首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Optimization of surface exposed charge-charge interactions in the native state has emerged as an effective means to enhance protein stability; but the effect of electrostatic interactions on the kinetics of protein folding is not well understood. To investigate the kinetic consequences of surface charge optimization, we characterized the folding kinetics of a Fyn SH3 domain variant containing five amino acid substitutions that was computationally designed to optimize surface charge-charge interactions. Our results demonstrate that this optimized Fyn SH3 domain is stabilized primarily through an eight-fold acceleration in the folding rate. Analyses of the constituent single amino acid substitutions indicate that the effects of optimization of charge-charge interactions on folding rate are additive. This is in contrast to the trend seen in folded state stability, and suggests that electrostatic interactions are less specific in the transition state compared to the folded state. Simulations of the transition state using a coarse-grained chain model show that native electrostatic contacts are weakly formed, thereby making the transition state conducive to nonspecific, or even nonnative, electrostatic interactions. Because folding from the unfolded state to the folding transition state for small proteins is accompanied by an increase in charge density, nonspecific electrostatic interactions, that is, generic charge density effects can have a significant contribution to the kinetics of protein folding. Thus, the interpretation of the effects of amino acid substitutions at surface charged positions may be complicated and consideration of only native-state interactions may fail to provide an adequate picture.  相似文献   

2.
3.
To investigate the relationships between protein topology, amino acid sequence and folding mechanisms, the folding transition state of the Sso7d protein has been characterised both experimentally and theoretically. Although Sso7d protein has a similar topology to that of the SH3 domains, the structure of its transition state is different from that of alpha-spectrin and src SH3 domains previously studied. The folding algorithm, Fold-X, including an energy function with specific sequence features, accounts for these differences and reproduces with a good agreement the set of experimental phi(double dagger-U) values obtained for the three proteins. Our analysis shows that taking into account sequence features underlying protein topology is critical for an accurate prediction of the folding process.  相似文献   

4.
Native state topology has been implicated as a major determinant of protein-folding mechanisms. Here, we test experimentally the robustness of the src SH3-domain folding transition state to changes in topology by covalently constraining regions of the protein with disulfide crosslinks and then performing kinetic analysis on point mutations in the context of these modified proteins. Circularization (crosslinking the N and C termini) of the src SH3 domain makes the protein topologically symmetric and causes delocalization of structure in the transition state ensemble suggesting a change in the folding mechanism. In contrast, crosslinking a single structural element (the distal beta-hairpin) which is an essential part of the transition state, results in a protein that folds 30 times faster, but does not change the distribution of structure in the transition state. As the transition states of distantly related SH3 domains were previously found to be very similar, we conclude that the free energy landscape of this protein family contains deep features which are relatively insensitive to sequence variations but can be altered by changes in topology.  相似文献   

5.
The protein engineering analysis of the alpha-spectrin SH3 domain at three different stability conditions (pH 7.0, 3.5 and 2.5) reveals a folding transition state structured around the distal loop beta-hairpin and the 310-helix. This region is impervious to overall changes in protein stability, suggesting a transition state ensemble with little conformational variability. Comparison with the Src SH3 domain (36% sequence homology) indicates that the transition state in this protein family may be conserved. Discrepancies at some positions can be rationalized in terms of the different interactions made by the different side chains in both domains. Br?nsted plot analysis confirms the straight phi(doubledagger-U) results and shows two folding subdomains for this small protein. These results, together with previous data on circular permutants of the alpha-spectrin SH3 domain, indicate that polypeptide topology and chain connectivity play a major role in the folding reaction of this protein family.  相似文献   

6.
Most protein domains fold in an apparently co-operative and two-state manner with only the native and denatured states significantly populated at any experimental condition. However, the protein folding energy landscape is often rugged and different transition states may be rate limiting for the folding reaction under different conditions, as seen for the PDZ protein domain family. We have here analyzed the folding kinetics of two PDZ domains and found that a previously undetected third transition state is rate limiting under conditions that stabilize the native state relative to the denatured state. In light of these results, we have re-analyzed previous folding data on PDZ domains and present a unified folding mechanism with three distinct transition states separated by two high-energy intermediates. Our data show that sequence composition tunes the relative stabilities of folding transition states within the PDZ family, while the overall mechanism is determined by topology. This model captures the kinetic folding mechanism of all PDZ domains studied to date.  相似文献   

