首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Starvation is not a prerequisite for the formation of aerobic granules   总被引:1,自引:0,他引:1  
Activated sludge with sludge volume index (SVI)30 of 77 ml g−1 and SVI30 of 433 ml g−1 was inoculated to start up reactors R1 and R2, respectively. In both R1 and R2, cycle time of 1 h and the influent chemical oxygen demand (COD) concentrations of 1,000 mg l−1 were employed. Initial settling time of 2 min resulted in the loss of a substantial amount of biomass as wash-out and high effluent COD concentrations within the first week of operation. This implied that there was no starvation phase in each cycle of R1 and R2 during the first week of operation. However, aerobic granules with a size above 400 μm formed by day 7. Thus, it was concluded that starvation was not a prerequisite for the formation of aerobic granules. When cycle time was 1 h, the instability of aerobic granules was observed. When cycle time was prolonged to 1.5 h and granular sludge of 200 ml was used to start up reactor R3, the reactor R3 reached steady state within 1 week. SVI, size, and the morphology of granular sludge in R3 remained stable during the 47-day operation, which indicated that prolonged starvation time had positive effects on the stability of aerobic granules.  相似文献   

2.
Aerobic granules are cultivated by a single bacterial strain, Acinetobacter calcoaceticus, in a sequencing batch reactor (SBR). This strain presents as a good phenol reducer and an efficient auto coagulator in the presence of phenol, mediated by heat-sensitive adhesins proteins. Stable 2.3-mm granules were formed in the SBR following a 7-week cultivation. These granules exhibit excellent settling attributes and degrade phenol efficiently at concentrations of 250–2,000 mg l−1. The corresponding phenol degradation rate reached 993.6 mg phenol g−1 volatile suspended solids (VSS) day−1 at 250 mg l−1 phenol and 519.3 mg phenol g−1 VSS day−1 at 2,000 mg l−1 phenol concentration. Meanwhile, free A. calcoaceticus cells were fully inhibited at phenol >1,500 mg l−1. Denaturing gradient gel electrophoresis fingerprint profile demonstrated no genetic modification in the strain during aerobic granulation. The present single-strain granules showed long-term structural stability and performed high phenol degrading capacity and high phenol tolerance. The confocal laser scanning microscopic test revealed that live A. calcoaceticus cells principally distributed at 200–250 μm beneath the outer surface, with an extracellular polymeric substance layer covering them to defend phenol toxicity. Autoaggregation assay tests demonstrated the possibly significant role of secreted proteins on the formation of single-culture A. calcoaceticus granules.  相似文献   

3.
The cultivation of stable aerobic granules as well as granular structure and stability in sequencing batch reactors under different shear force were investigated in this study. Four column sequencing batch reactors (R1–R4) were operated under various shear force, in terms of superficial upflow air velocity of 0.8, 1.6, 2.4, and 3.2 cm s−1, respectively. Aerobic granules were formed in all reactors in the experiment. It was found that the magnitude of shear force has an important impact on the granule stability. At shear force of 2.4 and 3.2 cm s−1, granules can maintain a robust structure and have the potential of long-term operation. Granules developed in low shear force (R1, 0.8 cm s−1 and R2, 1.6 cm s−1) deteriorated to large-sized filamentous granules with irregular shape, loose structure and resulted in poor performance and operation instability. Granules cultivated under high shear force (R3, 2.4 cm s−1 and R4, 3.2 cm s−1) stabilized to clear outer morphology, dense and compact structure, and with good performance in 120 days operation. Fractal dimension (Df) represents the internal structure of granules and can be used as an important indicator to describe the structure and stability of granules. Due to the combined effects of shear force and growth force, the mature granules developed in R3 and R4 also displayed certain differences in granular structure and characteristics.  相似文献   

