首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The membrane-bound bacterial D-alanyl- D-alanine peptidases or penicillin-binding proteins (PBPs) catalyze the final transpeptidation reaction of bacterial cell wall biosynthesis and are the targets of beta-lactam antibiotics. Rather surprisingly, the substrate specificity of these enzymes is not well understood. In this paper, we present measurements of the reactivity of typical examples of these enzymes with peptidoglycan-mimetic beta-lactams under in vivo conditions. The minimum inhibitory concentrations of beta-lactams with Escherichia coli-specific side chains were determined against E. coli cells. Analogous measurements were made with Streptococcus pneumoniae R6. The reactivity of the relevant beta-lactams with E. coli PBPs in membrane preparations was also determined. The results show that under none of the above protocols were beta-lactams with peptidoglycan-mimetic side chains more reactive than generic analogues. This suggests that in vivo, as in vitro, these enzymes do not specifically recognize elements of peptidoglycan structure local to the reaction center. Substrate recognition must thus involve extended structure.  相似文献   

2.
The identification and validation of the targets of active compounds identified in cell-based assays is an important step in preclinical drug development. New analytical approaches that combine drug affinity pull-down assays with mass spectrometry (MS) could lead to the identification of new targets and druggable pathways. In this work, we investigate a drug-target system consisting of ampicillin- and penicillin-binding proteins (PBPs) to evaluate and compare different amino-reactive resins for the immobilization of the affinity compound and mass spectrometric methods to identify proteins from drug affinity pull-down assays. First, ampicillin was immobilized onto various amino-reactive resins, which were compared in the ampicillin-PBP model with respect to their nonspecific binding of proteins from an Escherichia coli membrane extract. Dynal M-270 magnetic beads were chosen to further study the system as a model for capturing and identifying the targets of ampicillin, PBPs that were specifically and covalently bound to the immobilized ampicillin. The PBPs were identified, after in situ digestion of proteins bound to ampicillin directly on the beads, by using either one-dimensional (1-D) or two-dimensional (2-D) liquid chromatography (LC) separation techniques followed by tandem mass spectrometry (MS/MS) analysis. Alternatively, an elution with N-lauroylsarcosine (sarcosyl) from the ampicillin beads followed by in situ digestion and 2-D LC-MS/MS analysis identified proteins potentially interacting noncovalently with the PBPs or the ampicillin. The in situ approach required only little time, resources, and sample for the analysis. The combination of drug affinity pull-down assays with in situ digestion and 2-D LC-MS/MS analysis is a useful tool in obtaining complex information about a primary drug target as well as its protein interactors.  相似文献   

3.
Competing interaction of two novel N-acyl derivatives of ampicillin i.e. N'-benzylchlorbenzimidazole (No. 48) and N-pyrazolytiazole (No. 72) derivatives and 14C-benzylpenicillin with penicillin-binding proteins (PBP) of E. coli was studied. It was shown that ampicillin and its derivative No. 48 markedly differed in their affinity to various PBPs. Derivative No. 72 did not prevent binding of the labeled benzylpenicillin to any PBP which corresponded to its low antimicrobial activity. Analogous experiments with new cephalosporin structures i.e. active and inactive N-acyl derivatives of cephalosporin showed that the active derivative No. 94 i.e. N-methyltiobenzimidazole derivative had the highest affinity to PBP-2 and PBP-5. The inactive derivative No. 68 i.e. N-chlorbenzimidazole derivative also had high affinity to PBP-1b, PBP-2 and PBP-3 essential for the cell. No activity of the latter compound against intact cells of E. coli was probably due to its low penetration through the outer membrane of the bacterial cell. Estimation of affinity of the beta-lactam structures to various PBPs not only provided data on the mechanism of their action but also made it possible to explain in some cases the peculiarities of their antimicrobial spectrum.  相似文献   

