首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The KISS1 gene encodes the kisspeptin neuropeptide, which activates the KISS1 receptor (KISS1R; G protein-coupled receptor 54; GPR54) and participates in neuroendocrine regulation of GnRH secretion. To study the physiological function(s) and evolutionary conservation of KISS1, we cloned opossum, Xenopus, and zebrafish kiss1 cDNAs. Processing zebrafish, Xenopus, or opossum KISS proteins would liberate a carboxy-terminal amidated peptide with 52, 54, or 53 amino acid residues, respectively. Phylogenetic analysis of all known vertebrate KISS1 peptides showed clear clustering of the sequences according to canonical vertebrate classes. The zebrafish kiss1 gene consists of two exons and one intron. Real-time PCR analysis of two kiss1R cloned from zebrafish brain found expression of kiss1, kiss1ra, and kiss1rb, with kiss1ra-more similar to other piscine Kiss1 receptors-highly expressed in the gonads and kiss1rb in other nonbrain tissues. In females kiss1 mRNA levels gradually increased during the first few weeks of life to peak in fish with ovaries containing mature oocytes, while in males kiss1 mRNA levels peaked after 6 wk postfertilization when the testes exhibited initial stages of spermatogenesis and decreased after puberty. Zebrafish kiss1ra and kiss1rb were expressed differentially with similar patterns in both genders. These results indicate that the Kiss1/Kiss1r system may participate in puberty initiation in fish as well. Like human KISS1R, Kiss1ra transduces its activity via the PKC pathway, whereas Kiss1rb does so via both PKC and PKA pathways. The human KISS1R was highly activated by both huKISS10amide and zfKISS10amide, whereas both zebrafish Kiss1 receptor types were less sensitive to amidation.  相似文献   

2.
The mechanisms underlying the initiation of puberty in fish are poorly understood, and whether the Kiss1 receptor (Kiss1r; previously designated G protein-coupled receptor 54; GPR54) and its ligands, kisspeptins, play a significant role, as has been established in mammals, is not yet known. We determined (via real-time PCR) temporal patterns of expression in the brain of kiss1r, gnrh2, and gnrh3 and a suite of related genes in the hypothalamo-pituitary-gonadal (HPG) axis and analyzed them against the timing of gonadal germ cell development in male and female fathead minnow (Pimephales promelas). Full- or partial-length cDNAs for kiss1r (736 bp), gnrh2 (698 bp), and gnrh3 (804 bp) cloned from fathead minnow were found to be expressed only in the brain, testis, and ovary of adult fish. Localization of kiss1r, gnrh2, and gnrh3 within the brain provided evidence for their physiological roles and a likely hypophysiotropic role for GnRH3 in this species (which, like other cyprinids, does not appear to express gnrh1). In both sexes, kiss1r expression in the brain increased at the onset of puberty and reached maximal expression in males when spermatagonia type B appeared in the testis and in females when cortical alveolus-stage oocytes first appeared in the ovary, the timings of which differed for the two sexes. However, kiss1r expression was considerably lower during more advanced stages of spermatogenesis and oogenesis. The expression of kiss1r closely aligned with that of the gnrh genes (gnrh3 in particular), suggesting the Kiss1r/kisspeptin system in fish has a similar role in puberty to that occurring in mammals, and this hypothesis was supported by the induction of gnrh3 (2.25-fold) and kiss1r (1.5-fold) in early-mid pubertal fish injected with mammalian kisspeptin-10 (2 nmol/g wet weight). An intriguing finding, and contrasting that in mammals, was an elevated expression of esr1, ar, and cyp19a2 (genes involved in sex steroid signaling) in the brain at the onset of puberty, and in females slightly in advance of the elevation in the expression of kiss1r.  相似文献   

