首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aminoethoxyvinylglycine (AVG) applied as a droplet (3 l, 0.1 mM) to the plumule of seedlings of both the short-day plantChenopodium rubrum and the long-day plantChenopodium murale counteracted to a great extent or even canceled the inhibition of flowering due to exogenous indole-3-acetic acid (IAA). This effect was more pronounced with the two substances administered simultaneously than with later application of AVG alone. AVG by itself in some cases promoted the percentage of flowering in bothChenopodium species. Application of IAA to the shoot apex was shown to elevate ethylene production in both species, whereas application of AVG alone was shown to suppress it. Thus, ethylene may be considered an active agent of flowering inhibition brought about by IAA application.  相似文献   

2.
3.
Yu YB  Yang SF 《Plant physiology》1979,64(6):1074-1077
Auxin is known to stimulate greatly both C2H4 production and the conversion of methionine to ethylene in vegetative tissues, while amino-ethoxyvinylglycine (AVG) or Co2+ ion effectively block these processes. To identify the step in the ethylene biosynthetic pathway at which indoleacetic acid (IAA) and AVG exert their effects, [3-14C]methionine was administered to IAA or IAA-plus-AVG-treated mung bean hypocotyls, and the conversion of methionine to S-adenosylmethionine (SAM), 1-amino-cyclopropane-1-carboxylic acid (ACC), and C2H4 was studied. The conversion of methionine to SAM was unaffected by treatment with IAA or IAA plus AVG, but active conversion of methionine to ACC was found only in tissues which were treated with IAA and which were actively producing ethylene. AVG treatment abolished both the conversion of methionine to ACC and ethylene production. These results suggest that in the ethylene biosynthetic pathway (methionine → SAM → ACC → C2H4) IAA stimulates C2H4 production by inducing the synthesis or activation of ACC synthase, which catalyzes the conversion of SAM to ACC. Indeed, ACC synthase activity was detected only in IAA-treated tissues and its activity was completely inhibited by AVG. This conclusion was supported by the observation that endogenous ACC accumulated after IAA treatment, and that this accumulation was completely eliminated by AVG treatment. The characteristics of Co2+ inhibition of IAA-dependent and ACC-dependent ethylene production were similar. The data indicate that Co2+ exerts its effect by inhibiting the conversion of ACC to ethylene. This conclusion was further supported by the observation that when Co2+ was administered to IAA-treated tissues, endogenous ACC accumulated while ethylene production declined.  相似文献   

4.
Brassinosteroid (BR) stimulation of auxin-induced ethylene production and the particular step at which BR acts to promote such synthesis were studied in mung bean ( Vigna radiata L. Rwilcz cv. Berken) hypocotyl segments. Increasing concentrations of methionine alone and in combination with 3 μ M BR and 10 μ M IAA had a minimal effect on ethylene production. With increasing concentrations of 1-aminocyclopro-pane-1-carboxylic acid (ACC), however, ethylene production increased. BR or IAA further enhanced ethylene production with maximum rates occurring when these compounds were added together with ACC. The addition of 10 μ M CoCl2 in conjunction with BR and/or IAA resulted in 85–97% inhibition of ethylene production. When 20 μ M cycloheximide was used in conjunction with BR and/or IAA there was a complete inhibition of ethylene production. Total inhibition also resulted when 1.0 μ M aminoethoxy-vinylglycine (AVG) was used in combination with BR and/or IAA. AVG alone had no effect on ACC conversion to ethylene.  相似文献   

5.
It has been shown that both IAA and ethylene application inhibit flower induction in the short-day plant Pharbitis nil. However application of IAA has elevated ethylene production in this plant, as well. Strong enhancement of ethylene production is also correlated with the night-break effect, which completely inhibits flowering. In order to determine what the role of IAA and ethylene is in the photoperiodic flower induction in Pharbitis nil, we measured changes in their levels during inductive and non-inductive photoperiods, and the effects of ethylene biosynthesis and action inhibitors on inhibition of flowering by IAA. Our results have shown that the inhibitory effect of IAA on Pharbitis nil flowering is not physiological but is connected with its effect on ethylene biosynthesis.  相似文献   