4.
The penicillin-binding proteins (PBPs) found in the membranes of Escherichia coli X925 minicells (primarily cell ends or septa) were compared with those found in rod-shaped cells (primarily sidewalls) in an effort to determine whether certain PBPs are unevenly distributed over the bacterial cell membrane. The seven major PBPs of E. coli were all present in minicell membranes. PBP 1B was altered in minicells, however, appearing as two bands on sodium dodecyl sulfate-polyacrylamide gels rather than the usual three. PBP 2, which is needed for longitudinal growth of the cell but not for septum formation, was significantly reduced in minicell membranes. This observation is consistent with the fact that minicells contain very little sidewall material and raises the possibility that the specialized function of PBP 2 may be determined or regulated by its uneven topographical distribution in the membrane. None of the PBPs appeared to be selectively enriched in minicell membranes.  相似文献   

5.
The penicillin-binding proteins (PBPs) catalyze the synthesis and modification of bacterial cell wall peptidoglycan. Although the biochemical activities of these proteins have been determined in Escherichia coli, the physiological roles of many PBPs remain enigmatic. Previous studies have cast doubt on the individual importance of the majority of PBPs during log phase growth. We show here that PBP1b is vital for competitive survival of E. coli during extended stationary phase, but the other nine PBPs studied are dispensable. Loss of PBP1b leads to the stationary phase-specific competition defective phenotype and causes cells to become more sensitive to osmotic stress. Additionally, we present evidence that this protein, as well as AmpC, may assist in cellular resistance to beta-lactam antibiotics.  相似文献   

6.
Abstract Permeabilized cells of Haemophilus influenzae incorporate wall precursors into murein material in an ampicillin-sensitive reaction. In resistant transformants that contain the low antibiotic affinity penicillin-binding proteins (PBPs) 4 and 5, the sensitivity of this incorporation reaction to ampicillin is proportionally lower, suggesting a catalytic role for these proteins in wall synthesis. We conclude that, analogous to the reaction in Escherichia coli , PBPs 4 and 5 of H. influenzae have transpeptidase activity.  相似文献   

7.
Intact Listeria monocytogenes cells or membranes isolated from them were treated with [3H]penicillin to allow identification of the penicillin binding proteins (PBPs) located in the cytoplasmic membrane. In the former case the PBPs were released from the cells following disruption of the cell wall murein with Listeria monocytogenes bacteriophage lysin. The procedure described by Dougherty et al. (1996) for Escherichia coli, with some modifications, was used to evaluate the M(r)s of the individual PBPs and allowed direct quantitation of their copy number.  相似文献   

8.
Penicillin-binding protein (PBP) 7 of Escherichia coli is a poorly characterized member of the family of enzymes that synthesize and modify the bacterial cell wall. The approximate chromosomal position of the gene encoding this protein was determined by measuring the expression of PBPs during lytic infection of E. coli by each of the 476 miniset members of the Kohara lambda phage genomic library. Phages lambda 363 and lambda 364, encompassing the region from 47.7 to 48 min of the chromosome, overproduced PBP 7. One open reading frame, yohB, was present on both these phages and directed the expression of PBPs 7 and 8. The predicted amino acid sequence of PBP 7 contains the consensus motifs associated with other PBPs and has a potential site near the carboxyl terminus where proteolysis by the OmpT protein could occur, creating an appropriately sized PBP 8. The PBP 7 gene (renamed pbpG) was interrupted by insertion of a kanamycin resistance gene cassette and was moved to the chromosome of E. coli. No obvious growth defects were observed, suggesting that PBP 7 is not essential for growth under normal laboratory conditions.  相似文献   

