首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
C L Berger  D D Thomas 《Biochemistry》1991,30(46):11036-11045
We have used saturation-transfer electron paramagnetic resonance (ST-EPR) to detect the microsecond rotational motions of spin-labeled myosin subfragment one (MSL-S1) bound to actin in the presence of the ATP analogues AMPPNP (5'-adenylylimido diphosphate) and ATP gamma S [adenosine 5'-O-(3-thiotriphosphate)], which are believed to trap myosin in strongly and weakly bound intermediate states of the actomyosin ATPase cycle, respectively. Sedimentation binding measurements were used to determine the fraction of myosin heads bound to actin under ST-EPR conditions and the fraction of heads containing bound nucleotide. ST-EPR spectra were then corrected to obtain the spectrum corresponding to the ternary complex (actin.MSL-S1.nucleotide). The ST-EPR spectrum of MSL-S1.AMPPNP bound to actin is identical to that obtained in the absence of nucleotide (rigor complex), indicating no rotational motion of MSL-S1 relative to actin on the microsecond time scale. However, MSL-S1-ATP gamma S bound to actin is rotationally mobile, with an effective rotational correlation time (tau r) of 17 +/- 2 microseconds. This motion is similar to that observed previously for actin-bound MSL-S1 during the steady-state hydrolysis of ATP [Berger et al. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 8753-8757]. We conclude that, in solution, the weakly bound actin-attached states of the myosin ATPase cycle undergo microsecond rotational motions, while the strongly bound intermediates do not, and that these motions are likely to be involved in the molecular mechanism of muscle contraction.  相似文献   

2.
We have used saturation transfer electron paramagnetic resonance (ST-EPR) to measure the microsecond rotational motion of actin-bound myosin heads in spin-labeled myofibrils in the presence of the ATP analogs AMPPNP (5'-adenylylimido-diphosphate) and ATP gamma S (adenosine-5'-O-(3-thiotriphosphate)). AMPPNP and ATP gamma S are believed to trap myosin in two major conformational intermediates of the actomyosin ATPase cycle, respectively known as the weakly bound and strongly bound states. Previous ST-EPR experiments with solutions of acto-S1 have demonstrated that actin-bound myosin heads are rotationally mobile on the microsecond time scale in the presence of ATP gamma S, but not in the presence of AMPPNP. However, it is not clear that results obtained with acto-S1 in solution can be extended to actomyosin constrained within the myofibrillar lattice. Therefore, ST-EPR spectra of spin-labeled myofibrils were analyzed explicitly in terms of the actin-bound component of myosin heads in the presence of AMPPNP and ATP gamma S. The fraction of actin-attached myosin heads was determined biochemically in the spin-labeled myofibrils, using the proteolytic rates actomyosin binding assay. At physiological ionic strength (mu = 165 mM), actin-bound myosin heads were found to be rotationally mobile on the microsecond time scale (tau r = 24 +/- 8 microseconds) in the presence of ATP gamma S, but not AMPPNP. Similar results were obtained at low ionic strength, confirming the acto-S1 solution studies. The microsecond rotational motions of actin-attached myosin heads in the presence of ATP gamma S are similar to those observed for spin-labeled myosin heads during the steady-state cycling of the actomyosin ATPase, both in solution and in an active isometric muscle fiber. These results indicate that weakly bound myosin heads, in the pre-force phase of the ATPase cycle, are rotationally mobile, while strongly bound heads, in the force-generating phase, are rotationally immobile. We propose that force generation involves a transition from a dynamically disordered crossbridge to a rigid and stereospecific one.  相似文献   