6.
Silver nitrate and aminoethoxyvinylglycine (AVG) are often used to inhibit perception and biosynthesis, respectively, of the phytohormone ethylene. In the course of exploring the genetic basis of the extensive interactions between ethylene and auxin, we compared the effects of silver nitrate (AgNO3) and AVG on auxin responsiveness. We found that although AgNO3 dramatically decreased root indole-3-acetic acid (IAA) responsiveness in inhibition of root elongation, promotion of DR5-β-glucuronidase activity, and reduction of Aux/IAA protein levels, AVG had more mild effects. Moreover, we found that that silver ions, but not AVG, enhanced IAA efflux similarly in root tips of both the wild type and mutants with blocked ethylene responses, indicating that this enhancement was independent of ethylene signaling. Our results suggest that the promotion of IAA efflux by silver ions is independent of the effects of silver ions on ethylene perception. Although the molecular details of this enhancement remain unknown, our finding that silver ions can promote IAA efflux in addition to blocking ethylene signaling suggest that caution is warranted in interpreting studies using AgNO3 to block ethylene signaling in roots.  相似文献   

7.
We tested that the hypothesis that root elongation might be controlled by altering the level of ethylene in intact primary roots of maize(Zea mays L.). We measured root elongation in a short period using a computerized root auxanometer. Compounds which regulate ethylene production were applied to intact primary roots in different time periods. Root elongation was stimulated by the treatment with ethylene antagonists such as Co2+, aminoethoxyvinylglycine (AVG) and L-canaline. This result suggested that root elongation was closely related to ethylene level of intact primary roots. Furthermore, IAA- and 1-aminocyclopropane-1-carboxylic acid (ACC)-induced inhibition of root elongation was reversed by treatment with Co2+. The application of ACC to roots which have been exposed to IAA and Co2+ have no significant effect on root elongation. However, the inhibition of root elongation by ACC in roots previously treated with IAA and AVG became manifest when the applied IAA concentrations were lower. These results were consistent with the hypothesis that the level of ethylene in intact roots functions to moderate root elongation, and suggested that auxin-induced inhibition of root elongation results from auxin induced promotion of ethylene production.  相似文献   

8.
Jennifer F. Jones  Hans Kende 《Planta》1979,146(5):649-656
1-Aminocyclopropane-1-carboxylic acid (ACC) stimulated the production of ethylene in subapical stem sections of etiolated pea (cv. Alaska) seedlings in the presence and absence of indole-3-acetic acid (IAA). No lag period was evident following application of ACC, and the response was saturated at a concentration of 1 mM ACC. Levels of endogenous ACC paralleled the increase in ethylene production in sections treated with different concentrations of IAA and with selenoethionine or selenomethionine plus IAA. The IAA-induced formation of both ACC and ethylene was blocked by the rhizobitoxine analog aminoethoxyvinylglycine (AVG). Labelling studies with L-[U-14C]methionine showed an increase in the labelling of ethylene and ACC after treatment with IAA. IAA had no specific effect on the incorporation of label into S-methylmethionine or homoserine. The specific radioactivity of ethylene was similar to the specific radioactivity of carbon atoms 2 and 3 of ACC after treatment with IAA, indicating that all of the ethylene was derived from ACC. The activity of the ACC-forming enzyme was higher in sections incubated with IAA than in sections incubated with water alone. These results support the hypothesis that ACC is the in-vivo precursor of ethylene in etiolated pea tissue and that IAA stimulates ethylene production by increasing the activity of the ACC-forming enzyme.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG aminoethoxyvinylglycine, the aminoethoxy analog of rhizobitoxine - IAA indole-3-acetic acid - SAM S-adenosylmethionine - SMM S-methylmethionine  相似文献   

9.
To examine the possible relationship between the activity of 1-aminocyclopropane carboxylic acid synthase (ACS; EC 4.4.1.14) and growth of mustard (Brassica juncea L.), ACS activity, ethylene and plant growth were studied in the presence of ACS activity modulators in no-defoliation and defoliated plants. Growth of plants was greatest when subjected to defoliation of 50% lower leaves in the plant axis compared to defoliation of 25% lower leaves or no-defoliation. The activity of ACS in no-defoliation and defoliated plants was correlative with growth of plants. ACS activity and ethylene evolution in no-defoliation plants treated with 10 μM indole-3-acetic acid (IAA) and defoliated plants treated with water were equal and resulted in maximum plant growth. On the contrary, the application of 10 μM IAA on defoliated plants resulted in the increase in ACS activity and ethylene evolution to an extent that inhibited the growth. The application of 100 μM IAA on no-defoliation and defoliated plants increased ACS activity and ethylene evolution maximally and proved inhibitory for the plant growth. The association of ACS activity, ethylene evolution and growth of plants was further substantiated with the use of 50 μM aminoethoxyvinyl glycine (AVG) applied alone or in combination with 10 or 100 μM IAA. The application of AVG resulted in the inhibition of ACS activity and the growth of no-defoliation or defoliated plants. The results indicate that there exists a correlation between ACS activity, ethylene and the growth of mustard plants.  相似文献   