3.
4.
The adipocyte-derived hormone leptin is required for normal pubertal maturation in mice and humans and, therefore, leptin has been recognized as a crucial metabolic cue linking energy stores and the onset of puberty. Several lines of evidence have suggested that leptin acts via kisspeptin expressing neurons of the arcuate nucleus to exert its effects. Using conditional knockout mice, we have previously demonstrated that deletion of leptin receptors (LepR) from kisspeptin cells cause no puberty or fertility deficits. However, developmental adaptations and system redundancies may have obscured the physiologic relevance of direct leptin signaling in kisspeptin neurons. To overcome these putative effects, we re-expressed endogenous LepR selectively in kisspeptin cells of mice otherwise null for LepR, using the Cre-loxP system. Kiss1-Cre LepR null mice showed no pubertal development and no improvement of the metabolic phenotype, remaining obese, diabetic and infertile. These mice displayed decreased numbers of neurons expressing Kiss1 gene, similar to prepubertal control mice, and an unexpected lack of re-expression of functional LepR. To further assess the temporal coexpression of Kiss1 and Lepr genes, we generated mice with the human renilla green fluorescent protein (hrGFP) driven by Kiss1 regulatory elements and crossed them with mice that express Cre recombinase from the Lepr locus and the R26-tdTomato reporter gene. No coexpression of Kiss1 and LepR was observed in prepubertal mice. Our findings unequivocally demonstrate that kisspeptin neurons are not the direct target of leptin in the onset of puberty. Leptin signaling in kisspeptin neurons arises only after completion of sexual maturation.  相似文献   

5.
Kisspeptin1 (product of the Kiss1 gene) is the key neuropeptide that gates puberty and maintains fertility by regulating the gonadotropin-releasing hormone (GnRH) neuronal system in mammals. Inactivating mutations in Kiss1 and the kisspeptin receptor (GPR54/Kiss1r) are associated with pubertal failure and infertility. Kiss2, a paralogous gene for kiss1, has been recently identified in several vertebrates including zebrafish. Using our transgenic zebrafish model system in which the GnRH3 promoter drives expression of emerald green fluorescent protein, we investigated the effects of kisspeptins on development of the GnRH neuronal system during embryogenesis and on electrical activity during adulthood. Quantitative PCR showed detectable levels of kiss1 and kiss2 mRNA by 1 day post fertilization, increasing throughout embryonic and larval development. Early treatment with Kiss1 or Kiss2 showed that both kisspeptins stimulated proliferation of trigeminal GnRH3 neurons located in the peripheral nervous system. However, only Kiss1, but not Kiss2, stimulated proliferation of terminal nerve and hypothalamic populations of GnRH3 neurons in the central nervous system. Immunohistochemical analysis of synaptic vesicle protein 2 suggested that Kiss1, but not Kiss2, increased synaptic contacts on the cell body and along the terminal nerve-GnRH3 neuronal processes during embryogenesis. In intact brain of adult zebrafish, whole-cell patch clamp recordings of GnRH3 neurons from the preoptic area and hypothalamus revealed opposite effects of Kiss1 and Kiss2 on spontaneous action potential firing frequency and membrane potential. Kiss1 increased spike frequency and depolarized membrane potential, whereas Kiss2 suppressed spike frequency and hyperpolarized membrane potential. We conclude that in zebrafish, Kiss1 is the primary stimulator of GnRH3 neuronal development in the embryo and an activator of stimulating hypophysiotropic neuron activities in the adult, while Kiss2 plays an additional role in stimulating embryonic development of the trigeminal neuronal population, but is an RFamide that inhibits electrical activity of hypophysiotropic GnRH3 neurons in the adult.  相似文献   

6.
ABSTARCT

The neuropeptide kisspeptin (Kp) through its receptor Kiss1r regulates the HPG axis by controlling GnRH release. Since buffalo is a seasonal breeder with problems of delayed puberty and postpartum anestrus, we characterized the Kiss1 and Kiss1r and investigated the immunolocalization in the hypothalamus and corpus luteum (CL). Kiss1 and Kiss1r genes were amplified from gDNA covering the coding region, cloned and sequenced with accession numbers MF168937 and MG820539, respectively. The Kiss1 DNA sequence had two exonic segment contained coding sequence (cds); 408?bp encoding a predicted protein of 136 aa with conservation of Kp-10 and shared 94.5–98.3% identity with ruminants. Kiss1r DNA sequence consisted of five exons with a cds of 1134?bp encoding a protein of 378 aa. Phylogenetic analysis of Kiss1 and Kiss1r revealed that it formed a monophyletic clade with cattle, which branched from sheep and goat. Immunofluorescence study revealed the presence of Kiss1 and Kiss1r in the neuronal soma and perinuclear area of preoptic and arcuate regions of the hypothalamus and luteal cells of the CL. This is the first report on molecular characterization of bubaline Kiss1 and Kiss1r genes that confirmed the presence of conserved Kp-10 like other ruminants and kisspeptinergic system is present in the hypothalamus and CL.  相似文献   