3.
S Malinchik  S Xu    L C Yu 《Biophysical journal》1997,73(5):2304-2312
By using synchrotron radiation and an imaging plate for recording diffraction patterns, we have obtained high-resolution x-ray patterns from relaxed rabbit psoas muscle at temperatures ranging from 1 degree C to 30 degrees C. This allowed us to obtain intensity profiles of the first six myosin layer lines and apply a model-building approach for structural analysis. At temperatures 20 degrees C and higher, the layer lines are sharp with clearly defined maxima. Modeling based on the data obtained at 20 degrees C reveals that the average center of the cross-bridges is at 135 A from the center of the thick filament and both of the myosin heads appear to wrap around the backbone. At 10 degrees C and lower, the layer lines become very weak and diffuse scattering increases considerably. At 4 degrees C, the peak of the first layer line shifts toward the meridian from 0.0047 to 0.0038 A(-1) and decreases in intensity approximately by a factor of four compared to that at 20 degrees C, although the intensities of higher-order layer lines remain approximately 10-15% of the first layer line. Our modeling suggests that as the temperature is lowered from 20 degrees C to 4 degrees C the center of cross-bridges extends radially away from the center of the filament (135 A to 175 A). Furthermore, the fraction of helically ordered cross-bridges decreases at least by a factor of two, while the isotropic disorder (the temperature factor) remains approximately unchanged. Our results on the order/disordering effects of temperature are in general agreement with earlier results of Wray [Wray, J. 1987. Structure of relaxed myosin filaments in relation to nucleotide state in vertebrate skeletal muscle. J. Muscle Res. Cell Motil. 8:62a (Abstr.)] and Lowy et al. (Lowy, J., D. Popp, and A. A. Stewart. 1991. X-ray studies of order-disorder transitions in the myosin heads of skinned rabbit psoas muscles. Biophys. J. 60:812-824). and support Poulsen and Lowy's hypothesis of coexistence of ordered and disordered cross-bridge populations in muscle (Poulsen, F. R., and J. Lowy. 1983. Small angle scattering from myosin heads in relaxed and rigor frog skeletal muscle. Nature (Lond.). 303:146-152.). However, our results added new insights into the disordered population. Present modeling together with data analysis (Xu, S., S. Malinchik, Th. Kraft, B. Brenner, and L. C. Yu. 1997. X-ray diffraction studies of cross-bridges weakly bound to actin in relaxed skinned fibers of rabbit psoas muscle. Biophys. J. 73:000-000) indicate that in a relaxed muscle, cross-bridges are distributed in three populations: those that are ordered on the thick filament helix and those that are disordered; and within the disordered population, some cross-bridges are detached and some are weakly attached to actin. One critical conclusion of the present study is that the apparent order <--> disorder transition as a function of temperature is not due to an increase/decrease in thermal motion (temperature factor) for the entire population, but a redistribution of cross-bridges among the three populations. Changing the temperature leads to a change in the fraction of cross-bridges located on the helix, while changing the ionic strength at a given temperature affects the disordered population leading to a change in the relative fraction of cross-bridges detached from and weakly attached to actin. Since the redistribution is reversible, we suggest that there is an equilibrium among the three populations of cross-bridges.  相似文献   

4.
Thermotropic transitions of the membrane components in porcine intestinal brush border membranes were studied by means of fluorimetry using a fluorogenic thiol reagent, N-[7-dimethylamino-4-methylcoumarinyl]maleimide (DACM), and a lipophilic fluorescent probe, 1,6-diphenyl-1,3,5-hexatriene (DPH). 1. The reactivity of the sulfhydryl groups of the membrane proteins with DACM was dependent on temperature, with a transition point at about 33°C. A conspicuous transition was also observed in the relation between temperature and the fluorescence intensity of DACM-labeled membranes at 35°C. 2. Temperature dependence profiles of the solubilization of DPH in the membranes and of the fluorescence polarization of DPH-membrane complex suggested that the phase transition of the lipid from gel to liquid-crystalline state occurs over a temperature range of 30 to 35°C. 3. Efficient fluorescence energy transfer was observed from tryptophan residues of the membrane proteins to DPH located in the lipid phase of the membranes, and its efficiency was extremely enhanced, dependent on temperature, above 35°C. The intensity of the tryptophan fluorescence of the membrane proteins decreased with increasing temperature and a discontinuity was observed at about 33°C. Based on these results, it may be concluded that there are co-operative interactions between proteins and lipids in the membranes and that the temperature-induced conformational changes of the membrane proteins are closely related to the dynamics of the hydrocarbon cores of the lipid.  相似文献   

5.
Picosecond studies of the primary photochemical events in the light-adapted bacteriorhodopsin, bR570, indicate that the first metastable intermediate K610 is formed with a rise time of 11 ps. Difference spectra obtained at 50 ps after excitation show that K610 is the same species as that trapped in low temperature glasses. A precursor species (S) of the K610 intermediate has been observed which is red shifted with respect to K610 and is formed within the 6-ps time width of the excitation pulse. The formation of the precursor has no observable thermal dependence between 298 degrees and 1.8 degrees K. The formation of K610 has a very low thermal barrier and at very low temperatures, the rate of formation becomes practically temperature independent which is characteristic of a tunneling process. The rate of formation becomes practically temperature independent which is characteristic of a tunneling process. The rate of formation of K610 has a moderate deuterium isotope effect of kH/kD approximately 1.6 at 298 degrees K and 2.4 at 4 degrees K. The mechanism for formation of K610 is found to involve a rate-limiting proton transfer which occurs by tunneling at low temperatures.  相似文献   