10.
We tested that the hypothesis that root elongation might be controlled by altering the level of ethylene in intact primary roots of maize(Zea mays L.). We measured root elongation in a short period using a computerized root auxanometer. Compounds which regulate ethylene production were applied to intact primary roots in different time periods. Root elongation was stimulated by the treatment with ethylene antagonists such as Co2+, aminoethoxyvinylglycine (AVG) and L-canaline. This result suggested that root elongation was closely related to ethylene level of intact primary roots. Furthermore, IAA- and 1-aminocyclopropane-1-carboxylic acid (ACC)-induced inhibition of root elongation was reversed by treatment with Co2+. The application of ACC to roots which have been exposed to IAA and Co2+ have no significant effect on root elongation. However, the inhibition of root elongation by ACC in roots previously treated with IAA and AVG became manifest when the applied IAA concentrations were lower. These results were consistent with the hypothesis that the level of ethylene in intact roots functions to moderate root elongation, and suggested that auxin-induced inhibition of root elongation results from auxin induced promotion of ethylene production.  相似文献   

11.
Flowering in the short day plantChenopodium rubrum was inhibited by 5-fluoro-deoxyuridine (FDU) at a concentration of 4×10?6 M and higher when applied during photoperiodic induction or immediately afterwards. This inhibition is always accompanied by a general reduction of growth (e.g. a decrease in the first leaf length). The mitotic activity within the shoot apex is completely blocked by FDU application during the photoperiodic treatment. The floral induction (evocationsensu Evans) was not cancelled in this situation as was revealed when reversing the FDU effect by thymidine application. One day after the end of the photoperiodic treatment (the plants were transferred to continuous light again) the FDU inhibition becomes irreparable. The results indicate that DNA synthesis and hence the mitotic activity are not obligatory prerequisites for photoperiodic floral induction inChenopodium. Low concentrations of FDU may promote flowering under suboptimal floral induction.  相似文献   

12.
Hypocotyl explants of Mesembryanthemum crystallinum regenerated roots when cultured vertically with either the apical end (AE) or basal end (BE) in media containing indole-3-acetic acid (IAA). IAA alone induced roots regularly from the basal end of the explants, either from the cut surface immersed in the medium or from the opposite side. The inhibitors of auxin efflux carriers, α-naphthylphthalamic acid (NPA) and 2,3,5-triiodobenzoic acid (TIBA), inhibited rhizogenesis only from AE-cultured explants, indicating the role of polar auxin transport in root regeneration in this system. Cytokinin (zeatin, kinetin, BAP) added to auxin-containing medium reduced rhizogenesis from the explants maintained with BE and AE and additionally changed the IAA-induced pattern of rooting in AE-cultured explants by favoring rooting from the apical end and middle part of the hypocotyl with its concomitant reduction from the basal end. The addition of kinetin did not influence the content of IAA in the explants maintained with AE, suggesting that the cytokinin effect on root patterning was not dependent on auxin biosynthesis. Kinetin, however, strongly enhanced ethylene production. The importance of ethylene in regulating PAT-dependent rhizogenesis was tested by using an ethylene antagonist AgNO3, an inhibitor of ethylene synthesis aminoethoxyvinylglycine (AVG), and a precursor of ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC). AgNO3 applied together with IAA or with IAA and kinetin strongly reduced the production of ethylene, inhibited rhizogenesis, and induced nonregenerative callus from BE, suggesting the need for ethylene signaling to elicit the rhizogenic action of auxin. A reduction of rhizogenesis and decrease of ethylene biosynthesis was also caused by AVG. In addition, AVG at 10 μM reversed the effect of cytokinin on root patterning, resulting in roots emerging only from BE on the medium with IAA and kinetin. Conversely, ACC at 200 μM markedly enhanced the production of ethylene and partly mimicked the effect of cytokinin when applied with IAA alone, thus confirming that in cultured hypocotyls of ice plant, cytokinin affects IAA-induced rhizogenesis through an ethylene-dependent pathway.  相似文献   

