首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An alpha-helix terminates when the virtual extension of its most hydrophobic, longitudinal strip containing Leu, Ile, Val, Phe, and Met lacks those residues. In each of 247 helices a template was fitted to maximize the mean hydrophobicity of positions forming a longitudinal strip-of-helix. The template was then extended into sequences beyond the ends of the helices. Leu, Ile, Val, Phe, and Met occurred in positions in the longitudinal strip-of-helix at an increased frequency (p less than 0.001), but in the first and second positions beyond either end of each true helix, they occurred at the same frequency as for their empirical distribution over all the proteins. Excesses of Asp and Glu were found in the N-terminal loop, and of Arg, His, and Lys in specific positions about the C terminus of helices. The longitudinal hydrophobic strip, the smallest amino acid in that strip, and charged amino acids in that strip, related to rotational and longitudinal orientation of alpha-helices in 15 proteins. Adjacent helices generally crossed through their longitudinal hydrophobic strips. They usually crossed through the smallest residue in the strip. Charged residues, when they occurred in the strips, were excluded from the crossing regions.  相似文献   

2.
J Sondek  D Shortle 《Proteins》1990,7(4):299-305
Single alanine and glycine insertions were introduced at 20 randomly selected positions in staphylococcal nuclease. The resulting changes in catalytic activity and in stability to guanidine hydrochloride denaturation indicate that the native state structure is frequently able to accommodate the extra residue without great difficulty, even insertions within secondary structural elements such as alpha helices and beta sheets. On average, an inserted residue reduces the free energy of denaturation (delta GH2O) by an amount roughly comparable to an alanine or glycine substitution for one of the residues flanking the site of insertion. Several positions outside of the enzyme active site were found where insertions, but not substitutions, lead to structural changes that modify catalytic activity and the circular dichroism spectrum. Amino acid insertions represent a virtually unexplored class of genetic mutation that may prove complementary to amino acid substitutions for engineering proteins with altered functional and structural properties.  相似文献   

3.
The probability of occurrence of helix and β-sheet residues in 47 globular proteins was determined as a function of local hydrophobicity, which was defined by the sum of the Nozaki-Tanford transfer free energies at two nearest-neighbors on both sides of the amino acid sequence. In general, hydrophilic amino acids favor neither helix nor β-sheet formations when neighbor residues are also hydrophilic but favor helix formation at higher local hydrophobicity. On the other hand, some hydrophobic amino acids such as Met, Leu, and Ile favor helix formation when neighbor residues are hydrophilic. None of the hydrophobic amino acids favor β-sheet formation with hydrophilic neighbors, but most of them strongly favor β-sheet formation at high local hydrophobicity. When the average of 20 amino acids is taken, both helix and β-sheet residue probabilities are higher at higher local hydrophobicity, although the increase is steeper for β-sheets. Therefore, β-sheet formation is more influenced by local hydrophobicity than helix formation. Generally, helices are nearer the surface and tend to have hydrophilic and hydrophobic faces at opposite sides. The tendency of alternating regions of hydrophilic and hydrophobic residues in a helical sequence was revealed by calculating the correlation of the Nozaki-Tanford values. Such amphipathic helices may be important in protein–protein and protein–lipid interactions and in forming hydrophilic channels in the membrane. The choice of 30 nonhomologous proteins as the data set did not alter the above results.  相似文献   

4.
Contributions of alpha-helices to biological activity in murine granulocyte-macrophage colony-stimulating factor were analyzed using site-directed mutagenesis and protein expression in COS-1 cells. A series of single proline substitutions were made for residues within the four predicted alpha-helices as a means of disrupting local helical secondary structure. Mutations in three of the four helices resulted in marked reductions in bioactivity. Five mutants E21P, L56P, E60P, L63P, and L107P showed 10(2)-10(4)-fold reduction in bioactivity as well as hyperglycosylation. The same Pro substitutions made on non-N-glycosylated molecules had a similar loss in bioactivity implying that a Pro-induced structural change and not hyperglycosylation was responsible for the major decrease in bioactivity. Additional amino acid substitutions at these residues which conserved charge or hydrophobicity, or replaced the original residue with an Ala, verified that conformational changes in the protein structure were specifically due to steric constraints imposed by the Pro residue rather than loss of important side chain functions.  相似文献   

