After addition of amino acids to a medium containing leaf fragments, alkalinizations depending both on the amino acid added and on its concentration have been recorded.

The effects of compounds which increase (fusicoccin) or decrease (uncouplers, ATPase inhibitors, high KCl concentrations) the protonmotive force were studied both on the acidification of the medium and on amino acid uptake by the tissues. There is a close relationship between the time required for the effect of these compounds on the acidification and that needed for inhibition of uptake.

Studies with thiol inhibitors show that 0.1 millimolar N-ethylmaleimide preferentially inhibits uptake by the mesophyll whereas 0.1 millimolar parachloromercuribenzenesulfonate affects rather uptake by the veins.

New evidence was found which added to the electrophysiological data already supporting the occurrence of proton amino acid symport in leaf tissues, particularly in the veins.

  相似文献   

19.
The uptake of sucrose, 3-O-methylglucose (3-O-MeG), and valine were studied in discs and in purified plasma membrane vesicles (PMV) prepared from sugar beet (Beta vulgaris L.) exporting leaves. The uptake capacities of freshly excised leaf discs were compared with the uptake in discs that had been floated for 12 h on a simple medium (aging) and with discs excised from leaves that had been cut from the plant 12 h before the experiments (cutting). After cutting, sucrose uptake amounted to twice the uptake measured in fresh discs, whereas the uptake of 3-O-MeG and valine remained unaffected. In aged leaf discs, there was a general stimulation of uptake, which represented 400, 300, and 400% of the uptake measured in fresh discs for sucrose, 3-O-MeG, and valine, respectively. Sucrose uptake in fresh discs was sensitive to N-ethylmaleimide (NEM), to p-chloromercuribenzenesulfonic acid (PCMBS), and to mersalyl acid (MA). Although cutting induced the appearance of a sucrose uptake system that is poorly sensitive to NEM but sensitive to PCMBS and MA, aging induced the development of an uptake system that is sensitive to NEM but poorly sensitive to PCMBS and MA. Autoradiographs of discs fed with [14C]sucrose show that cutting resulted in an increase of vein labeling with little effect in the mesophyll, whereas aging induced an increase of labeling located mainly in the mesophyll. The data show that cutting is sufficient to induce dramatic and selective changes in the uptake properties of leaf tissues and that the effects of cutting and aging on the uptake of organic solutes are clearly different. Parallel experiments were run with purified PMV prepared from fresh and cut leaves. The uptake of sugars and amino acids was studied after imposition of an artificial proton motive force (pmf). Comparison of the uptake properties of PMV and of leaf tissues indicate that the recovery of the sucrose uptake system in PMV is better than the recovery of the hexose and of the valine uptake systems. As observed with the leaf discs, cutting induced a 2-fold increase of the initial rate of sucrose uptake in PMV but did not affect the uptake of valine and 3-O-MeG. Cutting induced an increase of both Vmax and Km of the sucrose transport system in PMV. Measurements of the pmf imposed on the vesicles indicated that the increase of sucrose uptake induced by cutting was not due to a better integrity of the vesicles. Hexoses did not compete with sucrose for uptake in PMV from fresh and cut leaves, and maltose was a stronger inhibitor of sucrose uptake in PMV from cut leaves than in PMV from fresh leaves. The sensitivity of sucrose uptake to NEM, PCMBS, and MA in PMV from fresh and cut leaves paralleled that described above for the corresponding leaf discs. These data show that (a) the changes induced by cutting on sucrose uptake by leaf discs are due to membrane phenomena and not to the metabolism of sucrose; (b) the study of sucrose uptake with PMB gives a good account of the physiological situation; and (c) the specific effects induced by cutting on the sucrose uptake system are not lost during the preparation of the PMV.  相似文献   

20.
Replacement of mannitol with sucrose decreases the binding of [203Hg]-p-chloromercuribenzenesulphonic acid (PCMBS) to Vicia faba leaf discs without epidermis. This decrease is optimal for 20 minutes on incubation, is concentration-dependent, and is also found with maltose and raffinose. In parallel experiments, the addition of sucrose, maltose, and raffinose during PCMBS pretreatment was shown to increase subsequent uptake of [U-14C]sucrose. In contrast, d- or l-glucose, 3-O-methylglucose, galactose, fructose, palatinose, turanose, or melibiose had no effect either on PCMBS binding or on [14C]sucrose uptake. The sucrose-induced decrease of PCMBS binding is retained after a cold and ionic shock. Measurements of specific activities of membrane fractions prepared from tissues incubated in labeled PCMBS show that the decrease concerns the 120,000 gravity pellet, but that very mild procedures must be chosen to prevent redistribution of label in the supernatant. Altogether, the data provide new support to the hypothesis that the active site of the sucrose carrier contains a group sensitive to PCMBS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号