13.
This study was conducted to investigate the in vitro influence of ethylene on shoot branching and leaf yellowing in the rose cultivar Tineke by using different compounds that regulate ethylene inhibition and stimulation. Aminoethoxy vinyl glycine (AVG), silver thiosulfate (STS), and sodium nitroprusside (SNP) caused enhanced apical shoot initiation and reduced leaf yellowing, via inhibition of ethylene production, in the following order: AVG > SNP > STS. In contrast, the addition of 1-aminocyclopropane-1-carboxylic acid (ACC) or 3-indoleacetic acid (IAA) stimulated ethylene production and had greater negative effects on the studied parameters than the control; the negative effects of IAA were further confirmed in combination with AVG, STS, or SNP. The effects of ethylene on apical shoot initiation and leaf yellowing in Tineke were confirmed in another rose cultivar, Innocence. Hence, this study provides strong support for the hypothesis that ethylene-inhibiting agents have beneficial effects on apical shoot initiation and reduction of leaf yellowing in other rose cultivars.  相似文献   

14.
The effect of gibberellin A1 (GA1) on production of ethylene by cowpea (Vigna sinensis cv Blackeye pea no. 5) epicotyl explants and its relationship to epicotyl elongation was investigated. The explants were placed upright in water and incubated in sealed culture tubes or in large jars. GA, and IAA in ethanol solution were injected into the subapical tissues of the decapitated epicotyls. Cowpea epicotyl explants elongated after GA but not after IAA treatment, and they were very sensitive to exogenous ethylene. As little as 0.14 1/1 ethylene reduced significantly GA1-induced epicotyl elongation.Treatment with GA1 induced the production of ethylene which began 10 h after GA application, showed a peak at about 22 h and then declined. The yield of ethylene was proportional to the amount of GA, injected. The inhibition of epicotyl elongation in closed tubes was avoided by absorbing ethylene released with Hg(Cl04)2 , or by adding AVG to the incubation solution to inhibit ethylene production. Treatment with IAA elicited a rapid production of ethylene which ceased about 10 h after application. The effects of IAA and GA1 on ethylene production were additive.Abbreviations AVG aminoethoxyvinylglycine 2-amino-4-(2-aminoethoxy)-trans-3butenoic acid - ACC 1-aminocyclopropane-1-carboxylic acid - GA gibberellin - IAA indole-3-acetic acid  相似文献   

15.
Previous researchers found that formation and function of nitrogen-fixing nodules on legume roots were severely inhibited by addition of exogenous ethylene. Nodule formation by Rhizobium meliloti on Medicago sativa was stimulated twofold when the ethylene biosynthesis inhibitor aminoethoxyvinylglycine (AVG) was added with the inoculum. Stimulation of nodule formation by AVG showed a similar concentration dependence as inhibition of ethylene biosynthesis, suggesting that the primary action of AVG is the inhibition of ethylene biosynthesis. When AVG was added 2 to 3 days after inoculation, the number of nodules formed was still increased. On a per plant basis, however, the average nitrogen fixation was unchanged by AVG treatment and was independent of nodule number.  相似文献   

16.
CCC (2-chloroethyl)trimethylammonium chloride applied to plants ofChenopodium rubrum during floral induction led to an increase in the level of endogenous cytokinins in the apical buds. Application of gibberellic acid or indole-3-acetic acid at concentrations reversing the effect of CCC reduced the level of cytokinins. After simultaneous treatment with both CCC and one of the growth substances this reduction was less pronounced. From the comparison bf the present results, as well as of those published in previous papers it follows that in apical buds ofChenopodium rubrum there exists a mutual interaction between gibberellins and cytokinins. Under certain conditions both these groups of hormones may substitute for each other in flowering. IAA seems to affect flowering by regulating the level of both gibberellins and cytokinins.  相似文献   

17.
Photoperiodic responses of seedlings of long-day plantBrassica campestris L. cv. Ceres were investigated at different ages and varying length of inductive period. It was found that photoperiodie response increased with age. All plants flowered after one inductive cycle beginning with a light-period of 16h, but remained in the vegetative phase when kept under short-days (16h darkness, 8h light). Both auxins (IAA and NAA) and cytokinins (kinetin and benzyladenine) inhibited flowering when applied to the plumule or via the roots immediately before the inductive photoperiod. This inhibitory effects was confined to bud formation, whereas the rate of leaf initiation remained mostly unchanged. Only high concentrations of growth substances also affected the growth of roots and leaves. These results agree, in general, with the effects of growth substances in the short-day plantChenopodium rubrum.  相似文献   

