首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A comparison study was conducted on the effect of glyphosate (N-[phosphonomethyl]glycine) on indole-3-[2-14C]acetic acid (IAA) metabolism, ethylene production, and growth of 7-day-old seedlings of different plants. The plants tested were American germander (Teucrium canadense L.), soybean (Glycine max L. Merr.), pea (Pisum sativum L. cv. Alaska and Little marvel), mungbean (Vigna radiata L.), and buckwheat (Fagopyrum esculentum Moench). A spray with 2 mM glyphosate affected IAA metabolism to a varied degree. The induced increase of IAA metabolism was greater in buckwheat, Alaska pea, and mungbean than soybean, Little marvel pea, and American germander. The increased IAA metabolism was correlated with the inhibition of growth and with the decrease of ethylene production.The natural rate of IAA metabolism was markedly different among the plant species and cultivars tested and appeared to be related to the sensitivity of the plants to glyphosate. American germander and Little marvel pea with high rates of IAA metabolism were more tolerant to glyphosate than buckwheat and Alaska pea, which had low rates of IAA metabolism. Plants with a high natural rate of IAA metabolism were probably less dependent on IAA and thus less susceptible to glyphosate.  相似文献   

2.
Application of a sublethal dose of glyphosate (N-[phosphonomethyl]glycine) to the seedlings of soybean (Glycine max L. Merr. cv. Evans) and pea (Pisum sativum L. cv. Alaska) promoted growth of the cotyledonary and other lateral buds. The pattern of the glyphosate-induced lateral bud growth was different from that induced by decapitation. Under the experimental condition, glyphosate did not kill the apical buds. Feeding stem sections of the seedlings with radiolabeled indole-3-acetic acid ([214C]IAA) and subsequent analysis of free [2-14C]IAA and metabolite fractions revealed that the glyphosate-treated plants had higher rates of IAA metabolism than the control plants. The treated pea plants metabolized 75% of [2-14C]IAA taken up in the 4-h incubation period compared to 46.5% for the control, an increase of 61%. The increase was small but consistent in soybean seedlings. As a result, the glyphosate-treated plants had less free IAA and ethylene than the control plants. The increase of IAA metabolism induced by glyphosate is likely to change the auxin-cytokinin balance and contribute to the release of lateral buds from apical dominance in these plants.  相似文献   

3.
Application of a sublethal dose of glyphosate (N-[phosphonomethyl]glycine) to the seedlings of soybean (Glycine max L. Merr. cv. Evans) and pea (Pisum sativum L. cv. Alaska) promoted growth of the cotyledonary and other lateral buds. The pattern of the glyphosate-induced lateral bud growth was different from that induced by decapitation. Under the experimental condition, glyphosate did not kill the apical buds. Feeding stem sections of the seedlings with radiolabeled indole-3-acetic acid ([214C]IAA) and subsequent analysis of free [2-14C]IAA and metabolite fractions revealed that the glyphosate-treated plants had higher rates of IAA metabolism than the control plants. The treated pea plants metabolized 75% of [2-14C]IAA taken up in the 4-h incubation period compared to 46.5% for the control, an increase of 61%. The increase was small but consistent in soybean seedlings. As a result, the glyphosate-treated plants had less free IAA and ethylene than the control plants. The increase of IAA metabolism induced by glyphosate is likely to change the auxin-cytokinin balance and contribute to the release of lateral buds from apical dominance in these plants.  相似文献   

4.
Effect of glyphosate on ethylene production in tobacco callus   总被引:9,自引:0,他引:9       下载免费PDF全文
Lee TT  Dumas T 《Plant physiology》1983,73(3):855-857
Glyphosate (N-phosphonomethylglycine) caused a significant decrease or a slight increase in ethylene production in tobacco callus (Nicotiana tabacum L.) depending on the concentration of indole-3-acetic acid (IAA) present in the medium. IAA stimulated ethylene production, but a pretreatment with glyphosate greatly reduced the IAA-induced ethylene production. Inasmuch as glyphosate treatment promoted the metabolism of IAA, the decrease in ethylene production induced by glyphosate is attributed to the rapid loss of free IAA in the treated tissue.  相似文献   