6.
Meibomian lipids are the primary component of the lipid layer of the tear film. Composed primarily of a mixture of lipids, meibum exhibits a range of melt temperatures. Compositional changes that occur with disease may alter the temperature at which meibum melts. Here we explore how the mechanical properties and structure of meibum from healthy subjects depend on temperature. Interfacial films of meibum were highly viscoelastic at 17°C, but as the films were heated to 30°C the surface moduli decreased by more than two orders of magnitude. Brewster angle microscopy revealed the presence of micron-scale inhomogeneities in meibum films at higher temperatures. Crystalline structure was probed by small angle x-ray scattering of bulk meibum, which showed evidence of a majority crystalline structure in all samples with lamellar spacing of 49 Å that melted at 34°C. A minority structure was observed in some samples with d-spacing at 110 Å that persisted up to 40°C. The melting of crystalline phases accompanied by a reduction in interfacial viscosity and elasticity has implications in meibum behavior in the tear film. If the melt temperature of meibum was altered significantly from disease-induced compositional changes, the resultant change in viscosity could alter secretion of lipids from meibomian glands, or tear-film stabilization properties of the lipid layer.  相似文献   

7.
Regulated conformation of myosin V   总被引:1,自引:0,他引:1  
We have found that myosin V, an important actin-based vesicle transporter, has a folded conformation that is coupled to inhibition of its enzymatic activity in the absence of cargo and Ca(2+). In the absence of Ca(2+) where the actin-activated MgATPase activity is low, purified brain myosin V sediments in the analytical ultracentrifuge at 14 S as opposed to 11 S in the presence of Ca(2+) where the activity is high. At high ionic strength it sediments at 10 S independent of Ca(2+), and its regulation is poor. These data are consistent with myosin V having a compact, inactive conformation in the absence of Ca(2+) and an extended conformation in the presence of Ca(2+) or high ionic strength. Electron microscopy reveals that in the absence of Ca(2+) the heads and tail are both folded to give a triangular shape, very different from the extended appearance of myosin V at high ionic strength. A recombinant myosin V heavy meromyosin fragment that is missing the distal portion of the tail domain is not regulated by calcium and has only a small change in sedimentation coefficient, which is in the opposite direction to that seen with intact myosin V. Electron microscopy shows that its heads are extended even in the absence of calcium. These data suggest that interaction between the motor and cargo binding domains may be a general mechanism for shutting down motor protein activity and thereby regulating the active movement of vesicles in cells.  相似文献   

8.
The structural stabilities of all the familiar proteolytic fragments of myosin have been investigated in melting studies over the pH ranges 5.5-7.0 in 0.5 M KCl. All fragments except subfragment 2 undergo a melting transition manifested by the cooperative uptake of protons in the temperature range 34-47 degrees C, and these fragments experience an increase in transition temperature, Tm as the pH is increased. Subfragment 2 undergoes a melting transition in the 43-55 degrees C range, manifested by the dissociation of protons, and it experiences a decrease in Tm as the pH is increased. These results suggest that pH changes can modulate the relative stabilities of the light meromysin, subfragment-1, and subfragment-2 regions of the myosin molecule.  相似文献   

9.
A transition in the temperature dependences of Ca2+ accumulation and ATPase activity occurs at 20 ° C in Sarcoplasmic reticulum membranes. The transition is characterized by an abrupt change in the activation energies for the cation transport process and the associated enzyme activities. The difference in activation energies below and above 20 °C appears to be due to changes in the entropy of activation rather than in the free energy of activation. Also, the temperature dependences of spectral parameters of lipophilic spin-labeled probes and protein-bound spin labels exhibit different behaviors on either side of this temperature. Above 20 °C the lipid matrix probed by the labels exhibits a large increase in molecular motion and a decrease in the apparent ordering of lipid alkyl chains. In addition, labels covalently bound to enzymic reactive sites indicate that the motion of protein side-chains is sensitive to this transition. The results are consistent with an order-disorder transition involving the lipid alkyl chains of the Sarcoplasmic membrane, and with a model in which molecular motion, Ca2+ transport and enzyme activity are limited by local viscosity of hydrophobic regions at temperatures below the transition.Another modification of the Sarcoplasmic reticulum membrane occurs between 37 and 40 °C. It appears that at this temperature the processes governing Ca2+ accumulation and ATPase activity are uncoupled, and Ca2+ accumulation is inhibited, while ATPase activity and passive Ca2+ efflux proceed at rapid rates. Parallel transitions of spectroscopic parameters originating from spin labels, covalently bound to the Sarcoplasmic reticulum ATPase, indicate that the uncoupling is due to a thermally-induced protein conformational change.  相似文献   