7.
Kisspeptin is an important regulator of reproduction in many vertebrates. The involvement of the two kisspeptins, Kiss1 and Kiss2, and their receptors, Gpr54-1 and Gpr54-2, in controlling reproduction was studied in the brains of the modern teleosts, striped and hybrid basses. In situ hybridization and laser capture microdissection followed by quantitative RT (QRT)-PCR detected coexpression of kiss1 and kiss2 in the hypothalamic nucleus of the lateral recess. Neurons expressing gpr54-1 and gpr54-2 were detected in several brain regions. In the preoptic area, gpr54-2 was colocalized in GnRH1 neurons while gpr54-1 was expressed in cells attached to GnRH1 fibers, indicating two different modes of GnRH1 regulation. The expression of all four genes was measured in the brains of males and females at different life stages using QRT-PCR. The levels of kiss1 and gpr54-1 mRNA, the latter being expressed in minute levels, were consistently lower than those of kiss2 and gpr54-2. While neither gene's expression increased at prepuberty, all were dramatically elevated in mature females. The levels of kiss2 mRNA increased also in mature males. Kiss1 peptide was less potent than Kiss2 in elevating plasma luteinizing hormone levels and in up-regulating gnrh1 and gpr54-2 expression in prepubertal hybrid bass in vivo. In contrast, during recrudescence, Kiss1 was more potent than Kiss2 in inducing luteinizing hormone release, and Kiss2 down-regulated gnrh1 and gpr54-2 expression. This is the first report in fish to demonstrate the alternating actions and the importance of both neuropeptides for reproduction. The organization of the kisspeptin system suggests a transitional evolutionary state between early to late evolving vertebrates.  相似文献   

8.
Kiss1 mRNA and its corresponding peptide products, kisspeptins, are expressed in two restricted brain areas of rodents, the anteroventral periventricular nucleus (AVPV) and the arcuate nucleus (ARC). The concentration of mature kisspeptins may not directly correlate with Kiss1 mRNA levels, because mRNA translation and/or posttranslational modification, degradation, transportation and release of kisspeptins could be regulated independently of gene expression, and there may thus be differences in kisspeptin expression even in species with similar Kiss1 mRNA profiles. We measured and compared kisspeptin-immunoreactivity in both nuclei and both sexes of rats and mice and quantified kisspeptin-immunoreactive nerve fibers. We also determined Kiss1 mRNA levels and measured kisspeptin-immunoreactivity in colchicine pretreated rats. Overall, we find higher levels of kisspeptin-immunoreactivity in the mouse compared to the rat, independently of brain region and gender. In the female mouse AVPV high numbers of kisspeptin-immunoreactive neurons were present, while in the rat, the female AVPV displays a similar number of kisspeptin-immunoreactive neurons compared to the level of Kiss1 mRNA expressing cells, only after axonal transport inhibition. Interestingly, the density of kisspeptin innervation in the anterior periventricular area was higher in female compared to male in both species. Species differences in the ARC were evident, with the mouse ARC containing dense fibers, while the rat ARC contains clearly discernable cells. In addition, we show a marked sex difference in the ARC, with higher kisspeptin levels in females. These findings show that the translation of Kiss1 mRNA and/or the degradation/transportation/release of kisspeptins are different in mice and rats.  相似文献   

9.
《Reproductive biology》2022,22(2):100615
Alterations of circulating and placental levels of kisspeptin have been associated with gestational diseases. However, there are still no studies on the placental and decidual expression of Kiss1 and its receptor Kiss1r in maternal hypothyroidism, which is the aim of this work. We demonstrate that the fetoplacental restriction caused by hypothyroidism in rats is associated with a reduction in the Kiss1r expression and reduced Kiss1 and Kiss1r mRNA levels in the decidua and/or placenta. This demonstrate that fetoplacental restriction in hypothyroid rats is linked with a suppression of the kisspeptin/Kiss1r system at the maternal-fetal interface.  相似文献   