5.
It was established previously that helical propensities of different amino acid residues in the middle of α‐helix in peptides and in proteins are very similar. The statistical analysis of the protein helices from the known three‐dimensional structures shows no difference in the frequency of noncharged residues in the middle and at the C terminus. Yet, experimental studies show distinctive differences for the helical propensities of noncharged residues in the middle and in the C terminus in model peptides. Is this a general effect, and is it applicable to protein helices or is it specific to the model alanine‐based peptides? To answer this question, the effects of substitutions at positions 28 (middle residue) and 32 (C2 position at the C terminus) of the α‐helix of ubiquitin on the stability of this protein are measured by using differential scanning calorimetry. The two data sets produce similar values for intrinsic helix propensity, leading to a conclusion that noncharged amino acid residues at the solvent‐exposed positions in the middle and at the C terminus of the α‐helix have the same helical propensity. This conclusion is further supported with an excellent correlation between the helix propensity scale obtained for the two positions in ubiquitin with the experimental helix propensity scale established previously and with the statistical distribution of the residues in protein helices.  相似文献   

6.
The specificities of four monoclonal antibodies rho 1D4, 1C5, 3A6, and 3D6 prepared by immunization of rod outer segments containing rhodopsin have been defined using synthetic peptides. All of these antibodies interact within the 18 residues at the COOH terminus of rhodopsin and recognize linear antigenic determinants of 4-11 residues. Twenty-seven synthetic peptide analogs of varying lengths of native sequence or containing single amino acid substitutions at each position of the COOH-terminal 18 residues have provided some insight into the mechanism of antigen-antibody binding. Our results clearly demonstrate that antibodies can be highly specific at key positions as shown by the loss of binding on single amino acid substitutions in the binding site. In contrast single amino acid substitutions at other positions in the binding site only affect affinity for some antibodies. Ionic interactions can dominate immunogenic determinants. Immunogenic determinants are not restricted to highly charged hydrophilic regions on the surface of a protein and may be dominated by hydrophobic interactions. Although certain side chains can dominate the interaction of the antigen with antibody, our results are in agreement with the interpretation that the free energies of all the contact points are additive and a certain free energy must be present to achieve binding. Antibodies with different specificities directed to the same region of the protein antigen can be produced in an immune response. Peptide antigens representing regions of a protein antigen bind best to the anti-protein antibody when the sequence is shortened to contain only those residues binding to the specificity site in the antibody. Cross-reactivity between protein antigens can be explained by conservation of the critical residues in the combining site.  相似文献   

7.
The Tat (twin arginine translocation) system transports folded proteins across the bacterial cytoplasmic membrane and the thylakoid membrane of plant chloroplasts. The integral membrane proteins TatA, TatB, and TatC are essential components of the Tat pathway. TatA forms high order oligomers and is thought to constitute the protein-translocating unit of the Tat system. Cysteine scanning mutagenesis was used to systematically investigate the functional importance of residues in the essential N-terminal transmembrane and amphipathic helices of Escherichia coli TatA. Cysteine substitutions of most residues in the amphipathic helix, including all the residues on the hydrophobic face of the helix, severely compromise Tat function. Glutamine 8 was identified as the only residue in the transmembrane helix that is critical for TatA function. The cysteine variants in the transmembrane helix were used in disulfide mapping experiments to probe the oligomeric arrangement of TatA protomers within the larger TatA complex. Residues in the center of the transmembrane helix (including residues 10-16) show a distinct pattern of cross-linking indicating that this region of the protein forms well defined interactions with other protomers. At least two interacting faces were detected. The results of our TatA studies are compared with analogous data for the homologous, but functionally distinct, TatB protein. This comparison reveals that it is only in TatA that the amphipathic helix is sensitive to amino acid substitutions. The TatA amphipathic helix may play a role in forming and controlling the path of substrate movement across the membrane.  相似文献   

8.
Patterns of hydrophobic and hydrophilic residues play a major role in protein folding and function. Long, predominantly hydrophobic strings of 20-22 amino acids each are associated with transmembrane helices and have been used to identify such sequences. Much less attention has been paid to hydrophobic sequences within globular proteins. In prior work on computer simulations of the competition between on-pathway folding and off-pathway aggregate formation, we found that long sequences of consecutive hydrophobic residues promoted aggregation within the model, even controlling for overall hydrophobic content. We report here on an analysis of the frequencies of different lengths of contiguous blocks of hydrophobic residues in a database of amino acid sequences of proteins of known structure. Sequences of three or more consecutive hydrophobic residues are found to be significantly less common in actual globular proteins than would be predicted if residues were selected independently. The result may reflect selection against long blocks of hydrophobic residues within globular proteins relative to what would be expected if residue hydrophobicities were independent of those of nearby residues in the sequence.  相似文献   