4.
Aerobic sludge granules are compact, strong microbial aggregates that have excellent settling ability and capability to efficiently treat high-strength and toxic wastewaters. Aerobic granules disintegrate under high organic loading rates (OLR). This study cultivated aerobic granules using acetate as the sole carbon and energy source in three identical sequencing batch reactors operated under OLR of 9–21.3 kg chemical oxygen demand (COD) m−3 day−1. The cultivated granules removed 94–96% of fed COD at OLR up to 9–19.5 kg COD m−3 day−1, and disintegrated at OLR of 21.3 kg COD m−3 day−1. Most tested isolates did not grow in the medium at >3,000 mg COD l−1; additionally, these strains lost capability for auto-aggregation and protein or polysaccharide productivity. This critical COD regime correlates strongly with the OLR range in which granules started disintegrating. Reduced protein quantity secreted by isolates was associated with the noted poor granule integrity under high OLR. This work identified a potential cause of biological nature for aerobic granules breakdown.  相似文献   

5.
Three sequencing batch reactors, R1, R2 and R3, with a 1.5-h, 4-h and 8-h cycle time, respectively, were used to cultivate aerobic granules with the same synthetic wastewater containing 1000 mg l(-1) COD. As the initial COD concentrations in the cycles were the same, three different cycle times led to three different starvation times in repeated cycles of the three reactors. It was found that 63 cycles were needed to form granules with the longest starvation time in R3 while it took 256 cycles in R1 with the shortest starvation time. However, as far as the formation time was concerned, granules were formed on day 16 with 1.5-h cycle time while on day 21 with 8-h cycle time, which indicated that a shorter cycle time with a shorter starvation time speeded up the granulation. This was mainly due to the stronger hydraulic selection pressure at shorter cycle time. However, it was found that granules formed with cycle time of 1.5h were unstable. Fluffy granules with poor settling ability were observed in R1 in the 4th month, which led to the collapse of R1 after 160-day of operation. Granules in R2 and R3 showed good stability during the long-term operation. Therefore, a reasonable starvation time was necessary to maintain the long-term stability of aerobic granules.  相似文献   

6.
Aerobic granulation technology has become a novel biotechnology for wastewater treatment. However, the distinct properties and characteristics of phosphorus removal between granules and flocculent sludge are still sparse in enhanced biological phosphorus removal process. Two identical sequencing batch reactors (SBRs) were operated to compare phosphorus removal performance with granular sludge (R1) and flocculate activated sludge (R2). Results indicated that the start-up period was shorter in R2 than R1 for phosphorus removal, which made R2 reach the steady-state condition on day 21, while R1 was on day 25, and R2 released and took up more phosphorus than R1. As a result, the phosphorus removal was around 90% in R2 while 80% in R1 at the steady-state system. The special phosphorus release rate and special phosphorus uptake rate were 8.818 mg P/g volatile suspended solids (VSS)/h and 9.921 mg P/g VSS/h in R2, which were consistently greater than those (0.999 and 3.016 mg P/g VSS/h) in R1. The chemical oxygen demand removal in two reactors was similar. The granular SBR had better solid-separation performance and higher removal efficiency of NH4+–N than flocculent SBR. Denaturing gradient gel electrophoresis of PCR-amplified 16S rDNA fragment analysis revealed that the diversity and the level of phosphorus-accumulating bacteria in flocculent sludge were much more than those in the granular sludge.  相似文献   

7.
Settling time has been considered as one of the most effective selection pressures for aerobic granulation in sequencing batch reactors (SBRs), i.e., poorly settleable bioparticles would be washed out from SBRs, and the heavy and good settling ones would be retained at a shorter setting time. However, its biological implication remains unclear. This study investigated the microbiological mechanisms of aerobic granulation at different settling times. It provided experimental evidence for the first time showing that a shorter settling time could enhance release of extracellular DNA through cell lysis, which in turn initiated microbial aggregation leading to increased biomass size and density, while AI-2-mediated quorum sensing was found not to be involved in initial aggregation. It was further shown that the AI-2-mediated quorum sensing system was activated to regulate the growth and maturation of aerobic granules when the biomass density reached a threshold of 1.025 g ml−1. It appears from this study that a short settling time of SBR would induce microbiological and physiological responses of bacteria which are required at different stages of aerobic granulation and provide new insights into biological mechanisms of settling time-triggered aerobic granulation.  相似文献   

