首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Time- and concentration-course studies were conducted to determine the effects of butachlor (N-[butoxymethyl]-2-chloro-2,6-diethylacetanilide) on photosynthesis, protein synthesis, RNA synthesis, and lipid synthesis using isolated leaf cells of red kidney bean (Phaseolus vulgaris L.). At the 2-h incubation period, butachlor inhibited photosynthesis, protein synthesis, RNA synthesis, and lipid synthesis 99, 99, 96, and 81% respectively at 100 M, and 0, 19, 17, and 40% respectively at 10 M. At 100 M and 15-, 30-, and 60-min incubations, RNA synthesis was inhibited 20, 76 and 90% respectively, and lipid synthesis 35, 48, and 62% respectively; photosynthesis and protein synthesis were inhibited over 90% at all of these time periods. The effects of 50 M butachlor on protein and RNA synthesis in rice (Oryza sativa L.) and barnyardgrass (Echinochloa crusgalli L.) root and shoot segments were also investigated. Protein synthesis was inhibited in both species and to a greater degree in roots (81–90%) than in shoots (55–65%). RNA synthesis was inhibited 33% in barn-yardgrass roots but not significantly in barnyardgrass shoots or either organ of rice.  相似文献   

2.
Time- and concentration-course studies were conducted to determine the effect of bentazon [3-isopropyl-1H-2,l,3,-benzothiadiazin-4(3H)-one 2,2-dioxide] on photosynthesis, RNA synthesis, protein synthesis, and lipid synthesis using enzymatically isolated leaf cells of red kidney bean (Phaseolus vulgaris L.). Photosynthesis and RNA synthesis were inhibited about 75% at 1 μM bentazon at the 30 min treatment period. This was the lowest concentration and shortest time that significantly inhibited any of these four processes. The degree of inhibition of photosynthesis was greater than the degree of inhibition of RNA synthesis at higher concentrations and/or longer time periods. At 10 μM bentazon, protein synthesis and lipid synthesis were also inhibited. Lipid synthesis was stimulated at 0.1 and 1 μM at 120 min.  相似文献   

3.
The search for potent, selective bioherbicides has been the focus of numerous studies for several decades. Developing an economically viable total chemical synthesis procedure has been the challenge for commercial-scale application of these nature-derived chemicals. An efficient and low-cost total synthesis of an allelopathic and antitumor N-trans-cinnamoyltyramine (NTCT) first reported in rice (Oryza sativa L.) was successfully achieved by one-step amidation from trans-cinnamic acid and tyramine. The synthesized NTCT inhibited root and hypocotyl growth of cress (Lepidium sativum L.) and barnyardgrass (Echinochloa crus-galli L.) at concentrations as low as 0.24?μM. The means of ED50 (the effective dose required for 50% plant growth inhibition) levels of the compound on cress and barnyardgrass hypocotyl and root elongations were 0.96 and 0.73?μM, respectively. Potential mechanisms underlying NTCT growth inhibition and its biosynthesis pathway were also suggested. The developed synthesis strategy could permit production of this synthesized allelochemical at a commercial scale as a bioherbicide.  相似文献   

4.
Aqueous methanol extracts of the traditional rice (Oryza sativa) variety Awaakamai, which is known to have the greatest allelopathic activity among Japanese traditional rice varieties, inhibited the growth of roots and shoots of cress (Lepidium sativum), lettuce (Lactuca sativa), timothy (Phleum pratense), Digitaria sanguinalis, Lolium multiflorum and Echinochloa crus-galli. Increasing the extract concentration increased the inhibition, suggesting that the extract of Awaakamai contains growth inhibitory substances. The extract of Awaakamai was purified and two main growth inhibitory substances were isolated and determined by spectral data as blumenol A and grasshopper ketone. Blumenol A and grasshopper ketone, respectively, inhibited the growth of cress shoots and roots at concentrations greater than 10 and 30 μmol/L. The concentrations required for 50% growth inhibition on cress roots and shoots were 84 and 27 μmol/L, respectively, for blumenol A, and 185 and 76 μmol/L, respectively, for grasshopper ketone. These results suggest that blumenol A and grasshopper ketone may contribute to the growth inhibitory effect of Awaakamai and may play an important role in the allelopathy of Awaakamai.  相似文献   