9.
Although general physiological functions have been ascribed to the high-molecular-weight penicillin binding proteins (PBPs) of Escherichia coli, the low-molecular-weight PBPs have no well-defined biological roles. When we examined the morphology of a set of E. coli mutants lacking multiple PBPs, we observed that strains expressing active PBP 5 produced cells of normal shape, while mutants lacking PBP 5 produced cells with altered diameters, contours, and topological features. These morphological effects were visible in untreated cells, but the defects were exacerbated in cells forced to filament by inactivation of PBP 3 or FtsZ. After filamentation, cellular diameter varied erratically along the length of individual filaments and many filaments exhibited extensive branching. Also, in general, the mean diameter of cells lacking PBP 5 was significantly increased compared to that of cells from isogenic strains expressing active PBP 5. Expression of cloned PBP 5 reversed the effects observed in DeltadacA mutants. Although deletion of PBP 5 was required for these phenotypes, the absence of additional PBPs magnified the effects. The greatest morphological alterations required that at least three PBPs in addition to PBP 5 be deleted from a single strain. In the extreme cases in which six or seven PBPs were deleted from a single mutant, cells and cell filaments expressing PBP 5 retained a normal morphology but cells and filaments lacking PBP 5 were aberrant. In no case did mutation of another PBP produce the same drastic morphological effects. We conclude that among the low-molecular-weight PBPs, PBP 5 plays a principle role in determining cell diameter, surface uniformity, and overall topology of the peptidoglycan sacculus.  相似文献   

10.
The pH-conditional morphology mutant of Klebsiella pneumoniae strain MirM7 grows as cocci at pH 7 and as rods at pH 5.8. The mutant has a high-level mecillinam resistance (50% lethal dose greater than 200 micrograms/ml) in both forms. When broth cultures of the rod-shaped mutant were grown with 0.7 microgram of mecillinam per ml, cells assumed a round shape and continued to divided at a higher rate than the untreated control. A MirM7 rod-shaped revertant (MirA12), when treated with the same antibiotic concentration, changed to coccal shape and stopped dividing. The penicillin-binding proteins (PBPs) of strains MirA12 and MirM7 were analyzed. K. pneumoniae had six major PBPs quite similar to those of Escherichia coli. No differences were seen in the PBPs of MirM7 cocci and rods and MirA12 cells. In particular, PBP2 was found to be present and similar in MirM7 rods and cocci and MirA12 cells. We suggest that that in gram-negative rods, a control mechanism exists which prevents further septation in the absence of lateral cell wall elongation. The unique behavior of MirM7 is due to the fact that the control mechanism is not active in this strain. This model allows us to explain the preservation of shape in bacterial rods under various conditions of growth and the mechanism of bacterial killing by mecillinam.  相似文献   

11.
The penicillin-binding proteins (PBPs) are a set of enzymes that participate in the terminal stages of bacterial peptidoglycan assembly. As their name implies, these proteins also covalently bind and are inhibited by beta-lactam antibiotics. Although many studies have examined the relative binding affinities of a number of beta-lactam antibiotics, a surprisingly small number of studies have addressed the absolute numbers of each of the PBPs present in the bacterial cell. In the present study, the PBP values initially reported in Escherichia coli almost 20 years ago by B. G. Spratt (Eur. J. Biochem. 72:341-352, 1977) were refined. The individual PBPs from a known number of bacteria radiolabeled with [3H]benzylpenicillin were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The radioactive bands were located, excised, and quantitatively extracted from the gel slices. The radioactivity was measured by scintillation counting, and the absolute disintegrations per minute were calculated. From the specific activity of the labeled penicillin, the absolute disintegrations per minute, and the CFU per milliliter, a determination of the number of each of the PBPs per cell was made. The measurements were performed on multiple samples to place statistical limits on the numbers obtained. The values for the individual PBPs found in E. coli deviated in several ways from the previously reported observations. Of particular significance is the higher number of molecules of PBP 2 and 3 observed, since these PBPs are known to participate in cell morphogenesis. The PBP content in both rich Luria broth medium and M9 minimal medium was determined, with the slower-growing cells in minimal medium possessing fewer of the individual PBPs per cell.  相似文献   