9.
The contributions of some amino acid residues in the A, B, G, and H helices to the formation of the folding nucleus and folding intermediate of apomyoglobin were estimated. The effects of point substitutions of Ala for hydrophobic amino acid residues on the structural stability of the native (N) protein and its folding intermediate (I), as well as on the folding/unfolding rates for four mutant apomyoglobin forms, were studied. The equilibrium and kinetic studies of the folding/unfolding rates of these mutant proteins in a wide range of urea concentrations demonstrated that their native state was considerably destabilized as compared with the wild-type protein, whereas the stability of the intermediate state changed moderately. It was shown that the amino acid residues in the A, G, and H helices contributed insignificantly to the stabilization of the apomyoglobin folding nucleus in the rate-limiting I ? N transition, taking place after the formation of the intermediate, whereas the residue of the B helix was of great importance in the formation of the folding nucleus in this transition.  相似文献   

10.
Helix formation in folding proteins is stabilized by binding of recurrent hydrophobic side chains in one longitudinal quadrant against the locally most hydrophobic region of the protein. To test this hypothesis, we fitted sequences of 247 alpha-helices of 55 proteins to the circular (infinite) template (symbol; see text) to maximize the strip-of-helix hydrophobicity index (the mean hydrophobicity of residues in (symbol; see text) positions). These template-predicted configurations closely matched crystallographic structures in 87% of four- or five-turn helices compared. We determined the longitudinal quadrant distributions of amino acids in the template-fitted, sheet projections of alpha-helices with respect to the best longitudinal, hydrophobic strip on each helix and to the N and C termini, interiors, and entire helices. Amino acids Leu, Ile, Val, and Phe were concentrated in one longitudinal quadrant (p less than 0.001). Lys, Arg, Asp, and Glu were not in the quadrant of Leu, Ile, Val, and Phe (p less than 0.001). Significant quadrant distributions for other amino acids and for termini of the helices were also found.  相似文献   

11.
D S Auld  G J Pielak 《Biochemistry》1991,30(35):8684-8690
The interaction of the N- and C-terminal helices is a hallmark of the cytochrome c family. Oligodeoxyribonucleotide-directed random mutagenesis within the gene encoding the C102T protein variant of Saccharomyces cerevisiae iso-1-cytochrome c was used to generate a library of mutations at the evolutionary invariant residues Gly-6 and Phe-10 in the N-terminal helix. Transformation of this library (contained on a low-copy-number yeast shuttle phagemid) into a yeast strain lacking a functional cytochrome c, followed by selection for cytochrome c function, reveals that 4-10% of the 400 possible amino acid substitutions are compatible with function. DNA sequence analysis of phagemids isolated from transformants exhibiting the functional phenotype elucidates the requirements for a stable helical interface. Basic residues are not tolerated at position 6 or 10. There is a broad volume constraint for amino acids at position 6. The amino acid substitutions observed to be compatible with function at Phe-10 show that the hydrophobic effect alone is sufficient to promote helical association. There are severe constraints that limit the combinations consistent with function, but the number of functionally consistent combinations observed exemplifies the plasticity of proteins.  相似文献   

12.
β-Hairpins are widespread in proteins, and it is possible to find them both within β-sheets and separately. In this work, a comparative analysis of amino acid sequences of β-strands within strongly twisted β-hairpins from different structural protein subclasses has been conducted. Strongly twisted and coiled β-hairpin generates in the space a right double helix out of β-strands that are connected by a loop region (connections). The frequencies of amino acid residues on the internal (concave) and external (convex) surfaces of strongly twisted β-hairpins have been determined (220 β-hairpins from nonhomologous proteins were studied). The concave surface of these β-hairpins is mainly generated by hydrophobic residues, while the convex surface by hydrophilic residues; accordingly, the alternation of hydrophobic internal and hydrophilic external residues is observed in their amino acid sequences. Amino acid residues of glycine and alanine (especially in places of the largest twisting of the strands) were anomalously frequently found in internal positions of strongly twisted and coiled β-hairpins. It was established that internal positions never contain the proline residues, while external positions in the twisting region contain them in a relatively large amount. It was demonstrated that at least one amino acid residue in αL- or ε-conformation is required for generation of relatively short (up to 7 amino acid residues) connection. As a rule, these positions are occupied by glycines. Thus, not only the alternation of hydrophobic and hydrophilic amino acid residues, but also the presence of one or two glycine residues in the connection region and the excess of glycines and alanines in the places of the largest strand twisting on the concave surface, as well as the presence of prolines on the convex surface, are required to generate a strongly twisted and coiled β-hairpin.  相似文献   