5.
Inhibition of chloroplast development by tentoxin   总被引:1,自引:0,他引:1  
Light-dependent chloroplast development in detached pea shoots was measured in terms of chlorophyll synthesis and the synthesis of Fraction 1 protein. Both synthetic processes were inhibited more than 90% by the fungal metabolite, tentoxin (1 or 10 μg/ml). These results place Pisum sativum in the class of tentoxin-sensitive higher plants. Tentoxin, actinomycin D, lincomycin, D-threo-chloramphenicol and carbonyl cyanide m-chlorophenyl-hydrazone (CCCP) were compared in their ability to inhibit RNA and protein synthesis by isolated pea chloroplasts. Energy for the synthetic reactions was supplied either by light or by added ATP. Only CCCP gave the same pattern of inhibition as tentoxin, i.e. inhibition of both RNA and protein synthesis in the light-driven system but no inhibition in the ATP-driven system. It is concluded that chloroplast developmental processes are inhibited by tentoxin through the inhibition of photophosphorylation.  相似文献   

6.
Time- and concentration-course studies were conducted to determine the effect of bentazon [3-isopropyl-1H-2,l,3,-benzothiadiazin-4(3H)-one 2,2-dioxide] on photosynthesis, RNA synthesis, protein synthesis, and lipid synthesis using enzymatically isolated leaf cells of red kidney bean (Phaseolus vulgaris L.). Photosynthesis and RNA synthesis were inhibited about 75% at 1 M bentazon at the 30 min treatment period. This was the lowest concentration and shortest time that significantly inhibited any of these four processes. The degree of inhibition of photosynthesis was greater than the degree of inhibition of RNA synthesis at higher concentrations and/or longer time periods. At 10 M bentazon, protein synthesis and lipid synthesis were also inhibited. Lipid synthesis was stimulated at 0.1 and 1 M at 120 min.  相似文献   

7.
A wide range of cadmium concentrations (from 4 to 200 μM for seedlings and up to 2 mM for germinating kernels) was used to assess Cd toxic effects on maize (Zea mays L.) plants at the different developmental stages: germinating kernels, seedlings (4–9 days), and juvenile plants (34 days). Cd accumulation in plant organs was followed, and its lethal concentration was elucidated. In maize, cadmium was accumulated predominantly in roots; in shoots it was mainly accumulated in the lower leaves, and the higher was leaf position the lower was Cd content in it. At high concentrations (80 and 200 μM), kernels became the substantial cadmium depot. Germinating kernels manifested the lowest sensitivity to cadmium; seedlings were more sensitive; the inhibition of juvenile plant growth attained 90% and more. In the tested range of concentrations, cadmium suppressed shoot mass accumulation harder than that of roots. In 34-day-old plants, water content in shoots was stronger reduced than in roots. Plant death was also manifested earlier in shoots. It was concluded that maize plant sensitivity to cadmium increases with plant growing and that, under conditions of normal mineral nutrition, cadmium inhibits shoot growth more severe than root growth.  相似文献   

8.
The effects of cadmium (Cd) supply level in nutrient solution (0, 12.5, 25, 50, 100, 200, 400, and 800 μM) on growth, Cd accumulation ability, and the related physiological indices of maize (Zea mays L.) seedlings were studied under hydroponic conditions. The results showed that the increments in the shoot height and biomass were stimulated at relatively low external Cd supply levels (<100 μM), while they were inhibited at Cd supply levels over 200 μM. Cd accumulation ability of the maize seedlings also showed the similar stimulation/inhibition pattern as shoot growth, and the Cd contents in the shoots and roots reached the peaks (389.5 and 505.5 mg/kg dry wt, respectively) at 50 μM Cd. The contents of chlorophyll a, chlorophyll b, and carotenoids in the maize leaf blades decreased with increasing external Cd supply level. At the highest Cd supply level (800 μM), the contents of chlorophyll a, chlorophyll b, and carotenoids in the leaf blade were only 38.9, 46.0, and 29.7% of the control plants, respectively. Moreover, chlorophyll b was more sensitive to the Cd stress than chlorophyll a. The increased proline content in the leaf blade of maize seedlings resulted from external Cd stress indicates that maize can adapt to the adversity menace via changing the content of proline.  相似文献   