10.
Kisspeptin is thought to have a major role in the control of the onset of puberty in vertebrates. However, our current understanding of its function in fish and how it integrates with other hormones is incomplete due to the high diversity of this group of animals and a still limited amount of available data. This study examined the temporal and spatial changes in expression of kisspeptin, gonadotropins and their respective receptors in the Senegalese sole during a full reproductive cycle. Kiss2 and kiss2r expression was determined by qRT-PCR in the forebrain and midbrain while expression of fshβ and lhβ was determined in the pituitary and fshr and lhr in the gonads. Plasma levels of testosterone (T), 11-ketotestosterone (11-KT) and estradiol-17β were measured by ELISA and gonadal maturation was assessed histologically. In males, kiss2 and kiss2r expression in the brain areas examined was highest towards the end of winter, just before the spawning season, which took place the following spring. This coincided with maximum levels of pituitary fshβ and lhβ, plasma T and 11-KT and the highest number of maturing fish. However, these associations were not evident in females, since the highest expression of kiss2, kiss2r and gonadotropins were observed in the fall, winter or spring, depending upon the variable and tissue considered. Taken together, these data show not only temporal and spatial, but also sex-specific differences in the expression of kisspeptin and its receptor. Thus, while expression of kiss2 in Senegalese sole males agrees with what one would expect according to its proposed role as a major regulator of the onset of reproduction, in females the situation was not so clear, since kiss2 and kiss2r expression was highest either before or during the spawning season.  相似文献   

11.
12.
Kauffman AS 《Peptides》2009,30(1):83-93
The nervous system (both central and peripheral) is anatomically and physiologically differentiated between the sexes, ranging from gender-based differences in the cerebral cortex to motoneuron number in the spinal cord. Although genetic factors may play a role in the development of some sexually differentiated traits, most identified sex differences in the brain and behavior are produced under the influence of perinatal sex steroid signaling. In many species, the ability to display an estrogen-induced luteinizing hormone (LH) surge is sexually differentiated, yet the specific neural population(s) that allows females but not males to display such estrogen-mediated "positive feedback" has remained elusive. Recently, the Kiss1/kisspeptin system has been implicated in generating the sexually dimorphic circuitry underlying the LH surge. Specifically, Kiss1 gene expression and kisspeptin protein levels in the anteroventral periventricular (AVPV) nucleus of the hypothalamus are sexually differentiated, with females displaying higher levels than males, even under identical hormonal conditions as adults. These findings, in conjunction with accumulating evidence implicating kisspeptins as potent secretagogues of gonadotropin-releasing hormone (GnRH), suggest that the sex-specific display of the LH surge (positive feedback) reflects sexual differentiation of AVPV Kiss1 neurons. In addition, developmental kisspeptin signaling via its receptor GPR54 appears to be critical in males for the proper sexual differentiation of a variety of sexually dimorphic traits, ranging from complex social behavior to specific forebrain and spinal cord neuronal populations. This review discusses the recent data, and their implications, regarding the bi-directional relationship between the Kiss1 system and the process of sexual differentiation.  相似文献   

13.
Toll-like receptors (TLR) mediate pathogen recognition in vertebrate species through detection of conserved microbial ligands. Families of TLR molecules have been described from the genomes of the teleost fish model species zebrafish and Takifugu, but much research remains to characterize the full length sequences and pathogen specificities of individual TLR members in fish. While the majority of these pathogen receptors are conserved among vertebrate species with clear orthologues present in fish for most mammalian TLRs, several interesting differences are present in the TLR repertoire of teleost fish when compared to that of mammals. A soluble form of TLR5 has been reported from salmonid fish and Takifugu rubripes which is not present in mammals, and a large group of TLRs (arbitrarily numbered 19-23) was identified from teleost genomes with no easily discernible orthologues in mammals. To better understand these teleost adaptations to the TLR family, we have isolated, sequenced, and characterized the full-length cDNA and gene sequences of TLR5S, TLR20, and TLR21 from catfish as well as studied their expression pattern in tissues. We also mapped these genes to bacterial artificial chromosome (BAC) clones for genome analysis. While TLR5S appeared to be common in teleost fish, and TLR21 is common to birds, amphibians and fish, TLR20 has only been identified in zebrafish and catfish. Phylogenetic analysis of catfish TLR20 indicated that it is closely related to murine TLR11 and TLR12, two divergent TLRs about which little is known. All three genes appear to exist in catfish as single copy genes.  相似文献   