12.
Abstract The penicillin binding proteins (PBPs) of 4 representative isolates of Haemophilus influenzae were studied using crude membrane preparations and whole cells grown to the logarithmic and stationary phases of growth. Relative binding, % of total bound, and binding affinities were compared. The PBP patterns were similar for crude membranes and whole cells for all 4 strains tested at each phase of growth. However, PBP 2 was slightly reduced and PBP 4 was markedly reduced with whole-cell labelling in comparison to crude membranes. 8 PBPs were detected in cells labelled during the logarithmic phase of growth, while 6 were detected in stationary phase cells. The pBPs 'lost' in stationary phase (PBPs 4 and 6) with apparent M r of 62 000 and 45 000, respectively, have a high affinity for ampicillin ( I 50≃ 0.04 μ g/ml). This suggests that these proteins may have an important role in cell growth, and are targets for β-lactam substrates.  相似文献   

13.
The heat shock proteins (HSPs) of Escherichia coli were artificially induced in cells containing the wild-type rpoH+ gene under control of a tac promoter. At 30 degrees C, expression of HSPs produced cells that were resistant to lysis by cephaloridine and cefsulodin, antibiotics that bind penicillin-binding proteins (PBPs) 1a and 1b. This resistance could be reversed by the simultaneous addition of mecillinam, a beta-lactam that binds PBP 2. However, even in the presence of mecillinam, cells induced to produce HSPs were resistant to lysis by ampicillin, which binds all the major PBPs. Lysis of cells induced to produce HSPs could also be effected by imipenem, a beta-lactam known to lyse nongrowing cells. These effects suggest the existence of at least two pathways for beta-lactam-dependent lysis, one inhibited by HSPs and one not. HSP-mediated lysis resistance was abolished by a mutation in any one of five heat shock genes (dnaK, dnaJ, grpE, GroES, or groEL). Thus, resistance appeared to depend on the expression of the complete heat shock response rather than on any single HSP. Resistance to lysis was significant in the absence of the RelA protein, implying that resistance could not be explained by activation of the stringent response. Since many environmental stresses promote the expression of HSPs, it is possible that their presence contributes an additional mechanism toward development in bacteria of phenotypic tolerance to beta-lactam antibiotics.  相似文献   

14.
Abstract In an Escherichia coli strain, the levels of penicillin-binding proteins (PBPs) 1A plus 1B, both peptidoglycan transglycosylase/transpeptidases, were found to be relatively independent of the imposed growth ratw in chemostat cultures under different nutrient limitation conditions. A considerable increase in levels of PBP 6 was observed as the growth rate was reduced, whilst, in contrast, a decrease was observed in levels of the other PBPs.  相似文献   

15.
The effect of subbacteriostatic concentrations of ampicillin on morphological and mechanical properties of gramnegative and grampositive cells of Escherichia coli K12 TG1 and Bacillus cereus IP 5832 respectively was studied with atomic force microscopy. Significant heterogeneity of the bacterial populations was shown by the character of the response to the antibiotic effect. The common feature was increase of the cell size likely due to the effect of the inner osmotic pressure on the lowered cell wall strength. In the E. coli population there were besides observed anomalous elongated cells with signs of septation disorder, as well as their structurs, lacking the cytoplasmic liquid fraction. In the B. cereus the inner osmotic pressure mainly enlarged the cell cross section, changing the cell shape from rod to sphere, that was accompanied by significant impairment of the surface structure with liberation of the peptidoglycane fragments to the medium. The particular features of the E. coli K12 TG1 and B. cereus IP 5832 respond to the ampicillin effect were attributed to the differences in the structure of their cell wall, also due to specific properties of the peptidoglycane synthesis and three-dimensional organization.  相似文献   