7.
The relative importance of amino acid sequence and native topology in the unfolding process of two SH3 domains and two circular permutants was investigated by 120 molecular dynamics runs at 375 K for a total simulation time of 0.72 micros. The alpha-spectrin (aSH3) and src SH3 (sSH3) domains, which have the same topology and a sequence identity of only 34%, show similar unfolding pathways. The disappearance of the three-stranded antiparallel beta-sheet is the last unfolding event, in agreement with a large repertoire of kinetic data derived from point mutations as well as glycine insertions and disulfide crosslinks. Two alternative routes of beta-sheet unfolding have emerged from the analysis of the trajectories. One is statistically preferred in aSH3 (n-src loop breaks before distal hair-pin) and the inverse in sSH3. An elongation of the beta2-beta3 hairpin was observed during the unfolding of sSH3 at 375 K and in 300 K simulations started from the putative transition state of sSH3 in accord with unusual kinetic data for point mutations at the n-src loop. The change of connectivity in the permutants influenced the sequence of unfolding events mainly at the permutation site. Regions where the connectivity remained unaffected showed the same chronology of contact disappearance. Taken together with previous folding simulations of two designed three-stranded antiparallel beta-sheet peptides, these results indicate that, at least for small beta-sheet proteins, the folding mechanism is primarily defined by the native state topology, whilst specific interactions determine the statistically predominant folding route.  相似文献   

8.
Recent experimental results suggest that the native fold, or topology, plays a primary role in determining the structure of the transition state ensemble, at least for small, fast-folding proteins. To investigate the extent of the topological control of the folding process, we studied the folding of simplified models of five small globular proteins constructed using a Go-like potential to retain the information about the native structures but drastically reduce the energetic frustration and energetic heterogeneity among residue-residue native interactions. By comparing the structure of the transition state ensemble (experimentally determined by Phi-values) and of the intermediates with those obtained using our models, we show that these energetically unfrustrated models can reproduce the global experimentally known features of the transition state ensembles and "en-route" intermediates, at least for the analyzed proteins. This result clearly indicates that, as long as the protein sequence is sufficiently minimally frustrated, topology plays a central role in determining the folding mechanism.  相似文献   

9.
We use a combination of experiments, computer simulations and simple model calculations to characterize, first, the folding transition state ensemble of the src SH3 domain, and second, the features of the protein that determine its folding mechanism. Kinetic analysis of mutations at 52 of the 57 residues in the src SH3 domain revealed that the transition state ensemble is even more polarized than suspected earlier: no single alanine substitution in the N-terminal 15 residues or the C-terminal 9 residues has more than a two-fold effect on the folding rate, while such substitutions at 15 sites in the central three-stranded beta-sheet cause significant decreases in the folding rate. Molecular dynamics (MD) unfolding simulations and ab initio folding simulations on the src SH3 domain exhibit a hierarchy of folding similar to that observed in the experiments. The similarity in folding mechanism of different SH3 domains and the similar hierarchy of structure formation observed in the experiments and the simulations can be largely accounted for by a simple native state topology-based model of protein folding energy landscapes.  相似文献   

10.
A lattice model with side chains was used to investigate protein folding with computer simulations. In this model, we rigorously demonstrate the existence of a specific folding nucleus. This nucleus contains specific interactions not present in the native state that, when weakened, slow folding but do not change protein stability. Such a decoupling of folding kinetics from thermodynamics has been observed experimentally for real proteins. From our results, we conclude that specific non-native interactions in the transition state would give rise to straight phi-values that are negative or larger than unity. Furthermore, we demonstrate that residue Ile 34 in src SH3, which has been shown to be kinetically, but not thermodynamically, important, is universally conserved in proteins with the SH3 fold. This is a clear example of evolution optimizing the folding rate of a protein independent of its stability and function.  相似文献   

11.
Experimental observations suggest that proteins follow different folding pathways under different environmental conditions. We perform molecular dynamics simulations of a model of the c-Crk SH3 domain over a broad range of temperatures, and identify distinct pathways in the folding transition. We determine the kinetic partition temperature-the temperature for which the c-Crk SH3 domain undergoes a rapid folding transition with minimal kinetic barriers-and observe that below this temperature the model protein may undergo a folding transition by multiple folding pathways via only one or two intermediates. Our findings suggest the hypothesis that the SH3 domain, a protein fold for which only two-state folding kinetics was observed in previous experiments, may exhibit intermediate states under conditions that strongly stabilize the native state.  相似文献   