14.
Smith JT 《Peptides》2009,30(1):94-102
In recent years, the Kiss1 gene has been cast into the reproductive spotlight. In the short period since the discovered link between kisspeptins, the encoded peptides of Kiss1, and fertility, these peptides are now known to be critical for the neuroendocrine control of reproduction. Kisspeptin producing cells in the hypothalamus are poised to become the 'missing link' in the sex steroid feedback control of GnRH secretion. These cells contain all the necessary components to relay information of the sex steroid environment to GnRH neurons, which possess the kisspeptin receptor, GPR54. Sex steroids regulate Kiss1 mRNA, and kisspeptin expression in the hypothalamus, in a manner consistent with both negative and positive feedback control of GnRH. The precise nature of sex steroid effects, in particular those of estrogen, on Kiss1 expression have been extensively studied in the female rodent and ewe. In the arcuate nucleus (ARC) of both species, kisspeptin cells appear to forward signals pertinent to negative feedback regulation of GnRH, although in the ewe it appears this population of Kiss1 cell is also responsible for positive feedback regulation of GnRH at the time of the preovulatory GnRH/LH surge. In rodents, these positive feedback signals appear to be mediated by kisspeptin cells exclusively within the anteroventral periventricular nucleus (AVPV). There are no Kiss1 cells in the ovine AVPV, but there is a population in the preoptic area. The role these preoptic area cells play in the sex steroid feedback regulation of GnRH secretion, if any, is yet to be revealed.  相似文献   

15.
Mammalian ALDH3 genes (ALDH3A1, ALDH3A2, ALDH3B1 and ALDH3B2) encode enzymes of peroxidic and fatty aldehyde metabolism. ALDH3A1 also plays a major role in anterior eye tissue UV-filtration. BLAT and BLAST analyses were undertaken of several vertebrate genomes using rat, chicken and zebrafish ALDH3-like amino acid sequences. Predicted vertebrate ALDH3 sequences and structures were highly conserved, including residues involved in catalysis, coenzyme binding and enzyme structure as reported by Liu et al. [27] for rat ALDH3A1. Phylogeny studies of human, rat, opossum, platypus, chicken, xenopus and zebrafish ALDH3-like sequences supported three hypotheses: (1) the mammalian ALDH3A1 gene was generated by a tandem duplication event of an ancestral vertebrate ALDH3A2 gene; (2) multiple mammalian and chicken ALDH3B-like genes were generated by tandem duplication events within genomes of related species; and (3) vertebrate ALDH3A and ALDH3B genes were generated prior to the appearance of bony fish more than 500 million years ago.  相似文献   

16.
Kisspeptin receptor (Kiss1R) is an important receptor that plays central regulatory roles in reproduction by regulating hormone release in the hypothalamus. We hypothesize that the formation of heterocomplexes between Kiss1R and other hypothalamus G protein-coupled receptors (GPCRs) affects their cellular signaling. Through screening of potential interactions between Kiss1R and hypothalamus GPCRs, we identified G protein-coupled estrogen receptor (GPER) as one interaction partner of Kiss1R. Based on the recognised function of kisspeptin and estrogen in regulating the reproductive system, we investigated the Kiss1R/GPER heterocomplex in more detail and revealed that complex formation significantly reduced Kiss1R-mediated signaling. GPER did not directly antagonize Kiss1R conformational changes upon ligand binding, but it rather reduced the cell surface expression of Kiss1R. These results therefore demonstrate a regulatory mechanism of hypothalamic hormone receptors via receptor cooperation in the reproductive system and modulation of receptor sensitivity.  相似文献   

17.
The teleost fish are widely used as model organisms in vertebrate biology. The compact genome of the pufferfish, Fugu rubripes, has proven a valuable tool in comparative genome analyses, aiding the annotation of mammalian genomes and the identification of conserved regulatory elements, whilst the zebrafish is particularly suited to genetic and developmental studies. We demonstrate that a pufferfish WT1 transgene can be expressed and spliced appropriately in transgenic zebrafish, contrasting with the situation in transgenic mice. By creating both transgenic mice and transgenic zebrafish with the same construct, we show that Fugu RNA is processed correctly in zebrafish but not in mice. Furthermore, we show for the first time that a Fugu genomic construct can produce protein in transgenic zebrafish: a full-length Fugu WT1 transgene with a C-terminal β-galactosidase fusion is spliced and translated correctly in zebrafish, mimicking the expression of the endogenous WT1 gene. These data demonstrate that the zebrafish:Fugu system is a powerful and convenient tool for dissecting both vertebrate gene regulation and gene function in vivo.  相似文献   