9.
10.
An organ-specific-growth inhibitory substance was isolated from an aqueous methanol extract of red pine needles and determined by spectral data as 1-mono(16-hydroxyhexadecanoyl)glycerol. This substance inhibited root growth of cress (Lepidium sativum L.) and barnyard grass (Echinochloa crus-galli (L.) Beauv) seedlings at concentrations greater than 0.01 and 0.03???M, respectively. The concentrations required for 50?% growth inhibition on roots of cress and barnyard grass were 0.16 and 3.4???M, respectively. However, the inhibitory activity of the substance on shoots of cress and barnyard grass was very weak. The endogenous concentration of 1-mono(16-hydroxyhexadecanoyl)glycerol in the pine needles was 4.6???mol?kg?1. Two related compounds, 1-monohexadecanoylglycerol and 16-hydroxyhexadecanlic acid had no activity up to 1,000???M on cress roots and shoots. The effectiveness of 1-mono(16-hydroxyhexadecanoyl)glycerol on root growth inhibition and the occurrence of 1-mono(16-hydroxyhexadecanoyl)glycerol in pine needles suggest the substance may play an important role in the allelopathy of red pine. Root-specific-growth-inhibition by the substance may be one of the strategies for red pine to compete with neighboring plants for nutrients and space because root growth of competitive plants may be very important for their whole plant development.  相似文献   

11.
The effects of formamidoxime and hydroxyurea over a 105 concentration range were studied on macromolecular synthesis in E. coli, L5178Y mouse leukemic cells, isolated rat liver mitochondria and isolated rat cerebral cortex mitochondria. In E. coli 2 mg per ml of formamidoxime and hydroxyurea inhibited, respectively, RNA synthesis by 20% and 17%, DNA synthesis by 91% and 96%, protein synthesis by 54% and 60% and lipopolysaccharide synthesis by 65% and 48%. In L5178Y mouse leukemic cells 2 mg/ml of formamidoxime and hydroxyurea inhibited, respectively, RNA synthesis by 41% and 24%, DNA synthesis by 90% and 97%, protein synthesis by 59% and 44% and glycoprotein synthesis by 83% and 50%. In isolated rat liver mitochondria 2 mg/ml of formamidoxime and hydroxyurea inhibited, respectively, RNA synthesis by 43% and 52%, DNA synthesis by 42% and 56% and protein synthesis by 18% and 30%. Glycoprotein synthesis was not affected. In isolated rat cerebral cortex mitochondria 2 mg/ml of formamidoxime and hydroxyurea inhibited, respectively, RNA synthesis by 50% and 44%, DNA synthesis by 59% and 66% and protein synthesis by 48% and 40%. Glycoprotein synthesis again was not affected. Lower concentrations of the drugs produced less inhibition of macromolecular synthesis in each of the systems.  相似文献   

12.
Intact and excised cultured pea roots (Pisum sativum L. cv Alaska) were treated with chlorsulfuron at concentrations ranging from 2.8 ×10?4 M to 2.8×10?6 M. At all concentrations this chemical was demonstrated to inhibit the progression of cells from G2 to mitosis (M) and secondarily from G1 to DNA synthesis (S). The S and M phases were not directly affected, but the transition steps into those phases were inhibited. Total protein synthesis was unaffected by treatment of intact roots with 2.8×10?6 M chlorsulfuron. RNA synthesis was inhibited by 43% over a 24-h treatment period. It is hypothesized that chlorsulfuron inhibits cell cycle progression by blocking the G2 and G1 transition points through inhibition of cell cycle specific RNA synthesis.  相似文献   

13.
The effects of sodium nitroprusside (SNP, a donor of NO) on cadmium (Cd) toxicity in ryegrass seedlings (Lolium perenne L.) were studied by investigating the symptoms, plant growth, chlorophyll content, lipid peroxidation, H+-ATPase enzyme and antioxidative enzymes. Addition of 100???M CdCl2 caused serious chlorosis and inhibited the growth of ryegrass seedlings, and dramatically increased accumulation of Cd in both shoots and roots, furthermore, the absorption of macro and micronutrients were inhibited. Addition of 50, 100, 200???M SNP significantly decreased the transport of Cd from roots to shoots, alleviated the inhibition of K, Ca, Mg and Fe, Cu, Zn absorption induced by Cd, reduced the toxicity symptoms and promoted the plant growth. The accumulation of reactive oxygen species (ROS) significantly increased in ryegrass seedlings exposed to Cd, and resulted in the lipid peroxidation, which was indicated by accumulated concentration of thiobarbituric acid-reactive substances. Addition of 50, 100, 200???M SNP significantly decreased the level of ROS and lipid peroxidation. Activities of antioxidant enzymes also showed the same changes. Addition of 50, 100, 200???M SNP increased activities of superoxide dismutase, peroxidase, catalase and ascorbate peroxidase in ryegrass seedlings exposed to Cd. Addition of 100???M SNP had the most significant alleviating effect against Cd toxicity while the addition of 400???M SNP had no significant effect with Cd treatment.  相似文献   