10.
The partial specific heat capacity and volume of globular proteins and dispersions of phosphatidylcholines in aqueous solutions have been determined over a broad temperature range using a precise scanning microcalorimeter and a vibrational densimeter. It is shown that the temperature-induced, gel-to-liquid crystalline phase transition in phosphatidylcholines proceeds without a noticeable change in heat capacity but with a significant increase in the specific volume, whereas heat denaturation in proteins takes place without a noticeable change in the volume but with a significant increase in heat capacity. This principal difference between temperature-induced conformational phase transitions in proteins and lipids demonstrates clearly that heat denaturation of proteins, in contrast to the gel-to-liquid crystalline phase transition in lipids, cannot be regarded as a process similar to melting. Consequently, the 'molten globule' does not appear to be a suitable model for a heat-denatured protein.  相似文献   

11.
E Prochniewicz  D D Thomas 《Biochemistry》2001,40(46):13933-13940
We have examined the effects of actin mutations on myosin binding, detected by cosedimentation, and actin structural dynamics, detected by spectroscopic probes. Specific mutations were chosen that have been shown to affect the functional interactions of actin and myosin, two mutations (4Ac and E99A/E100A) in the proposed region of weak binding to myosin and one mutation (I341A) in the proposed region of strong binding. In the absence of nucleotide and salt, S1 bound to both wild-type and mutant actins with high affinity (K(d) < microM), but either ADP or increased ionic strength decreased this affinity. This decrease was more pronounced for actins with mutations that inhibit functional interaction with myosin (E99A/E100A and I341A) than for a mutation that enhances the interaction (4Ac). The mutations E99A/E100A and I341A affected the microsecond time scale dynamics of actin in the absence of myosin, but the 4Ac mutation did not have any effect. The binding of myosin eliminated these effects of mutations on structural dynamics; i.e., the spectroscopic signals from mutant actins bound to S1 were the same as those from wild-type actin. These results indicate that mutations in the myosin binding sites affect structural transitions within actin that control strong myosin binding, without affecting the structural dynamics of the strongly bound actomyosin complex.  相似文献   

12.
Effect of substrate on the conformation of myosin   总被引:2,自引:0,他引:2  
  相似文献   

13.
Metabolism of 13C labeled substrates viz. glucose and pyruvate in S. cerevisiae has been studied by 13C Nuclear Magnetic Resonance Spectroscopy. C3-Pyruvate, alanine and lactate, and C2-acetate are produced from [1-13C]glucose. The pyruvate, entering TCA cycle, leads to preferential labeling of C2-glutamate. [2-13C]Glucose results in labeling of C2-pyruvate, alanine and lactate. Some C3-pyruvate is also produced, indicating the routing of the label from glucose through pentose phosphate pathway (PPP). In TCA cycle the C2-pyruvate preferentially labels the C3-glutamate. The NMR spectra, obtained with [2-13C]pyruvate as substrate, confirm the above observations. These results suggest that the intermediates of TCA cycle are transferred from one enzyme active site to another in a manner that allows only restricted rotation of the intermediates. That is, the intermediates are partially channeled.  相似文献   

