首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ethanol-grown cells of the mutant Acinetobacter sp. strain 1NG, incapable of producing exopolysaccharides, were analyzed for the activity of enzymes of the tricarboxylic acid (TCA) cycle and some biosynthetic pathways. In spite of the presence of both key enzymes (isocitrate lyase and malate synthase) of the glyoxylate cycle, these cells also contained all enzymes of the TCA cycle, which presumably serves biosynthetic functions. This was evident from the high activity of isocitrate dehydrogenase and glutamate dehydrogenase and the low activity of 2-oxoglutarate dehydrogenase. Pyruvate was formed in the reaction catalyzed by oxaloacetate decarboxylase, whereas phosphoenolpyruvate (PEP) was synthesized by the two key enzymes (PEP carboxykinase and PEP synthase) of gluconeogenesis. The proportion between these enzymes was different in the exponential and the stationary growth phases. The addition of the C4-dicarboxylic acid fumarate to the ethanol-containing growth medium led to a 1.5- to 2-fold increase in the activity of enzymes of the glyoxylate cycle, as well as of fumarate hydratase, malate dehydrogenase, PEP synthase, and PEP carboxykinase (the activity of the latter enzyme increased by more than 7.5 times). The data obtained can be used to improve the biotechnology of production of the microbial exopolysaccharide ethapolan on C2-substrates.  相似文献   

2.
The levels of Krebs cycle, glyoxylate cycle, and certain other enzymes were measured in a wild-type strain and in seven groups of acetate-nonutilizing (acu) mutants of Neurospora crassa, both after growth on a medium containing sucrose and after a subsequent 6-hr incubation in a similar medium, containing acetate as the sole source of carbon. In the wild strain, incubation in acetate medium caused a rise in the levels of isocitrate lyase, malate synthase, phosphoenolpyruvate carboxykinase, acetyl-coenzyme A synthetase, nicotinamide adenine dinucleotide phosphate-linked isocitrate dehydrogenase, citrate synthase, and fumarate hydratase. Isocitrate lyase activity was absent in acu-3 mutants; acu-5 mutants lacked acetyl-coenzyme A synthetase activity; and no oxoglutarate dehydrogenase activity (or only low levels) could be detected in acu-2 and acu-7 mutants. In acu-6 mutants, phosphoenolpyruvate carboxykinase activity was either very low or absent. No specific biochemical deficiencies could be attributed to the acu-1 and acu-4 mutations. The role of several of these enzymes during growth on acetate is discussed.  相似文献   

3.
Oxidation of ethanol, acetaldehyde, and acetate in Rhodococcus erythropolis EK-1, producer of surface-active substances (SAS), is catalyzed by N,N-dimethyl-4-nitrosoaniline (DMNA)-dependent alcohol dehydrogenase, NAD+/NADP+-dependent dehydrogenases (optimum pH 9.5), and acetate kinase/acetyl-CoA-synthetase, respectively. The glyoxylate cycle and complete tricarboxylic acid cycle function in the cells of R. erythropolis EK-1 growing on ethanol; the synthesis of phosphoenolpyruvate (PEP) is provided by the two key enzymes of gluconeogenesis, PEP carboxykinase and PEP synthetase. Introduction of citrate (0.1%) and fumarate (0.2%) into the cultivation medium of R. erythropolis EK-1 containing 2% ethanol resulted in the 1.5-and 3.5-fold increase in the activities of isocitrate lyase and PEP synthetase (the key enzymes of the glyoxylate cycle and gluconeogenesis branch of metabolism, respectively) and of lipid synthesis, as evidenced by the 1.5-fold decrease of isocitrate dehydrogenase activity. In the presence of fumarate and citrate, the indices of SAS synthesis by strain R. erythropolis EK-1 grown on ethanol increased by 40–100%.  相似文献   

4.
5.
6.
A comparative study of the enzymes of the tricarboxylic acid (TCA) and glyoxylate cycles in the mutant Yarrowia lipolytica strain N1 capable of producing alpha-ketoglutaric acid (KGA) and citric acid showed that almost all enzymes of the TCA cycle are more active under conditions promoting the production of KGA. The only exception was citrate synthase, whose activity was higher in yeast cells producing citric acid. The production of both acids was accompanied by suppression of the glyoxylate cycle enzymes. The activities of malate dehydrogenase, aconitase, NADP-dependent isocitrate dehydrogenase, and fumarase were higher in cells producing KGA than in cells producing citric acid.  相似文献   