18.
In order to investigate the potential role of the kisspeptin system in the entrainment of reproduction in Atlantic cod, qPCR assays were developed for kiss2 and its receptor kissr4. mRNA expression was monitored in the brain over a full reproductive cycle in 2 populations of males and females: 1) a maturing population (exposed to simulated natural photoperiod, SNP) and 2) a maturation inhibited population (exposed to constant light, LL). Pituitary expression of gonadotropin subunit mRNA (fshβ and lhβ) was also measured. Results from this study indicated no clear temporal pattern in expression of kiss2 or kissr4 mRNAs in either population of cod, however acute elevations were apparent in maturing (SNP) individuals, namely an elevation in kiss2 in vitellogenic females and spermiating males and spikes in kissr4 during early vitellogenesis in females and spermatogenesis in males. Gonadotropin mRNA expression displayed strong amplitudinal changes over time with fshβ and lhβ mRNA expression increasing towards spawning in maturing individuals. No firm conclusions on the role of the kisspeptin system in cod puberty can be drawn at this stage, however mRNA increases in kiss2 and kissr4 may elude to conserved kisspeptin functions in cod and opens up interesting avenues on potential gender specific functions.  相似文献   

19.
This study, conducted in the brain of a perciform fish, the European sea bass, aimed at raising antibodies against the precursor of the kisspeptins in order to map the kiss systems and to correlate the expression of kisspeptins, kiss1 and kiss2, with that of kisspeptin receptors (kiss-R1 and kiss-R2). Specific antibodies could be raised against the preprokiss2, but not the preoprokiss1. The data indicate that kiss2 neurons are mainly located in the hypothalamus and project widely to the subpallium and pallium, the preoptic region, the thalamus, the pretectal area, the optic tectum, the torus semicircularis, the mediobasal medial and caudal hypothalamus, and the neurohypophysis. These results were compared to the expression of kiss-R1 and kiss-R2 messengers, indicating a very good correlation between the wide distribution of Kiss2-positive fibers and that of kiss-R2 expressing cells. The expression of kiss-R1 messengers was more limited to the habenula, the ventral telencephalon and the proximal pars distalis of the pituitary. Attempts to characterize the phenotype of the numerous cells expressing kiss-R2 showed that neurons expressing tyrosine hydroxylase, neuropeptide Y and neuronal nitric oxide synthase are targets for kisspeptins, while GnRH1 neurons did not appear to express kiss-R1 or kiss-R2 messengers. In addition, a striking result was that all somatostatin-positive neurons expressed-kissR2. These data show that kisspeptins are likely to regulate a wide range of neuronal systems in the brain of teleosts.  相似文献   

20.
Neuropeptide kisspeptin has been suggested to be an essential central regulator of reproduction in response to changes in serum gonadal steroid concentrations. However, in spite of wide kisspeptin receptor distribution in the brain, especially in the preoptic area and hypothalamus, the research focus has mostly been confined to the kisspeptin regulation on GnRH neurons. Here, by using medaka whose kisspeptin (kiss1) neurons have been clearly demonstrated to be regulated by sex steroids, we analyzed the anatomical distribution of kisspeptin receptors Gpr54-1 and Gpr54-2. Because the both receptors were shown to be activated by kisspeptins (Kiss1 and Kiss2), we analyzed the anatomical distribution of the both receptors by in situ hybridization. They were mainly expressed in the ventral telencephalon, preoptic area, and hypothalamus, which have been suggested to be involved in homeostatic functions including reproduction. First, we found gpr54-2 mRNA expression in nucleus preopticus pars magnocellularis and demonstrated that vasotocin and isotocin (Vasopressin and Oxytocin ortholog, respectively) neurons express gpr54-2 by dual in situ hybridization. Given that kisspeptin administration increases serum oxytocin and vasopressin concentration in mammals, the present finding are likely to be vertebrate-wide phenomenon, although direct regulation has not yet been demonstrated in mammals. We then analyzed co-expression of kisspeptin receptors in three types of GnRH neurons. It was clearly demonstrated that gpr54-expressing cells were located adjacent to GnRH1 neurons, although they were not GnRH1 neurons themselves. In contrast, there was no gpr54-expressing cell in the vicinities of neuromodulatory GnRH2 or GnRH3 neurons. From these results, we suggest that medaka kisspeptin neurons directly regulate some behavioral and neuroendocrine functions via vasotocin/isotocin neurons, whereas they do not regulate hypophysiotropic GnRH1 neurons at least in a direct manner. Thus, direct kisspeptin regulation of GnRH1 neurons proposed in mammals may not be the universal feature of vertebrate kisspeptin system in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号