5.
Concentration of Indole-3-acetic Acid and Its Derivatives in Plants   总被引:44,自引:39,他引:5       下载免费PDF全文
Seeds of oat, coconut, soybean, sunflower, rice, millet, kidney bean, buckwheat, wheat, and corn and vegetative tissue of oat, pea, and corn were assayed for free indole-3-acetic acid (IAA), esterified IAA, and peptidyl IAA. Three conclusions were drawn: (a) all plant tissues examined contained most of their IAA as derivatives, either esterified or as a peptide; (b) the cereal grains examined contained mainly ester IAA; (c) the legume seeds examined contained mainly peptidyl IAA. Errors in analysis of free and bound IAA are discussed.  相似文献   

6.
Suttle JC 《Plant physiology》1988,88(3):795-799
The effect of ethylene treatment on polar indole-3-acetic acid (IAA) transport, net IAA uptake in the presence and absence of N-1-naphthylphthalamic acid (NPA) and [3H]NPA binding characteristics was investigated in tissue segments or microsomes isolated from etiolated pea (Pisum sativum L. cv Alaska) epicotyls. Basipetal IAA transport in 5 millimeter segments isolated from ethylene-treated seedlings was inhibited by ethylene in a dose-dependent manner. Threshold, half-maximal and saturating concentrations of ethylene were 0.01, 0.55, 10.0 microliters per liter, respectively. This inhibition became apparent after 6 to 8 hours of ethylene treatment. Transport velocity in both control and ethylene-treated tissues was estimated to be 5 millimeters per hour. Net IAA uptake was stimulated in ethylene-treated tissues and the relative ability of the phytotropin NPA to enhance net IAA uptake was reduced in treated tissues. Specific binding of [3H]NPA to microsomes prepared from both control and ethylene-treated tissues was saturable and consistent with the existence of a single class of binding sites with an apparent affinity (Kd) toward NPA of 8 to 9 nanomolar. The density of these binding sites (per milligram protein) was lower (36% of control) in ethylene-treated tissues. Direct application of ethylene to microsomal preparations isolated from untreated seedlings had no effect on the level of specific [3H]NPA binding.  相似文献   

7.
Subcellular Localization of IAA Oxidase in Peas   总被引:4,自引:3,他引:1       下载免费PDF全文
Waldrum JD  Davies E 《Plant physiology》1981,68(6):1303-1307
Indoleacetic acid (IAA) oxidase has been reported to be involved in plant growth because of its alleged role in the control of endogenous IAA levels. This purported role was reevaluated in terms of the properties and subcellular location of the enzyme in etiolated pea (Pisum sativum L. var. Alaska) epicotyls.  相似文献   

8.
9.
Atrazine metabolism and herbicidal selectivity   总被引:4,自引:3,他引:1       下载免费PDF全文
Metabolism of the herbicide 2-chloro-4-ethylamino-6-isopropylamino-s-triazine (atrazine) was investigated in resistant corn (Zea mays L.) and sorghum (Sorghum vulgare Pers.), intermediately susceptible pea (Pisum sativum L.), and highly susceptible wheat (Triticum vulgare Vill.) and soybean (Glycine max Merril.). This study revealed that 2 possible pathways for atrazine metabolism exist in higher plants. All species studied were able to metabolize atrazine initially by N-dealkylation of either of the 2 substituted alkylamine groups. Corn and wheat, which contain benzoxazinone, also metabolized atrazine initially by hydrolysis in the 2-position of the s-triazine ring to form hydroxyatrazine. Subsequent metabolism by both pathways resulted in the conversion of the parent atrazine to more polar compounds and eventually into methanol-insoluble plant residue. No evidence for s-triazine ring cleavage was obtained.