8.
Effects of reactor height/diameter ratios ranged from 24 to 4 corresponding to reactor settling velocities from 12 to 2 m h?1 on aerobic granulation were investigated. It was found that granules appeared after 1-week operation and granule volume percentages exceeded 50% after 2–3 weeks in four reactors. In addition, similar granule fraction of 94–96% was found at steady state in all four reactors. Sludge volume index (SVI), average sludge size, biomass density and granule settling velocity at steady state were around 50 ml g?1, 1800 μm, 53 g l?1 and 40 m h?1, respectively, in four reactors. Extracellular polymeric substances (EPS) and specific oxygen uptake rate (SOUR) were around 38 mg g?1 VSS and 40 mg O2 g?1 VSS h?1, respectively. Denaturing gradient gel electrophoresis (DGGE) fingerprint of sludge in four reactors showed the same microbial population shift during the start-up period and same microbial community structure during steady-state period. These results recommended strongly that reactor height/diameter ratio or reactor setting velocity in the used range in this study did not affect granule formation, physical characteristics, microbial community structure of granules and stable operation of granular sludge reactor. Reactor height/diameter ratio thus can be very flexible in the practice, which is important for the application of aerobic granule technology.  相似文献   

9.
The characteristics of aerobic granules at steady state and the effects of starvation time on the stability of aerobic granules during the long-term operation were investigated in three sequencing batch reactors (SBRs R1–R3). The SBRs were operated with a cycle time of 1.5, 4.0, and 8.0 h, respectively, which resulted in a starvation time of 0.8, 3.3, and 7.3 h in three reactors, respectively. Results showed that aerobic granules were successfully cultivated in the three reactors, but the granules in R2 with a starvation time of 3.3 h showed the highest density and the best settleability at steady state. It is obvious that the starvation time has an optimum value in terms of settleability of granules. In addition, it was found that the coexistence of a minority of fluffy granules with smooth granules was the potential unstable factor in R1 with a starvation time of 0.8 h at the steady state. The sudden dominance of fluffy granules in R1 after the 160-day operation led to the operation failure of the reactor R1, whereas the granules in R2 with a starvation time of 3.3 h and R3 with a starvation time of 7.3 h showed good stability during the long-term operation. As short starvation time leads to the instability of granules, and long starvation time is not advisable for practical application due to low efficiency, starvation time should be controlled in a reasonable range.  相似文献   

10.
In the present study, the bioremoval of Cr(VI) and the removal of total organic carbon (TOC) were achieved with a system composed by an anaerobic filter and a submerged biofilter with intermittent aeration using a mixed culture of microorganisms originating from contaminated sludge. In the aforementioned biofilters, the concentrations of chromium, carbon, and nitrogen were optimized according to response surface methodology. The initial concentration of Cr(VI) was 137.35 mg l−1, and a bioremoval of 85.23% was attained. The optimal conditions for the removal of TOC were 4 to 8 g l−1 of sodium acetate, >0.8 g l−1 of ammonium chloride and 60 to 100 mg l−1 of Cr(VI). The results revealed that ammonium chloride had the strongest effect on the TOC removal, and 120 mg l−1 of Cr(VI) could be removed after 156 h of operation. Moreover, 100% of the Cr(VI) and the total chromium content of the aerobic reactor output were removed, and TOC removals of 80 and 87% were attained after operating the anaerobic and aerobic reactors for 130 and 142 h, respectively. The concentrations of cells in both reactors remained nearly constant over time. The residence time distribution was obtained to evaluate the flow through the bioreactors.  相似文献   