12.
Muscle acylphosphatase (AcP) is a small protein that folds very slowly with two-state behavior. The conformational stability and the rates of folding and unfolding have been determined for a number of mutants of AcP in order to characterize the structure of the folding transition state. The results show that the transition state is an expanded version of the native protein, where most of the native interactions are partially established. The transition state of AcP turns out to be remarkably similar in structure to that of the activation domain of procarboxypeptidase A2 (ADA2h), a protein having the same overall topology but sharing only 13% sequence identity with AcP. This suggests that transition states are conserved between proteins with the same native fold. Comparison of the rates of folding of AcP and four other proteins with the same topology, including ADA2h, supports the concept that the average distance in sequence between interacting residues (that is, the contact order) is an important determinant of the rate of protein folding.  相似文献   

13.
Lee SY  Fujitsuka Y  Kim DH  Takada S 《Proteins》2004,55(1):128-138
Protein-folding mechanisms of two small globular proteins, IgG binding domain of protein G and alpha spectrin SH3 domain are investigated via Brownian dynamics simulations with a model made of coarse-grained physical energy functions responsible for sequence-specific interactions and weak Gō-like energies. The folding pathways of alpha spectrin SH3 are known to be mainly controlled by the native topology, while protein G folding is anticipated to be more sensitive to the sequence-specific effects than native topology. We found in the folding of protein G that the C terminal beta hairpin is formed earlier and is rigid, once ordered, in the presence of an intact C terminal turn. The alpha helix is found to exhibit repeated partial formations/deformations during folding and to be stabilized via the tertiary contact with preformed beta sheets. This predicted scenario is fully consistent with experimental phi value data. Moreover, we found that the folding route is critically affected when the hydrophobic interaction is excluded from physical energy terms, suggesting that the hydrophobicity critically contributes to the folding propensity of protein G. For the folding of alpha spectrin SH3, we found that the distal beta hairpin and diverging turn are parts formed early, fully in harmony with previous results of simple Gō-like and experimental analysis, supporting that the folding route of SH3 domain is robust and coded by the native topology. The hybrid method provides useful tools for analyzing roles of physical interactions in determining folding mechanisms.  相似文献   

14.
The mechanism by which proteins fold to their native states has been the focus of intense research in recent years. The rate-limiting event in the folding reaction is the formation of a conformation in a set known as the transition-state ensemble. The structural features present within such ensembles have now been analysed for a series of proteins using data from a combination of biochemical and biophysical experiments together with computer-simulation methods. These studies show that the topology of the transition state is determined by a set of interactions involving a small number of key residues and, in addition, that the topology of the transition state is closer to that of the native state than to that of any other fold in the protein universe. Here, we review the evidence for these conclusions and suggest a molecular mechanism that rationalizes these findings by presenting a view of protein folds that is based on the topological features of the polypeptide backbone, rather than the conventional view that depends on the arrangement of different types of secondary-structure elements. By linking the folding process to the organization of the protein structure universe, we propose an explanation for the overwhelming importance of topology in the transition states for protein folding.  相似文献   

15.
Structural database-derived propensities for amino acids to adopt particular local protein structures, such as alpha-helix and beta-strand, have long been recognized and effectively exploited for the prediction of protein secondary structure. However, the experimental verification of database-derived propensities using mutagenesis studies has been problematic, especially for beta-strand propensities, because local structural preferences are often confounded by non-local interactions arising from formation of the native tertiary structure. Thus, the overall thermodynamic stability of a protein is not always altered in a predictable manner by changes in local structural propensity at a single position. In this study, we have undertaken an investigation of the relationship between beta-strand propensity and protein folding kinetics. By characterizing the effects of a wide variety of amino acid substitutions at two different beta-strand positions in an SH3 domain, we have found that the observed changes in protein folding rates are very well correlated to beta-strand propensities for almost all of the substitutions examined. In contrast, there is little correlation between propensities and unfolding rates. These data indicate that beta-strand conformation is well formed in the structured portion of the SH3 domain transition state, and that local structure propensity strongly influences the stability of the transition state. Since the transition state is known to be packed more loosely than the native state and likely lacks many of the non-local stabilizing interactions seen in the native state, we suggest that folding kinetics studies may generally provide an effective means for the experimental validation of database-derived local structural propensities.  相似文献   