Both pathways for atrazine metabolism appear to detoxify atrazine. The hydroxylation pathway results in a direct conversion of a highly phytotoxic compound to a completely non-phytotoxic derivative. The dealkylation pathway leads to detoxication through one or more partially detoxified, stable intermediates. Therefore, the rate and pathways of atrazine metabolism are important in determining the tolerance of plants to the herbicide. Both quantitative and qualitative differences in atrazine metabolism were detected between resistant, intermediately susceptible, and susceptible species. The ability of plants to metabolize atrazine by N-dealkylation and the influence of this pathway in determining tolerance of plants to atrazine are discussed.

  相似文献   

10.
We observed no exchange between deuterated ethylene (C2D4) and the hydrogen of pea seedlings (Pisum sativum L. cv. Alaska). This suggests that bonding forces in which exchange could readily occur are not important in the physiological action of ethylene. Deuterated ethylene was just as effective as normal ethylene in inhibiting the growth of pea root sections. These results indicate that splitting carbon to hydrogen bonds did not occur during ethylene action.  相似文献   

11.
Synthesis of the low molecular weight heat shock proteins in plants   总被引:18,自引:11,他引:7       下载免费PDF全文
Mansfield MA  Key JL 《Plant physiology》1987,84(4):1007-1017
Heat shock of living tissue induces the synthesis of a unique group of proteins, the heat shock proteins. In plants, the major group of heat shock proteins has a molecular mass of 15 to 25 kilodaltons. Accumulation of these proteins to stainable levels has been reported in only a few species. To examine accumulation of the low molecular weight heat shock proteins in a broader range of species, two-dimensional electrophoresis was used to resolve total protein from the following species: soybean (Glycine max L. Merr., var Wayne), pea (Pisum sativum L., var Early Alaska), sunflower (Helianthus annuus L.), wheat (Triticum aestivum L.), rice (Oryza sativa L., cv IR-36), maize (Zea mays L.), pearl millet (Pennisetum americanum L. Leeke, line 23DB), and Panicum miliaceum L. When identified by both silver staining and incorporation of radiolabel, a diverse array of low molecular weight heat shock proteins was synthesized in each of these species. These proteins accumulated to significant levels after three hours of heat shock but exhibited considerable heterogeneity in isoelectric point, molecular weight, stainability, and radiolabel incorporation. Although most appeared to be synthesized only during heat shock, some were detectable at low levels in control tissue. Compared to the monocots, a higher proportion of low molecular weight heat shock proteins was detectable in control tissues from dicots.  相似文献   

12.
Species that showed marked morphological and physiological responsesby their roots to Fe-deficiency (Strategy I plants) were comparedwith others that do not exhibit these responses (Strategy IIplants). Roots from Fe-deficient cucumber (Cucumis sativusL.‘Ashley’), tomato (Lycopersicon esculentumMill.T3238FER) and pea (Pisum sativumL. ‘Sparkle’) plantsproduced more ethylene than those of Fe-sufficient plants. Thehigher production of ethylene in Fe-deficient cucumber and peaplants occurred before Fe-deficient plants showed chlorosissymptoms and was parallel to the occurrence of Fe-deficiencystress responses. The addition of either the ethylene precursorACC, 1-aminocyclopropane-1-carboxylic acid, or the ethylenereleasing substance, Ethephon, to several Fe-sufficient StrategyI plants [cucumber, tomato, pea, sugar beet (Beta vulgarisL.),Arabidopsis(Arabidopsis thaliana(L.) Heynh ‘Columbia’), plantago(Plantago lanceolataL.)] promoted some of their Fe-deficiencystress responses: enhanced root ferric-reducing capacity andswollen root tips. By contrast, Fe-deficient roots from severalStrategy II plants [maize (Zea maysL. ‘Funo’), wheat(Triticum aestivumL. ‘Yécora’), barley (HordeumvulgareL. ‘Barbarrosa’)] did not produce more ethylenethan the Fe-sufficient ones. Furthermore, ACC had no effecton the reducing capacity of these Strategy II plants and, exceptin barley, did not promote swelling of root tips. In conclusion,results suggest that ethylene is involved in the regulationof Fe-deficiency stress responses by Strategy I plants.Copyright1999 Annals of Botany Company. Arabidopsis (Arabidopsis thaliana(L.) Heynch), barley (Hordeum vulgareL.), cucumber (Cucumis sativusL.), ethylene, iron deficiency, maize (Zea maysL.), pea (Pisum sativumL.), plantago (Plantago lanceolataL.), ferric-reducing capacity, sugar beet (Beta vulgarisL.), tomato (Lycopersicon esculentumMill.), wheat (Triticum aestivumL.).  相似文献   