11.
Two upflow anaerobic hybrid reactors treated lactose and a mixture of ethanol, propionate and butyrate, respectively, at a volumetric loading rate of 3.7 kg chemical oxygen demand (COD) m−3day−1, a hydraulic retention time of 5 days and a liquid upflow velocity of 0.01 m/h. Under steady-state conditions, the lactose-fed sludge had much higher (20%–100%) specific methanogenic conversion rates than the volatile-fatty acid␣(VFA)/ethanol-fed sludge for all substrates tested, including VFA. In both reactors, a flocculant sludge developed, although a much higher content of extracellular polysaccharide was measured in the lactose-fed sludge [1900 μg compared to 305 μg uronic acid/g volatile suspended solids (VSS)]. When the liquid upflow velocity of a third, VFA/ethanol-fed reactor was increased to 0.5 m/h, granulation of the sludge occurred, accompanied by a large increase (200%–500%) in the specific methanogenic conversion rates for the syntrophic and methanogenic substrates studied. Granulation reduced the susceptibility of the sludge to flotation. Glucose was degraded at a high rate (100 mg glucose gVSS−1h−1) by the sludge from the third reactor, despite not having been exposed to a sugar-containing influent for 563␣days. Received: 7 June 1996 / Received revision: 23 September 1996 / Accepted: 29 September 1996  相似文献   

12.
Two sequencing batch reactors were synchronously operated to investigate the effect of manganese (II) (Mn2+) augmentation on aerobic granulation. Reactor 1 (R1) was added with 10 mg/L Mn2+, while there was no Mn2+ augmentation in reactor 2 (R2). Results showed that R1 had a faster granulation process than R2 and R1 performed better in chemical oxygen demand (COD) and ammonium nitrogen (NH4+–N) removal efficiencies. Moreover, the mature granules augmented with Mn2+ behaved better on their physical characteristics and size distributions, and they also had higher production of extracellular polymeric substances (EPS) content. The result of three-dimensional excitation and emission matrix fluorescence showed that Mn2+ had the function of causing organic material diversity (especially proteins diversity) in EPS fraction from granules. Polymerase chain reaction and denaturing gradient gel electrophoresis techniques were employed to analyze the microbial and genetic characteristics in mature granules. The results exhibited that Mn2+ augmentation was mainly responsible for the higher microbial diversity of granules from R1 compared with that from R2. Uncultured sludge bacterium A16 (AF234726) and Rhodococcus sp. WTZ-R2 (HM004214) were the major species in R1, while only uncultured sludge bacterium A16 (AF234726) in R2. Moreover, there were eight species of organisms found in both two aerobic granules, and three species were found only in aerobic granules from R1. It could be concluded that Mn2+ could enhance the sludge granulation process and have a key effect role on the biological properties during the sludge granulation.  相似文献   

13.
Two sequential aerobic sludge blanket reactors were concurrently operated to examine the effect of Ca2+ augmentation on aerobic granulation. Augmentation with 100 mg Ca2+ l–1 significantly decreased the time to cultivate aerobically grown microbial granules from 32 d to 16 d. Ca2+-fed granules were denser and more compact, showed better settling and strength characteristics, and had higher polysaccharide contents.  相似文献   

14.
In the wake of the success of aerobic granulation in sequential batch reactors (SBRs) for treating wastewater, attention is beginning to turn to continuous flow applications. This is a necessary step given the advantages of continuous flow treatment processes and the fact that the majority of full-scale wastewater treatment plants across the world are operated with aeration tanks and clarifiers in a continuous flow mode. As in SBRs, applying a selection pressure, based on differences in either settling velocity or the size of the biomass, is essential for successful granulation in continuous flow reactors (CFRs). CFRs employed for aerobic granulation come in multiple configurations, each with their own means of achieving such a selection pressure. Other factors, such as bioaugmentation and hydraulic shear force, also contribute to aerobic granulation to some extent. Besides the formation of aerobic granules, long-term stability of aerobic granules is also a critical issue to be addressed. Inorganic precipitation, special inocula, and various operational optimization strategies have been used to improve granule long-term structural integrity. Accumulated studies reviewed in this work demonstrate that aerobic granulation in CFRs is capable of removing a wide spectrum of contaminants and achieving properties generally comparable to those in SBRs. Despite the notable research progress made toward successful aerobic granulation in lab-scale CFRs, to the best of our knowledge, there are only three full-scale tests of the technique, two being seeded with anammox-supported aerobic granules and the other with conventional aerobic granules; two other process alternatives are currently in development. Application of settling- or size-based selection pressures and feast/famine conditions are especially difficult to implement to these and similar mainstream systems. Future research efforts needs to be focused on the optimization of the granule-to-floc ratio, enhancement of granule activity, improvement of long-term granule stability, and a better understanding of aerobic granulation mechanisms in CFRs, especially in full-scale applications.  相似文献   