7.
Bradyrhizobium japonicum, the nitrogen-fixing symbiotic partner of soybean, was grown on various carbon substrates and assayed for the presence of the glyoxylate cycle enzymes, isocitrate lyase and malate synthase. The highest levels of isocitrate lyase [165–170 nmol min–1 (mg protein)–1] were found in cells grown on acetate or β-hydroxybutyrate, intermediate activity was found after growth on pyruvate or galactose, and very little activity was found in cells grown on arabinose, malate, or glycerol. Malate synthase activity was present in arabinose- and malate-grown cultures and increased by only 50–80% when cells were grown on acetate. B. japonicum bacteroids, harvested at four different nodule ages, showed very little isocitrate lyase activity, implying that a complete glyoxylate cycle is not functional during symbiosis. The apparent K m of isocitrate lyase for d,l-isocitrate was fourfold higher than that of isocitrate dehydrogenase (61.5 and 15.5 μM, respectively) in desalted crude extracts from acetate-grown B. japonicum. When isocitrate lyase was induced, neither the V max nor the d,l-isocitrate K m of isocitrate dehydrogenase changed, implying that isocitrate dehydrogenase is not inhibited by covalent modification to facilitate operation of the glyoxylate cycle in B. japonicum. Received: 10 October 1997 / Accepted: 16 January 1998  相似文献   

8.
A comparative study of the enzymes of tricarboxylic acid (TCA) and glyoxylate cycles in the mutant Yarrowia lipolytica strain N1 capable of producing -ketoglutaric acid (KGA) and citric acid showed that almost all enzymes of the TCA cycle are more active under conditions promoting the production of KGA. The only exception was citrate synthase, whose activity was higher in yeast cells producing citric acid. The production of both acids was accompanied by suppression of the glyoxylate cycle enzymes. The activities of malate dehydrogenase, aconitase, NADP-dependent isocitrate dehydrogenase, and fumarase were higher in cells producing KGA than in cells producing citric acid.  相似文献   

9.
Studies on the tricarboxylic acid cycle (TCA cycle) enzymes of Penetrocephalus ganapatii reveal that the TCA cycle is only partially operative, as some of the enzymes at the start of the cycle viz. citrate synthase, aconitase and isocitrate dehydrogenase are found to be low in their activities. The high activities of malate dehydrogenase and fumarase, showing affinity towards a reverse direction, indicate that the TCA cycle operates in the reverse direction resulting in the formation of fumarate. The low succinate dehydrogenase/fumarate reductase ratio suggests that ATP generation may occur at site I of the respiratory chain during the reduction of fumarate into succinate.  相似文献   

10.
The enzymes of the glyoxylate cycle, isocitrate lyase (EC.4.1.3.1) and malate synthase (EC.4.1.3.2), were measured in cell-free extracts from the cyanobacterium Anacystis nidulans Drouet during photoautotrophic growth in medium aerated with ordinary air (0.03% CO2). Isocitrate lyase had an average specific activity of 112 nmoles·min?1·mg protein?1 whereas malate synthase had an average specific activity of 12.5 nmoles·min?1·mg protein?1. Unpurified isocitrate lyase showed classical Michaelis kinetics with a Km of 8 mM. Isocitrate lyase activity was strongly inhibited by numerous cellular metabolites at 10 mM concentration. The previously reported low specific activity for isocitrate lyase may be due to metabolite inhibition caused by growth in high CO2 concentrations. The activities reported for isocitrate lyase and malate synthase suggest the operation of the glyoxylate cycle in Anacystis nidulans under CO2-limiting growth conditions.  相似文献   

11.
Transfer of Euglena gracilis Klebs Z cells from phototrophic to organotrophic growth on acetate results in derepression of the key enzymes of the glyoxylate cycle, malate synthase and isocitrate lyase, which appear coordinately regulated. The derepression of malate synthase and isocitrate lyase was accompanied by increased specific activities of succinate dehydrogenase, fumarase, and malate dehydrogenase, but hydroxypyruvate reductase activity was unaltered.  相似文献   

12.
 Biochemical roles of the representative enzymes involved in carbon metabolism of glucose were investigated in relation to the fruit-body formation of the basidiomycete Flammulina velutipes. Changes in specific activities of the enzymes of the tricarboxylic acid (TCA) cycle and glyoxylate (GLOX) and gluconeogenesis pathways were measured at different stages of development of the fungus. The enzyme activities of malate synthase (MS) and fructose bisphosphatase (FBP) as the key enzymes for the GLOX-gluconeogenesis pathways increased in mycelia during the fruit-body formation. The activities of isocitrate dehydrogenase (IDH) for the TCA cycle and NADP-linked glutamate dehydrogenase (GLTDH (NADP)) for glutamate synthesis increased more markedly. Moreover, the mycelial mat of the cultures producing fruit bodies yielded greater enzyme activities of isocitrate lyase (ICL), MS, FBP, and IDH than that of the cultures that did not produce fruit bodies. These results suggest that the GLOX-gluconeogenesis pathways as well as the glutamate synthesis have a strong correlation with the fruit-body formation of F. velutipes. Received: January 22, 2002 / Accepted: May 10, 2002  相似文献   