13.
How tightly packed is the hydrophobic core of a folding transition state structure? We have addressed this question by characterizing the effects on folding kinetics of > 40 substitutions of both large and small amino acids in the hydrophobic core of the Fyn SH3 domain. Our results show that residues at three positions, which we designate as the 'core folding nucleus', are tightly packed in the transition state, and substitutions at these positions cause the largest changes in the folding rate. The other six positions examined appear to be loosely packed; thus, substitutions at these positions with larger hydrophobic residues generally accelerate folding, presumably by increasing the rate of nonspecific hydrophobic collapse. Surprisingly, the folding rate can be greatly accelerated by residues that also significantly destabilize the native state structure. Furthermore, mutants with identical thermodynamic stability can differ by up to 55-fold in their folding rates. These results highlight the importance of hydrophobic core composition, as opposed to only topology, in determining the folding rate of a protein. They also provide a new explanation for the 'abnormal' phi-values observed in many protein folding kinetics studies.  相似文献   

14.
The nucleotide sequence of the oli1 gene encoding mitochondrial ATPase subunit 9 (76 amino acids) has been determined for five oligomycin-resistant mutants of Saccharomyces cerevisiae. Three of the mutations affect amino acids in the vicinity of the glutamic acid residue 59 at which dicylohexyl carbodiimide binds. Two other mutations lead to substitution of amino acid 23, which would lie very close to residue 59 in the folded hairpin conformation that this protein is thought to adopt in the inner mitochondrial membrane. The apposition of residues 23 and those adjacent to residue 59, lying respectively in the two hydrophobic membrane-spanning arms of subunit 9, is considered to constitute an oligomycin-binding domain. By consideration of the amino acid substitutions in those mutants cross-resistant to venturicidin, a domain of resistance for venturicidin is defined to lie within the oligomycin-binding domain, also centered on residues 23 and 59. These data also clarify the genetic recombination behaviour of alleles previously defined to form part of the oli3 locus (mutants characterized by resistance to both oligomycin and venturicidin) together with alleles defined to form part of the oli1 locus (mutants not cross-resistant to venturicidin). The oli1 and oli3 loci can now be seen to form two overlapping extended groups within the oli1 gene, with sequenced oli3 mutations being as far apart as 125 nucleotides within the subunit 9 coding region of 231 nucleotides.  相似文献   

15.
The alpha-mating pheromone receptor encoded by the yeast STE2 gene is a G protein coupled receptor that initiates signaling via a MAP kinase pathway that prepares haploid cells for mating. To establish the range of allowed amino acid substitutions within transmembrane segments of this receptor, we conducted extensive random mutagenesis of receptors followed by screening for receptor function. A total of 157 amino acid positions in seven different mutagenic libraries corresponding to the seven predicted transmembrane segments were analyzed, yielding 390 alleles that retain at least 60 % of normal signaling function. These alleles contained a total of 576 unique amino acid substitutions, including 61 % of all the possible amino acid changes that can arise from single base substitutions. The receptor exhibits a surprising tolerance for amino acid substitutions. Every amino acid in the mutagenized regions of the transmembrane regions could be substituted by at least one other residue. Polar amino acids were tolerated in functional receptors at 115 different positions (73 % of the total). Hydrophobic amino acids were tolerated in functional receptors at all mutagenized positions. Substitutions introducing proline residues were recovered at 53 % of all positions where they could be brought about by single base changes. Residues with charged side-chains could also be tolerated at 53 % of all positions where they were accessible through single base changes. The spectrum of allowed amino acid substitutions was characterized in terms of the hydrophobicity, radius of gyration, and charge of the allowed substitutions and mapped onto alpha-helical structures. By comparing the patterns of allowed substitutions with the recently determined structure of rhodopsin, structural features indicative of helix-helix interactions can be discerned in spite of the extreme sequence divergence between these two proteins.  相似文献   

16.
Tryptophan residues can possess a multitude of functions within a multidrug transport protein, e.g., mediating interactions with substrates or distal parts of the protein, or fulfilling a structural requirement, such as guiding the depth of membrane insertion. In this study, the nine tryptophan residues of the staphylococcal QacA multidrug efflux protein were individually mutated to alanine and phenylalanine, and the functional consequences of these changes were determined. Phenylalanine substitutions for each tryptophan residue were functionally tolerated. However, alanine modifications revealed an important functional role for three tryptophan residues, W58, W149, and W173, each of which is well conserved among QacA-related transport proteins in the major facilitator superfamily. The most functionally compromising mutation, an alanine substitution for W58, likely to be located at the extracellular interface of transmembrane segment 2, abolished all detectable QacA-mediated resistance and transport function. Second-site suppressor analyses identified several mutations that rescued the function of the W58A QacA mutant. Remarkably, all of these suppressor mutations were shown to be located in cytoplasmic loops between transmembrane helices 2 and 3 or 12 and 13, demonstrating novel functional associations between amino acid positions on opposite sides of the membrane and in distal N- and C-terminal regions of the QacA protein.  相似文献   