18.
The role of ethylene in herbicidal injury induced by 4-amino-3,5,6-trichloropicolinic acid (picloram) or 3,6-dichloropicolinic acid (clopyralid) was investigated in sunflower (Helianthus annuus L.) and rapeseed (Brassica napus L. cv Altex). Picloram induces herbicide injury in both species, whereas clopyralid induces injury only in sunflower. Picloram applied to the third leaf of a rapeseed plant increased ethylene evolution several-fold. Clopyralid had no effect on ethylene production in rapeseed. In sunflower, both picloram and clopyralid elevated ethylene production. Ethylene biosynthesis induced by the herbicide treatment was not restricted to treated areas. When clopyralid was applied only to the lower stem and cotyledons of sunflower, the herbicide treatment resulted in an increase in the rate of ethylene production from the true leaves. Increased ethylene production preceded or coincided with the onset of morphological responses induced by a herbicide application to a susceptible species. The contrast in ethylene production by these two plant species cannot be accounted for by differences in absorption and translocation of clopyralid and picloram.

Treatment with aminoethoxyvinylglycine (AVG) before picloram or clopyralid application prevented an increase in ethylene production. Pretreatment with AVG also delayed the development of morphological changes induced by picloram or clopyralid. It appears that enhanced ethylene biosynthesis after application of picloram or clopyralid to the susceptible plant species was a factor involved in resulting morphological changes.

  相似文献   

19.
Summary The role of ethylene and putrescine on shoot regeneration from hypocotyl explants of Chinese radish (Raphanus sativus L. var. longipinnatus Bailey cv. Red Coat) was investigated. Explants were recalcitrant in culture, but exogenous application of ethylene inhibitor [20–30 M aminoethoxyvinylglycine (AVG) or AgNO3] enhanced shoot regeneration of explants grown on medium supplemented with 2 mg/l N6-benzyladenine and 1 mg/l 1-naphthaleneacetic acid. The best regeneration occurred in the medium containing AgNO3 in combination with AVG. Culture medium solidified with agarose in the presence of AgNO3 but not AVG was also beneficial to shoot regeneration. Exogenous putrescine, 2-chloroethylphosphonic acid and 1-aminocyclopropane-1-carboxylate had no effect on shoot regeneration. However, regeneration was greatly promoted by 10–25 mM putrescine in combination with 30 M AgNO3 or AVG. Explants with high regenerability grown in the presence of AgNO3 or in combination with putrescine emanated high levels of ethylene throughout the 21-d culture period. By contrast, AVG or putrescine alone resulted in a decrease in ethylene production. For rooting of shoot cuttings, IAA and IBA at 1–5 mg/l were more effective than NAA.Abbreviations ACC 1-aminocyclopropane-1-carboxylate - AVG aminoethoxyvinylglycine - BA N6-benzyladenine - CEPA 2-chloroethylphosphonic acid - IAA indole-3-acetic acid - IBA indole-3-butyric acid - MS Murashige and Skoog (1962) medium - NAA 1-naphthaleneacetic acid - PAs polyamines - SAM S-adenosyl-L-methionine  相似文献   

20.
Mechanical perturbation (MP) applied unilaterally to cucumber ( Cucumis sativus L.) hypocotyls induced thigmotropic curvature toward the stimulus. Gravitropic or phototropic curvature of the hypocotyl was inhibited by symmetrical application of MP to both sides of the hypocotyl. When both MP and IAA were unilaterally applied simultaneously to the same side, the hypocotyls always bent toward the MP stimulus, as in thigmotropism alone. Thus, the exogenous IAA did not control the direction of curvature. Aminoethoxyvinyl glycine (AVG) blocked thigmotropism as well as gravitropism and phototropism, but promoted IAA-induced curvature. MP-stimulated ethylene evolution peaked about 4 h after MP, followed by a peak of thigmotropic curvature. For all tropisms more ethylene evolved from the stimulated side than from the other side of the hypocotyls. MP-induced ethylene acting as a growth inhibitor, auxin-transport inhibitor, and/or modulator of tissue sensitivity to auxin, may be involved in thigmotropism and MP-induced inhibition of various tropisms. Ethylene produced as a result of MP was not affected by the removal of cotyledons. This MP-induced ethylene was additive to that of phototropically or gravitropically stimulated ethylene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号