13.
Beyer EM 《Plant physiology》1972,49(5):672-675
Deuterated ethylene was used to study the mechanism of ethylene action in etiolated pea seedlings (Pisum sativum L. cv. Alaska). No apparent differences were observed in the biological activity of tetradeuteroethylene (C2D4) and ordinary ethylene (C2H4) using the pea stem straight growth assay. The absence of an isotopic effect is discussed in relation to the possibility that ethylene binds to a metal or that carbon to hydrogen bonds of ethylene are broken during its mechanism of action.  相似文献   

14.
Enzymes of the glyoxylate cycle in rhizobia and nodules of legumes   总被引:19,自引:9,他引:10       下载免费PDF全文
The relatively high level of fatty acids in soybean nodules and rhizobia from soybean nodules suggested that the glyoxylate cycle might have a role in nodule metabolism. Several species of rhizobia in pure culture were found to have malate synthetase activity when grown on a number of different carbon sources. Significant isocitrate lyase activity was induced when oleate, which presumably may act as an acetyl CoA precursor, was utilized as the principle carbon source. Malate synthetase was active in extracts of rhizobia from nodules of bush bean (Phaseolus vulgaris L.), cowpea (Vigna sinensis L.), lupine (Lupinus angustifolius L.) and soybean (Glycine max L. Merr.). Activity of malate synthetase was, however, barely detectable in rhizobia from alfalfa (Medicago sativa L.), red clover (Trifolium pratense L.) and pea (Pisum sativum L.) nodules. Appreciable isocitrate lyase activity was not detected in rhizobia from nodules nor was it induced by depletion of endogenous substrates by incubation of excised bush bean nodules. Although rhizobia has the potential for the formation of the key enzymes of the glyoxylate cycle, the absence of isocitrate lyase activity in bacteria isolated from nodules indicated that the glyoxylate cycle does not operate in the symbiotic growth of rhizobia and that the observed high content of fatty acids in nodules and nodule bacteria probably is related to a structural role.  相似文献   

15.
On ethylene and stem elongation in green pea seedlings   总被引:1,自引:0,他引:1       下载免费PDF全文
Koch BL  Moore TC 《Plant physiology》1990,93(4):1663-1664
Maximum elongation of excised internodal stem sections of light-grown pea (Pisum sativum L.) seedlings occurred at 10−5 molar indoleacetic acid (IAA), with submaximal responses occurring at 10−4 and 10−3 molar. Accompanying elongation at concentrations of IAA of 10−6 to 10−3 molar was production of ethylene, with the amount increasing up to 10−4 molar IAA and then becoming nearly constant. Elongation of light-grown sections was not inhibited by exogenous ethylene up to 10,000 ppm in the presence of 10−5 molar IAA. Marked (up to 50%) inhibition of elongation of internodal segments in situ was observed after treating whole light-grown seedlings with exogenous ethylene for 20 hours. It is concluded that ethylene is not responsible for the submaximal elongation responses of green pea stem sections at high auxin concentrations, but that IAA per se is accountable.  相似文献   

16.
Beyer EM 《Plant physiology》1979,63(1):169-173
The relationship between ethylene action and metabolism was investigated in the etiolated pea seedling (Pisum sativum L. cv. Alaska) by inhibiting ethylene action with Ag+, high CO2, and low O2 and then determining if ethylene metabolism was inhibited in a similar manner. Ag+ (100 milligrams per liter) was clearly the most potent antiethylene treatment. Ag+ pretreatment inhibited the growth retarding action of 0.2 microliters per liter ethylene by 48% and it also inhibited the incorporation of 0.2 microliters per liter 14C2H4 into pea tips by the same amount. As the ethylene concentration was increased from 0.2 to 30 microliters per liter, the effectiveness of Ag+ in reducing ethylene action and metabolism declined in a similar fashion. Although Ag+ significantly inhibited the incorporation of 14C2H4 into tissue metabolites, the oxidation of 14C2H4 to 14CO2 was unaffected in the same tissue.  相似文献   