13.
Summary Enzyme activities of the tricarboxylic acid (TCA) cycle and the anaplerotic pathways, as well as the cell cytology of two C. lipolytica mutants with the modified glyoxylate cycle and their parent strain were studied during the exponential growth phase on glucose or hexadecane.Among the TCA cycle enzymes, the key enzyme citrate synthase had the highest activity in all three strains grown on both substrates. NAD-dependent isocitrate dehydrogenase had the minimum activity. All strains had well-developed mitochondria.Pyruvate carboxylation was active in the wild strain and mutant 2 grown on glucose, where this reaction is the basic anaplerotic pathway for oxal-acetate synthesis; mutant 1 had actively functioning enzymes for both anaplerotic pathways — pyruvate carboxylase, isocitrate lyase and malate synthase.During hexadecane assimilation, the number of peroxisomes in all strains increased sharply, accompanied by a simultaneous increase in isocitrate lyase activity.The low activities of both isocitrate lyase and pyruvate carboxylase in mutant 2 give reason to believe that this strain has an additional pathway for oxalacetic acid synthesis during the assimilation of n-alkane.  相似文献   

14.
Succinic dehydrogenase was the most susceptible among the TCA cycle enzymes to gamma irradiation in preclimacteric banana. Maximum inhibition occurred at the 3rd day after irradiation. Impairment of this activity did not affect operation of the TCA cycle, assessed from the incorporation pattern of acetate [2-14C] into the organic acids such as citric, malic and succinic. Nevertheless, incorporation into keto acids like glyoxylate, α-keto-glutarate and oxaloacetate showed a difference. The rate of labelling into α-ketoglutarate and oxaloacetate was reduced on the 3rd day while incorporation into glyoxylate was increased indicating the operation of glyoxylate shunt pathway. Studies on the individual enzymes of this pathway, isocitrate lyase and malate synthetase confirmed its operation. The reduction in oxalo-acetate has been attributed to the increased gluconeogenesis.  相似文献   

15.
The degradation of Aluminum-citrate by Pseudomonas fluorescens necessitated a major restructuring of the various enzymatic activities involved in the TCA and glyoxylate cycles. While a six-fold increase in fumarase (FUM EC 4.2.1.2) activity was observed in cells subjected to Al-citrate compared to control cells, citrate synthase (CS EC 4.1.3.7) activity experienced a two-fold increase. On the other hand, in the Al-stressed cells malate synthase (MS EC 4.1.3.2) activity underwent a five-fold decrease in activity. This modulation of enzymatic activities appeared to be evoked by Al stress, as the incubation of Al-stressed cells in control media led to the complete reversal of these enzymatic profiles. These observations were further confirmed by 1H NMR and 13C NMR spectroscopy. No significant variations were observed in the activities of other glyoxylate and TCA cycle enzymes, like isocitrate lyase (ICL EC 4.1.3.1), malate dehydrogenase (MDH EC 1.1.1.37), and succinate dehydrogenase (SDH EC 1.3.99.1). This reconfiguration of the metabolic pathway appears to favour the production of a citrate-rich aluminophore that is involved in the sequestration of Al.  相似文献   

16.
Metabolite profiles and activities of key enzymes in the metabolism of organic acids, nitrogen and amino acids were compared between chlorotic leaves and normal leaves of ‘Honeycrisp’ apple to understand how accumulation of non-structural carbohydrates affects the metabolism of organic acids, nitrogen and amino acids. Excessive accumulation of non-structural carbohydrates and much lower CO2 assimilation were found in chlorotic leaves than in normal leaves, confirming feedback inhibition of photosynthesis in chlorotic leaves. Dark respiration and activities of several key enzymes in glycolysis and tricarboxylic acid (TCA) cycle, ATP-phosphofructokinase, pyruvate kinase, citrate synthase, aconitase and isocitrate dehydrogenase were significantly higher in chlorotic leaves than in normal leaves. However, concentrations of most organic acids including phosphoenolpyruvate (PEP), pyruvate, oxaloacetate, 2-oxoglutarate, malate and fumarate, and activities of key enzymes involved in the anapleurotic pathway including PEP carboxylase, NAD-malate dehydrogenase and NAD-malic enzyme were significantly lower in chlorotic leaves than in normal leaves. Concentrations of soluble proteins and most free amino acids were significantly lower in chlorotic leaves than in normal leaves. Activities of key enzymes in nitrogen assimilation and amino acid synthesis, including nitrate reductase, glutamine synthetase, ferredoxin and NADH-dependent glutamate synthase, and glutamate pyruvate transaminase were significantly lower in chlorotic leaves than in normal leaves. It was concluded that, in response to excessive accumulation of non-structural carbohydrates, glycolysis and TCA cycle were up-regulated to “consume” the excess carbon available, whereas the anapleurotic pathway, nitrogen assimilation and amino acid synthesis were down-regulated to reduce the overall rate of amino acid and protein synthesis.  相似文献   