15.
The physical structure and activity of aerobic granules, and the succession of bacterial community within aerobic granules under constant operational conditions and shock loading were investigated in one sequencing batch reactor over ten months. While the maturation phase of the granulation process began on day 30, the structure of microbial community changed markedly until after three months of reactor operation under constant conditions with a loading rate of 1.5 g phenol L−1 day−1. A shock loading of 6.0 g phenol L−1 day−1 from days 182–192 led to divergence of bacterial community, an inhibition of the biomass activity, and a decrease in phenol removal rate in the reactor. However, phenol was still completely removed under this disturbance. After the shock loading, the mean sizes of aerobic granules increased, and the activity of the microbial population within the granules decreased, although there appeared highly resilient for the dominant bacterial community of aerobic granules which mainly included β-Proteobacteria. Correlation analysis suggested that biomass concentration and biomass loading were significantly related to the community composition of aerobic granules during the whole operational period. The development of a relatively stable bacterial community in aerobic granules implied that those distinct dominant microbes in aerobic granules were favorably selected and proliferated under the operational conditions.  相似文献   

16.
High-strength cresol isomers were treated with phenol-acclimated granules in batch experiments. The aerobic granules effectively metabolized cresol isomers at concentrations up to 1,500 mg l−1. The modified Haldane kinetic model, used to assess the kinetic behavior during cresol degradation by granule cells, yielded a high maximum specific growth rate (1.13–1.45 h−1) and inhibition constant (617–952 mg l−1). The microbial community structure, which was stable under cresol stress, was principally composed of genera Bacillus, Acinetobacter, Corynebacterium, and Nocardioides. Enzyme assay results suggest simultaneous expression of ortho- and meta-cleavage pathways during cresol degradation. Under high cresol concentrations, however, cresol isomers were largely degraded via the meta-cleavage pathway, likely attributable to the activity of Bacillus. The aerobic granular sludge system is a promising biotechnology for degrading wastewater containing high-strength cresols.  相似文献   

17.
The effect of hydraulic selection pressure on the development of nitrifying granules was investigated in four column-type sequencing batch reactors (SBR). The nature of SBR is cycle operation, thus SBR cycle time can serve as a main hydraulic selection pressure imposed on the microbial community in the system. No nitrifying granulation was observed in the SBR operated at the longest cycle time of 24 h, due to a very weak hydraulic selection pressure, while the washout of nitrifying sludge was found in the SBR run at the shortest cycle time of 3 h, and led to a failure of nitrifying granulation. Excellent nitrifying granules with a mean diameter of 0.25 mm and specific gravity of 1.014 were developed in a SBR operated at cycle times of 6 h and 12 h, respectively. The results further showed that a short cycle time would stimulate microbial activity, production of cell polysaccharides and also improve the cell hydrophobicity. These hydraulic selection pressure-induced microbial changes favour the formation of nitrifying granules. This work, probably for the first time, shows that nitrifying granules can be developed at a proper hydraulic selection pressure in terms of SBR cycle time. Nitrifying granulation is a novel biotechnology which has a great potential for wastewater nitrification.  相似文献   