17.
It is generally assumed that in proteins hydrophobic residues are not favorable at solvent-exposed sites, and that amino acid substitutions on the surface have little effect on protein thermostability. Contrary to these assumptions, we have identified hyperthermostable variants of Bacillus licheniformis alpha-amylase (BLA) that result from the incorporation of hydrophobic residues at the surface. Under highly destabilizing conditions, a variant combining five stabilizing mutations unfolds 32 times more slowly and at a temperature 13 degrees C higher than the wild-type. Crystal structure analysis at 1.7 A resolution suggests that stabilization is achieved through (a) extension of the concept of increased hydrophobic packing, usually applied to cavities, to surface indentations, (b) introduction of favorable aromatic-aromatic interactions on the surface, (c) specific stabilization of intrinsic metal binding sites, and (d) stabilization of a beta-sheet by introducing a residue with high beta-sheet forming propensity. All mutated residues are involved in forming complex, cooperative interaction networks that extend from the interior of the protein to its surface and which may therefore constitute "weak points" where BLA unfolding is initiated. This might explain the unexpectedly large effect induced by some of the substitutions on the kinetic stability of BLA. Our study shows that substantial protein stabilization can be achieved by stabilizing surface positions that participate in underlying cooperatively formed substructures. At such positions, even the apparently thermodynamically unfavorable introduction of hydrophobic residues should be explored.  相似文献   

18.
Structural comparisons of the two GTPase activating proteins (GAPs) p120 and p50 in complex with Ras and Rho, respectively, allowed us to decipher the functional role of specific structural features, such as helix alpha8c of p120 and helix A1 of p50, necessary for small GTPase recognition. We identified important residues that may be critical for stabilization of the GAP/GTPase binary complexes. Detection of topohydrophobic positions (positions which are most often occupied by hydrophobic amino acids within a family of protein domains) conserved between the two GAP families led to the characterization of a common flexible four-helix bundle. Altogether, these data are consistent with a rearrangement of several helices around a common core, which strongly supports the assumption that p50 and p120 GAPs derive from a unique fold. Considered as a whole, the remarkable plasticity of GAPs appears to be a means used by nature to accurately confer functional specificity.  相似文献   

19.
The rat neu gene, which encodes a receptor-like protein homologous to the epidermal growth factor receptor, is frequently activated by a point mutation altering a valine residue to a glutamic acid residue in its predicted transmembrane domain. Additional point mutations have been constructed in a normal neu cDNA at and around amino acid position 664, the site of the naturally arising mutation. A mutation which causes a substitution of a glutamine residue for the normal valine at residue 664 leads to full oncogenic activation of the neu gene, but five other substitutions do not. Substituted glutamic acid residues at amino acid positions 663 or 665 do not activate the neu gene. Thus only a few specific residues at amino acid residue 664 can activate the oncogenic potential of the neu gene. Deletion of sequences of the transforming neu gene demonstrates that no more than 420 amino acids of the 1260 encoded by the gene are required for full transforming function. Mutagenesis of the transforming clone demonstrates a correlation between transforming activity and tyrosine kinase activity. These data indicate that the activating point mutation induces transformation through (or together with) the activities of the tyrosine kinase.  相似文献   

20.
The function of two alpha-helical regions of mouse interleukin-2 were analyzed by saturation substitution analysis. The functional parts of the first alpha-helix (A) was defined as residues 31-39 by the observation that proline substitutions within this region inactivate the protein. Four residues within alpha-helix A, Leu31, Asp34, Leu35 and Leu38, were found to be crucial for biological activity. Structural modeling suggested that these four residues are clustered on one face of alpha-helix A. Residues 31 and 35 had to remain hydrophobic for the molecule to be functional. At residue 38 there was a preference for hydrophobic side chain residues, while at residue 34 some small side chain residues as well as acidic or amide side chain residues were functionally acceptable. Inactivating changes at residue 34 had no effect upon the ability of the protein to interact with the p55 receptor. Disruption of the fifth alpha-helix (E), which had little effect upon biological activity, resulted in an inability of the protein to interact with the p55 receptor. Mutagenesis of the alpha-helix E region demonstrated that alpha-helicity and the nature of the side chain residues in this region were unimportant for biological activity. The region immediately proximal to alpha-helix E was important only for the single intramolecular disulfide linkage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号