17.
Oxalic acid plays a pivotal role in the adaptation of the soil microbe Pseudomonas fluorescens to aluminum (Al) stress. Its production via the oxidation of glyoxylate necessitates a major reconfiguration of the enzymatic reactions involved in the tricarboxylic acid (TCA) cycle. The demand for glyoxylate, the precursor of oxalic acid appears to enhance the activity of isocitrate lyase (ICL). The activity of ICL, an enzyme that participates in the cleavage of isocitrate to glyoxylate and succinate incurred a 4-fold increase in the Al-stressed cells. However, the activity of isocitrate dehydrogenase, a competitor for the substrate isocitrate, appeared to be diminished in cells exposed to Al compared to the control cells. While the demand for oxalate in Al-stressed cells also negatively influenced the activity of the enzyme alpha-ketoglutarate dehydrogenase complex, no apparent change in the activity of malate synthase was recorded. Thus, it appears that the TCA cycle is tailored in order to generate the necessary precursor for oxalate synthesis as a consequence of Al-stress.  相似文献   

18.
Enzymes of the tricarboxylic acid (TCA) cycle and glyoxylate pathway were investigated in adults and infective larvae of Ancylostoma ceylanicum and Nippostrongylus brasiliensis, and their activities were compared with those obtained in rat liver. A complete sequence of enzymes of the TCA cycle, with most of them showing activities quite similar to those in the rat liver homogenate, was detected in adults of both species. All the enzymes except fumarase and malate dehydrogenase were located predominantly in mitochondria where they showed a variable distribution of activities between the soluble and the membranes fractions. Malate dehydrogenase and fumarase were found in both the mitochondria and the 9,000-g supernatant fraction. Succinyl CoA synthetase, which was present in minimum activity, appeared rate limiting. Enzymes of the glyoxylate pathway, particularly isocitrate lyase, seemed to aid the functioning of the Krebs cycle by allowing the formation of succinate from isocitrate. The infective larvae of both species also were found equipped with all the enzymes of the Krebs cycle. Nonetheless, only isocitrate lyase of the glyoxylate pathway could be detected in these parasites.  相似文献   

19.
20.
Cell-free extracts of two strictly anaerobic mollicutes, Anaeroplasma intermedium 5LA and Asteroleplasma anaerobium 161T, were tested for enzymic activities of intracellular carbohydrate metabolism. Asteroleplasma anaerobium was also tested for enzymes of purine and pyrimidine metabolism. Both organisms had enzymic activities associated with the nonoxidative portion of the pentose phosphate pathway, and with the Embden-Meyerhoff-Parnas pathway. The 6-phosphofructokinase (PFK) of Asteroleplasma anaerobium was ATP-dependent, whereas the PFK of Anaeroplasma intermedium was PPi-dependent. The two anaerobic mollicutes also differed with respect to the enzymes that converted phosphoenolpyruvate (PEP) to pyruvate; Anaeroplasma intermedium had pyruvate kinase activity, but Asteroleplasma anaerobium had pyruvate, orthophosphate dikinase activity (PPi-dependent). Both organisms had lactate dehydrogenase activity which was activated by fructose 1,6-bisphosphate (Fru-1,6-P 2). Anaeroplasma intermedium had activity for PEP carboxykinase (activated by Fru-1,6-P 2), but Asteroleplasma anaerobium did not. PEP carboxytransphosphorylase activity was not detected in either organism. Anaeroplasma intermedium had malate dehydrogenase and isocitrate dehydrogenase activities, but it had no activities for the three other tricarboxylic acid cycle enzymes examined; Asteroleplasma anaerobium had malate dehydrogenase activity only. Asteroleplasma anaerobium had enzymic activities for the interconversion of purine nucleobases, (deoxy)ribonucleosides, and (deoxy)ribomononucleotides, including PPi-dependent nucleoside kinase, reported heretofore only in some other mollicutes. Asteroleplasma anaerobium could synthesize dTDP by the thymine salvage pathway if deoxyribose 1-phosphate was provided, and it had dUTPase, ATPase, and dCMP kinase activities. It lacked (deoxy)cytidine deaminase, dCMP deaminase, and deoxycytidine kinase activities.Abbreviations EMP Embden-Meyerhof-Parnas - ICDH isocitrate dehydrogenase - LDH lactate dehydrogenase - PEP phosphoenolpyruvate - PFK phosphofructokinase - PPDK pyruvate, orthophosphate dikinase - TCA cycle tricarboxylic acid cycle Note: Other abbreviations used are as per the instruction to authors, or the reference cited therein (Eur J Biochem 1:259), or Biochem J 120:449 (which supercedes a portion of the first reference)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号