14.
-DOPA (-3,4-Dihydroxyphenylalanine) is one of the most highly active allelochemicals. -DOPA is exuded from the roots of velvetbean [Mucuna pruriens (L.) DC. var. utilis] into soil, and causes growth inhibition of other species. In order to highly clarify the phytotoxic mechanism of -DOPA, its effect on 32 species was surveyed, and absorption, translocation and metabolism in a tolerant species, barnyardgrass (Echinochloa crus-galli L.), and susceptible species, lettuce (Lactuca sativa L. cv. Great lakes 366), were examined at the germination stage. The species tested showed distinctly different responses to -DOPA, with root elongation being more suppressed than that of shoots. Barnyardgrass was 77-fold more tolerant than lettuce based on the GR50 values determined 5 days after treatment. Absorption of -DOPA in barnyardgrass and lettuce increased continuously during a 5 day exposure period, however,barnyardgrass absorbed a larger amount of -DOPA than lettuce. The translocation of radioactivity derived from 14C--DOPA to shoots was greater in lettuce than in barnyardgrass 3 and 5 days after treatment. Although the -DOPA absorbed was metabolized in the roots of both species, the percentage of radioactive 14C--DOPA increased in lettuce continuously but decreased in barnyardgrass over 5 days. In lettuce roots, a continuous increase of -DOPA but not other metabolites was observed. However, the concentration of -DOPA was higher in barnyardgrass roots compared with lettuce roots throughout the exposure period. These results suggest that -DOPA itself is the active form, and the species-selective phytotoxicity of -DOPA is at least partly due to metabolism and not due to absorption or translocation.  相似文献   

15.
Diacylglycerol kinase activity was demonstrated in highly purified plasma membranes isolated from shoots and roots of dark-grown wheat (Triticum aestivum L.) by aqueous polymer two-phase partitioning. The active site of the diacylglycerol kinase was localized to the inner cytoplasmic surface of the plasma membrane using isolated inside-out and right-side-out plasma membrane vesicles from roots. The enzyme activity in plasma membrane vesicles from shoots showed a broad pH optimum around pH 7. The reaction was Mg2+ and ATP dependent, and maximal activity was observed around 0.5 mM ATP and 3 mM MgCl2. The Mg2+ requirement could be substituted only partially by Mn2+ and not at all by Ca2+. The phosphorylation of endogenous diacylglycerol was strongly inhibited by detergents indicating an extreme dependence of the lipid environment. Inositol phospholipids stimulated the activity of diacylglycerol kinase in plasma membranes from shoots and roots, whereas the activity was inhibited by R59022, a putative inhibitor of several diacylglycerol kinase isoenzymes involved in uncoupling diacylglycerol activation of mammalian protein kinase C.  相似文献   

16.
Triacontanol (TRIA) increases the dry weight and alters the metabolism of rice (Oryza sativa L.) seedlings within 10 min of application to either the shoots or roots. This activity is prevented if octacosanol (OCTA, C28 primary alcohol) is applied with the TRIA on the roots or shoots. Triacontanol activity is also stopped if the OCTA is applied at least 1 min before the TRIA on the opposite part of the seedling.Triacontanol rapidly elicits a second messenger that moves rapidly throughout the plant resulting in stimulation of growth (dry-weight increase) and water uptake. Octacosanol also produces a second messenger that inhibits TRIA activity. We have named the putative secondary messengers elicited by TRIA and OCTA, TRIM and OCTAM, respectively. The water-soluble TRIM extracted from plants treated with TRIA increases the growth of rice seedlings about 50% more than extracts from untreated plants, within 24 h of application. Both OCTAM and OCTA inhibit the activity of TRIA but not of TRIM.The TRIA messenger was isolated from rice roots within 1 min of a foliar application of TRIA. The TRIM elicited by TRIA will pass through a 4-mm column of water connecting cut rice shoots with their roots and can also be recovered from water in which cut stems of TRIA-treated plants have been immersed. Triacontanol applied to oat (Avena sativa L.) or tomato (Lycopersicon esculentum Mill.) shoots connected to rice roots by a 4-mm water column also results in the appearance of TRIM in rice roots.Abbreviations OCTA octacosanol - OCTAM second messenger elicited by OCTA - TAS tallow alkyl sulfate - TRIA triacontanol - TRIM second messenger elicited by TRIA Michigan Agricultural Experiment Station Journal Article No. 12001  相似文献   