18.
Ye FX  Li Y 《Biodegradation》2007,18(5):617-624
In order to understand the fate of PCP in upflow anaerobic sludge blanket reactor (UASB) more completely, the sorption and biodegradation of pentachlorophenol (PCP) by anaerobic sludge granules were investigated. The anaerobic granular sludge degrading PCP was formed in UASB reactor, which was seeded with anaerobic sludge acclimated by chlorophenols. At the hydraulic retention time (HRT) of 20–22 h, and PCP loading rate of 200–220 mg l−1 d−1, UASB reactor exhibited good performance in treating wastewater which containing 170–180 mg l−1 PCP and the PCP removal rate of 99.5% was achieved. Sequential appearance of tetra-, tri-, di-, and mono-chlorophenol was observed in the reactor effluent after 20 mg l−1 PCP introduction. Sorption and desorption of PCP on the anaerobic sludge granules were all fitted to the Freundlich isotherm equation. Sorption of PCP was partly irreversible. The Freundlich equation could describe the behavior of PCP amount sorbed by granular sludge in anaerobic reactor reasonably well. The results demonstrated that the main mechanism leading to removal of PCP on anaerobic granular sludge was biodegradation, not sorption or volatization.  相似文献   

19.
Variable aeration in sequencing batch reactor with aerobic granular sludge   总被引:2,自引:0,他引:2  
This study investigated the effects of reduced aeration in famine period on the performance of sequencing batch reactor (SBR) with aerobic granular sludge. Aerobic granules were first cultivated in two SBRs (R1 and R2) with acetate as sole carbon source. From operation day 27, aeration rate in R1 was reduced from 1.66 to 0.55 cm s(-1) from 110 min to the end of each cycle and further reduced from 30 min to the end of each cycle from day 63. R2 as a control was operated with a constant aeration rate of 1.66 cm s(-1) in the whole cycle during the entire experimental period. Results showed that changing trends of SVI, concentration, average size and VSS/SS of biomass with time in R1 and R2 were similar although different aeration modes were adopted. At steady state, SVI of aerobic granules and biomass concentration maintained at about 40 ml g(-1) and 6 g l(-1), respectively. Average size of granules was about 750 microm in R1 while 550 microm in R2. This is the first study to demonstrate that aerobic granular sludge could be stable at reduced aeration rate in famine period during more than 3-month operation. Such an operation strategy with reduced aeration rate will lead to a significant reduction of energy consumption, which makes the aerobic granular sludge technology more competitive over conventional activated sludge process. Furthermore, the stability of aerobic granular system with variable aeration further indicates that the difference of physiology and kinetics of aerobic granule in feast and famine periods results in the different requirements of oxygen and shear stress for the stability of granules, which will deepen the understanding of mechanism of aerobic granulation in sequencing batch reactor.  相似文献   

20.
《Biological Wastes》1989,27(3):217-235
Three parallel laboratory reactors, R1, R2 and R3, received food industry wastewater: R1 unadulterated; R2 supplemented with calcium and phosphate; R3 supplemented with ferric chloride and traces of nickel and cobalt. Reactors were packed with active granular sludge from a large scale pilot reactor treating the same wastewater. Addition of calcium and phosphate was found to be detrimental to the granule formation at naturally established reactor pH = 6·9–7·4 in R2 while iron promoted granulation in R3. Conditions of upflow velocities of 1·5–6 m h−1, rapid increase of loads up to 15 kg COD m−3 day−1 and ratios of recycle to raw waste feed of 20:1–80:1 were imposed on all reactors. The granules in R1 and R2 disintegrated, from 70–100 g liter−1 VSS to a flocculant sludge at 1·5–3 g liter−1. In spite of such severe washout, reactors R1 and R2 were able to maintain a steady COD removal of over 90% at a load of 10kg m−3 day−1. R3 retained a VSS concentration around 100 g liter−1 and maintained COD removal at over 95%. R3 exhibited a more stable performance and was less vulnerable to the shock treatment to which all reactors were subjected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号