16.
The composition of peptidoglycan of chemostat-grown cultures of Escherichia coli was investigated as a function of growth rate. As the generation time was lengthened from 0.8 to 13.8 h, there was a decrease in the major monomer (disaccharide tetrapeptide) and dimer (bis-disaccharide tetrapeptide), while disaccharide tripeptide moieties increased to greater than 50% of the total wall. The average chain length became much shorter; lipoprotein density tripled, and the number of unusual diaminopimelyl-diaminopimelic acid crossbridges increased fivefold. As cells grew more slowly, amounts of penicillin-binding proteins (PBPs) 1a-1b complex and 4 decreased, while amounts of PBPs 3 and the 5-6 complex increased. We propose that the chemical composition of E. coli cell walls changes with growth rate in a manner consistent with alterations in the activities of PBPs and cell shape.  相似文献   

17.
The effect of dissolved oxygen shock on the stability of recombinant Escherichia coli cells containing plasmid pKN401 was investigated. The recombinant cells were stable in control batch experiments in media with and without ampicillin. However, these recombinant cells were highly unstable under conditions where a dissolved oxygen shock was induced. The results have implications for design of aerated reactors for recombinant cells.  相似文献   

18.
Penicillin-binding proteins (PBPs) were visualized in strains of Escherichia coli that carried mutations in one or more of the following protease genes: tsp, degP, ptr, and ompT. In the absence of a functional ompT gene, PBPs 1b alpha and 7 were not processed to the shortened forms 1b beta and 8, respectively. Cleavage of PBPs 1b alpha and 7 could be restored by introduction of a plasmid carrying the wild-type ompT gene. These PBPs were processed only after cell lysis or after membrane perturbation of whole cells by freeze-thaw, suggesting that the cleavage was a nonspecific artifact due to contact with OmpT, an outer membrane protease, and that such processing was not biologically significant in vivo. The degradation of other PBPs during purification or storage may also be effected by OmpT.  相似文献   

19.
It was shown that preincubation of E. coli intact cells with gentamicin and streptomycin induced a marked increase in binding of 14C-benzylpenicillin to its final targets in the membrane i.e. penicillin-binding proteins (PBP). The stimulating effect of the aminoglycosides was also confirmed in experiments with a membrane fraction isolated from the cells preincubated with the aminoglycosides. The PBPs of the cells preincubated with the aminoglycosides were studied with SDS-PAAG electrophoresis. It was revealed that under the action of the aminoglycosides the quantity of the labeled substance (intensity of the bands on the fluorograms) fixed by the low molecular PBPs i.e. D-alanine carboxypeptidases increased. Moreover, the composition of the high molecular less mobile PBPs (transpeptidases) changed. The data are discussed in regard to the peculiarities of the effect of the aminoglycosides on the cells (bactericidal action, membrane tropism). The effect of the aminoglycosides can influence (along with the others) the results of their combined use with beta-lactams.  相似文献   

20.
In growing cultures of Escherichia coli, simultaneous inhibition of penicillin-binding proteins 1a and 1b (PBPs 1) by a beta-lactam efficiently induces cell lysis. However, the lytic behavior of cultures initiating growth in the presence of beta-lactams specifically inhibiting PBPs 1 suggested that the triggering of cell lysis was a cell division-related event, at least in the first cell cycle after the resumption of growth (F. Garcia del Portillo, A. G. Pisabarro, E. J. de la Rosa, and M. A. de Pedro, J. Bacteriol. 169:2410-2416, 1987). To investigate whether this apparent correlation would hold true in actively growing cells, we studied the lytic behavior of cultures of E. coli aligned for cell division which were challenged with beta-lactams at different times after alignment. Cell division was aligned either by nutritional shift up or by chromosome replication alignment. Specific inhibition of PBPs 1 with the beta-lactam cefsulodin resulted in a delayed onset of lysis which was coincident in time with the resumption of cell division. The apparent correlation between the initiation of lysis and cell division was abolished when cefsulodin was used in combination with the PBP 2-specific inhibitor mecillinam, leading to the onset of lysis at a constant time after the addition of the beta-lactams. The results presented clearly argue in favor of the hypothesis that the triggering of cell lysis after inhibition of PBPs 1 is a cell division-correlated event dependent on the activity of PBP 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号