14.
BACKGROUND: Barley beta-D-glucan glucohydrolases represent family 3 glycoside hydrolases that catalyze the hydrolytic removal of nonreducing glucosyl residues from beta-D-glucans and beta-D-glucooligosaccharides. After hydrolysis is completed, glucose remains bound in the active site. RESULTS: When conduritol B epoxide and 2', 4'-dinitrophenyl 2-deoxy-2-fluoro-beta-D-glucopyranoside are diffused into enzyme crystals, they displace the bound glucose and form covalent glycosyl-enzyme complexes through the Odelta1 of D285, which is thereby identified as the catalytic nucleophile. A nonhydrolyzable S-glycosyl analog, 4(I), 4(III), 4(V)-S-trithiocellohexaose, also diffuses into the active site, and a S-cellobioside moiety positions itself at the -1 and +1 subsites. The glycosidic S atom of the S-cellobioside moiety forms a short contact (2.75 A) with the Oepsilon2 of E491, which is likely to be the catalytic acid/base. The glucopyranosyl residues of the S-cellobioside moiety are not distorted from the low-energy 4C(1) conformation, but the glucopyranosyl ring at the +1 subsite is rotated and translated about the linkage. CONCLUSIONS: X-ray crystallography is used to define the three key intermediates during catalysis by beta-D-glucan glucohydrolase. Before a new hydrolytic event begins, the bound product (glucose) from the previous catalytic reaction is displaced by the incoming substrate, and a new enzyme-substrate complex is formed. The second stage of the hydrolytic pathway involves glycosidic bond cleavage, which proceeds through a double-displacement reaction mechanism. The crystallographic analysis of the S-cellobioside-enzyme complex with quantum mechanical modeling suggests that the complex might mimic the oxonium intermediate rather than the enzyme-substrate complex.  相似文献   

15.
16.
H C Cheung  R Cooke 《Biopolymers》1971,10(3):523-529
We have used two probes to study the effects of alkali ions on the conformation of myosin. One was paramagnetic, the “spin label” N-(1-oxyl-2,2,6,6-tetramethyl-4-piperidinyl)-maleimide, which binds primarily to SH groups; and the other was fluorescent, l-anilino-8-naphthalenesulfonate, which binds to an apolar niche. The bonding of the spin label to myosin was carried out in 0.6M LiCl, 0.6M NaCl, or 0.6M KCl, and the resulting labeled myosin was studied in the same medium in which the myosin was labeled as well as in other alkali chlorides. The electron paramagnetic resonance spectra of the spin label showed that the structure of myosin in the vicinity of the labeled groups differed in the various salts. The protein surface in the region of the labeled groups restricted the rotational freedom of the spin label more in KCl than in any of the other salts. Although ions are known to influence the properties of myosin, our results show that these ions also effect the molecular structure. The fluorescence of l-anilino-8-naphthalenesulfonate, noncovalently attached to myosin in the presence of alkali chlorides, decreased progressively with increasing size of the cations, again showing the protein structure near the probe attachment to be a function of the cation, in the solvent. Ca2+ quenched the fluorescence of the bound probe, indicating an interaction between Ca2+ and the myosin molecule. The effect of Ca2+ on the fluorescence was greatest in KCl.  相似文献   

17.
Studies of myosin conformation by fluorescent techniques   总被引:5,自引:0,他引:5  
H C Cheung  M F Morales 《Biochemistry》1969,8(5):2177-2182
  相似文献   

18.
The prepower stroke conformation of myosin V   总被引:6,自引:0,他引:6       下载免费PDF全文
  相似文献   

19.
20.
The effect of ionic strength on the conformation and stability of S1 and S1-nucleotide-phosphate analog complexes in solution was studied. It was found that increasing concentration of KCl enhances the reactivity of Cys(707) (SH1 thiol) and Lys(84) (reactive lysyl residue) and the nucleotide-induced tryptophan fluorescence increment. In contrast, high KCl concentration lowers the structural differences between the intermediate states of ATP hydrolysis in the vicinity of Cys(707), Trp(510) and the active site, possibly by increasing the flexibility of the molecule. High concentrations of neutral salts inhibit both the formation and the dissociation of the M**.ADP.Pi analog S1.ADP.Vi complex. High ionic strength profoundly affects the structure of the stable S1.ADP.BeF(x) complex, by destabilizing the M*.ATP intermediate, which is the predominant form of the complex at low ionic strength, and shifting the equilibrium to favor the M**.ADP.Pi state. The M*.ATP intermediate is destabilized by perturbation of ionic interactions possibly by disruption of salt bridges. Two salt-bridge pairs, Glu(501)-Lys(505) in the Switch II helix and Glu(776)-Lys(84) connecting the catalytic domain to the lever arm, seem most appropriate to consider for participating in the ionic strength-induced transition of the open M*.ATP to the closed M**.ADP.Pi state of S1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号