17.
Mondal MH 《Plant physiology》1975,56(5):622-625
The influence of gibberellic acid (GA), calcium, kinetin, and ethylene on growth and cell-wall composition of decapitated pea epicotyls (Pisum sativum L. var. Alaska) was investigated. Calcium, kinetin, and ethylene each caused an inhibition of GA-induced elongation of pea stems. Gibberellic acid did not reverse the induction of swelling by Ca2+, kinetin, or ethylene. Both Ca2+ and ethylene significantly inhibited the stimulatory effects of GA on the formation of residual wall material. Although GA promoted the development of walls relatively low in pectic substances and pectic uronic acid, Ca2+, kinetin, and ethylene favored the formation of walls rich in these constituents. Calcium, kinetin, and GA, alone or in combination, had no effect on the production of ethylene by pea epicotyls.  相似文献   

18.
Propylene competed with the ethylene-induced reduction in length growth of the epicotyl of the etiolated garden pea (Pisum sativum L. cv. Alaska). These results constitute further evidence that ethylene acts by attaching itself loosely to a site.  相似文献   

19.
Starch, sucrose, and fructose 2,6-bisphosphate (F2, 6BP) levels were measured in pea (Pisum sativum L.), maize (Zea mays L.), onion (Allium cepa L.) and soybean (Glycine max L.) leaves throughout a light/dark cycle. Leaf starch accumulated in pea, maize, and soybean but not in onion. Sucrose was a major leaf storage reserve in pea, maize, and onion but was only found at low levels in soybean. In all species examined, the most dramatic changes in F2,6BP concentration coincided with light/dark transitions. During the light period F2,6BP levels were about 0.1 nanomole/milligram chlorophyll in soybean source leaves and there was a small increase in effector concentration in the dark. Levels of F2,6BP were also low in pea and maize leaves during the light period but then increased 10- or 20-fold in the dark. Dark onion leaf F2,6BP levels were about 1.1 to 1.3 nanomole/milligram chlorophyll and these values decreased by 20 to 30% in the light. Thus, three different patterns were identified that describe diurnal F2,6BP levels in source leaves. These results support the suggestion that F2,6BP is involved in the regulation of sucrose biosynthesis. However, it was not possible to demonstrate that high levels of F2,6BP are essential for starch synthesis in the chloroplast.  相似文献   

20.
Yip WK  Yang SF 《Plant physiology》1986,80(2):515-519
Cytokinins are known to stimulate ethylene production in mungbean hypocotyls synergistically with indoleacetic acid (IAA), in mungbean hypocotyls synergistically with Ca2+, and in wilted wheat leaves. Thidiazuron, a substituted urea compound, mimicked the effect of benzyladenine (BA) in all three systems. In the Ca2+ + cytokinin system and the IAA + cytokinin systems of mungbean hypocotyls, thiadiazuron was slightly more active than BA at equimolar concentration. In mungbean hypocotyls exogenously applied IAA was rapidly conjugated into IAA asparate, and this conjugation process was effectively inhibited by thidiazuron, as by cytokinins. In the wilted wheat leaves system, 10 micromolar thidiazuron exerted stress ethylene production equal to that exerted by 1 millimolar BA, indicating that thidiazuron is more active than BA by two orders. The structure-activity relationship of thidiazuron and its thiadiazolylurea analogs in stimulating Ca2+-dependent ethylene production in mungbean hypocotyls was found to agree well with the structure-activity relationship of these derivatives in promoting the growth of callus tissues. These results indicate that thidiazuron and its derivatives are highly active to mimic the adenine-type cytokinin responses in promoting ethylene production and that the structure-activity relationship in promoting the growth of callus and in promoting ethylene production is similar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号