17.
Despite increasing knowledge of jasmonic acid (JA) and salicylic acid (SA) as signaling compounds involved in the defense of rice against attacking microbes and insect predators, relatively little is known about their levels in the growth media and their interactions with other plant competitors. In present study we quantified JA and SA in a rice-barnyardgrass coexistence system followed by correlation analysis to access rice allelochemicals. Both rice and barnyardgrass biosynthesized JA and SA, but their contents varied greatly with species, tissues and coexistence. There was a positive correlation in contents between rice allelochemicals and JA in roots or SA in shoots. Endogenous JA was exuded from barnyardgrass roots eliciting the production of rice allelochemicals. SA was not detected in growth media as an exogenous signaling compound in a rice-barnyardgrass coexistence system, but SA content in rice shoots was an indicator for distinguishing the allelopathic rice traits from the non-allelopathic ones.  相似文献   

18.
Methylxanthine treatment of rice seeds (Oryza sativa L. cv. Lemont) was used to determine the relative efficiencies of caffeine (1,3,7-trimethylxanthine), theobromine (3,7-dimethylxanthine), and theophylline (1,3-dimethylxanthine) as growth regulators in a plant not producing these compounds. Caffeine inhibited growth more effectively than the dimethylxanthines. Treatment with 2.5 mM caffeine inhibited shoot elongation by half after 6 days of growth, and inhibited root elongation by 90% compared to control plants germinated in water. Although caffeine treatment inhibited growth of roots more than shoots, caffeine accumulation was similar in both organs. Apparently, shoots have a more effective mechanism than roots for maintaining growth in the presence of caffeine.  相似文献   

19.
Regulation of Nitrate Reductase in Chlorella vulgaris   总被引:4,自引:1,他引:3       下载免费PDF全文
When excised barley roots (Hordeum distichum L.) are appropriately pretreated, the level of nitrate reductase in the roots increases upon exposure to nitrate. Relatively low levels of nitrate (10 μm) gave maximum induction of nitrate reductase. This increase was inhibited by inhibitors of protein and RNA synthesis, indicating that de novo protein synthesis is probably involved. Induction of nitrate reductase by nitrate is partially prevented by the inclusion of ammonium, an eventual product of nitrate reduction, in the incubation medium. Under the experimental conditions used, ammonium did not inhibit the uptake of nitrate by excised barley roots. It is concluded, therefore, that ammonium, or a product of ammonium metabolism, has a direct effect on the synthesis of nitrate reductase in this tissue.  相似文献   

20.
Rice seedlings (Oryza sativa L.) were incubated at 5-30 degrees C for 48 h and the effect of temperature on ethanolic fermentation in the seedlings was investigated in terms of low-temperature adaptation. Activities of alcohol dehydrogenase (ADH, EC 1.1.1.1) and pyruvate decarboxylase (PDC, EC 4.1.1.1) in roots and shoots of the seedlings were low at temperatures of 20-30 degrees C, whereas temperatures of 5, 7.5 and 10 degrees C significantly increased ADH and PDC activities in the roots and shoots. Temperatures of 5-10 degrees C also increased ethanol concentrations in the roots and shoots. The ethanol concentrations in the roots and shoots at 7.5 degrees C were 16- and 12-times greater than those in the roots and shoots at 25 degrees C, respectively. These results indicate that low temperatures (5-10 degrees C) induced ethanolic fermentation in the roots and shoots of the seedlings. Ethanol is known to prevent lipid degradation in plant membrane, and increased membrane-lipid fluidization. In addition, an ADH inhibitor, 4-methylpyrazole, decreased low-temperature tolerance in roots and shoots of rice seedlings and this reduction in the tolerance was recovered by exogenous applied ethanol. Therefore, production of ethanol by ethanolic fermentation may lead to low-temperature adaptation in rice plants by altering the physical properties of membrane lipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号