16.
The concept of the protein transition state ensemble (TSE), a collection of the conformations that have 50% probability to convert rapidly to the folded state and 50% chance to rapidly unfold, constitutes the basis of the modern interpretation of protein engineering experiments. It has been conjectured that conformations constituting the TSE in many proteins are the expanded and distorted forms of the native state built around a specific folding nucleus. This view has been supported by a number of on-lattice and off-lattice simulations. Here we report a direct observation and characterization of the TSE by molecular dynamic folding simulations of the C-Src SH3 domain, a small protein that has been extensively studied experimentally. Our analysis reveals a set of key interactions between residues, conserved by evolution, that must be formed to enter the kinetic basin of attraction of the native state.  相似文献   

17.
Recent theoretical and experimental studies have suggested that real proteins have sequences with sufficiently small energetic frustration that topological effects are central in determining the folding mechanism. A particularly interesting and challenging framework for exploring and testing the viability of these energetically unfrustrated models is the study of circular-permuted proteins. Here we present the results of the application of a topology-based model to the study of circular permuted SH3 and CI2, in comparison with the available experimental results. The folding mechanism of the permuted proteins emerging from our simulations is in very good agreement with the experimental observations. The differences between the folding mechanisms of the permuted and wild-type proteins seem then to be strongly related to the change in the native state topology.  相似文献   

18.
Protein engineering experiments and Phi(F)-value analysis of SH3 domains reveal that their transition state ensemble (TSE) is conformationally restricted, i.e. the fluctuations in the transition state (TS) structures are small. In the TS of src SH3 and alpha-spectrin SH3 the distal loop and the associated hairpin are fully structured, while the rest of the protein is relatively disordered. If native structure predominantly determines the folding mechanism, the findings for SH3 folds raise the question: What are the features of the native topology that determine the nature of the TSE? We propose that the presence of stiff loops in the native state that connect local structural elements (such as the distal hairpin in SH3 domains) conformationally restricts TSE. We validate this hypothesis using the simulations of a "control" system (16 residue beta-hairpin forming C-terminal fragment of the GBl protein) and its variants. In these fragments the role of bending rigidity in determining the nature of the TSE can be directly examined without complications arising from interactions with the rest of the protein. The TSE structures in the beta-hairpins are determined computationally using cluster analysis and limited Phi(F)-value analysis. Both techniques prove that the conformational heterogeneity decreases as the bending rigidity of the loop increases. To extend this finding to SH3 domains a measure of bending rigidity based on loop curvature, which utilizes native structures in the Protein Data Bank (PDB), is introduced. Using this measure we show that, with few exceptions, the ordering of stiffness of the distal, n-src, and RT loops in the 29 PDB structures of SH3 domains is conserved. Combining the simulation results for beta-hairpins and the analysis of PDB structures for SH3 domains, we propose that the stiff distal loop restricts the conformational fluctuations in the TSE. We also predict that constraining the distal loop to be preformed in the denatured ensemble should not alter the nature of TSE. On the other hand, if the amino and carboxy terminals are cross-linked to form a circular polypeptide chain, the pathways and TSs are altered. These contrasting scenarios are illustrated using simulations of cross-linked WT beta-hairpin fragments. Computations of bending rigidities for immunoglobulin-like domain proteins reveal no clear separation in the stiffness of their loops. In the beta-sandwich proteins, which have large fractions of non-local native contacts, the nature of the TSE cannot be apparently determined using purely local structural characteristics. Nevertheless, the measure of loop stiffness still provides qualitative predictions of the ordered regions in the TSE of Ig27 and TenFn3.  相似文献   

19.
We perform a detailed analysis of the thermodynamics and folding kinetics of the SH3 domain fold with discrete molecular dynamic simulations. We propose a protein model that reproduces some of the experimentally observed thermodynamic and folding kinetic properties of proteins. Specifically, we use our model to study the transition state ensemble of the SH3 fold family of proteins, a set of unstable conformations that fold to the protein native state with probability 1/2. We analyze the participation of each secondary structure element formed at the transition state ensemble. We also identify the folding nucleus of the SH3 fold and test extensively its importance for folding kinetics. We predict that a set of amino acid contacts between the RT-loop and the distal hairpin are the critical folding nucleus of the SH3 fold and propose a hypothesis that explains this result.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号