首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
CD8+ CTL responses are important for the control of HIV-1 infection. The immunodominant HLA-A2-restricted Gag epitope, SLYNTVATL (SL9), is considered to be a poor immunogen because reactivity to it is rare in acute infection despite its paradoxical dominance in patients with chronic infection. We have previously reported SL9 to be a help-independent epitope in that it primes highly activated CTLs ex vivo from CD8+ T cells of seronegative healthy donors. These CTLs produce sufficient cytokines for extended autocrine proliferation but are sensitive to activation-induced cell death, which may cause them to be eliminated by a proinflammatory cytokine storm. Here we identified an agonist variant of the SL9 peptide, p41 (SLYNTVAAL), by screening a large synthetic combinatorial nonapeptide library with ex vivo-primed SL9-specific T cells. p41 invariably immunized SL9-cross-reactive CTLs from other donors ex vivo and H-2Db beta2m double knockout mice expressing a chimeric HLA-A*0201/H2-Db MHC class I molecule. Parallel human T cell cultures showed p41-specific CTLs to be less fastidious than SL9-CTLs in the level of costimulation required from APCs and the need for exogenous IL-2 to proliferate (help dependent). TCR sequencing revealed that the same clonotype can develop into either help-independent or help-dependent CTLs depending on the peptide used to activate the precursor CD8+ T cells. Although Ag-experienced SL9-T cells from two patients were also sensitive to IL-2-mediated cell death upon restimulation in vitro, the loss of SL9 T cells was minimized with p41. This study suggests that agonist sequences can replace aberrantly immunogenic native epitopes for the rational design of vaccines targeting HIV-1.  相似文献   

2.
According to a number of previous reports, control of HIV replication in humans appears to be linked to the presence of anti-HIV-1 Gag-specific CD8 responses. During the chronic phase of HIV-1 infection, up to 75% of the HIV-infected individuals who express the histocompatibility leukocyte Ag (HLA)-A*0201 recognize the Gag p17 SLYNTVATL (aa residues 77-85) epitope (SL9). However, the role of the anti-SL9 CD8 CTL in controlling HIV-1 infection remains controversial. In this study we determined whether the pattern of SL9 immunodominance in uninfected, HLA-A*0201 HIV vaccine recipients is similar to that seen in chronically HIV-infected subjects. The presence of anti-SL9 responses was determined using a panel of highly sensitive cellular immunoassays, including peptide:MHC tetramer binding, IFN-gamma ELISPOT, and cytokine flow cytometry. Thirteen HLA-A*0201 vaccinees with documented anti-Gag CD8 CTL reactivities were tested, and none had a detectable anti-SL9 response. These findings strongly suggest that the pattern of SL9 epitope immunodominance previously reported among chronically infected, HLA-A*0201-positive patients is not recapitulated in noninfected recipients of Gag-containing canarypox-based candidate vaccines and may be influenced by the relative immunogenicity of these constructs.  相似文献   

3.
Immune escape from cytotoxic T-lymphocyte (CTL) responses has been shown to occur not only by changes within the targeted epitope but also by changes in the flanking sequences which interfere with the processing of the immunogenic peptide. However, the frequency of such an escape mechanism has not been determined. To investigate whether naturally occurring variations in the flanking sequences of an immunodominant human immunodeficiency virus type 1 (HIV-1) Gag CTL epitope prevent antigen processing, cells infected with HIV-1 or vaccinia virus constructs encoding different patient-derived Gag sequences were tested for recognition by HLA-A*0201-restricted, p17-specific CTL. We found that the immunodominant p17 epitope (SL9) and its variants were efficiently processed from minigene expressing vectors and from six HIV-1 Gag variants expressed by recombinant vaccinia virus constructs. Furthermore, SL9-specific CTL clones derived from multiple donors efficiently inhibited virus replication when added to HLA-A*0201-bearing cells infected with primary or laboratory-adapted strains of virus, despite the variability in the SL9 flanking sequences. These data suggest that escape from this immunodominant CTL response is not frequently accomplished by changes in the epitope flanking sequences.  相似文献   

4.
Cytotoxic T-lymphocyte (CTL) responses are thought to control human immunodeficiency virus replication during the acute phase of infection. Understanding the CD8(+) T-cell immune responses early after infection may, therefore, be important to vaccine design. Analyzing these responses in humans is difficult since few patients are diagnosed during early infection. Additionally, patients are infected by a variety of viral subtypes, making it hard to design reagents to measure their acute-phase immune responses. Given the complexities in evaluating acute-phase CD8(+) responses in humans, we analyzed these important immune responses in rhesus macaques expressing a common rhesus macaque major histocompatibility complex class I molecule (Mamu-A*01) for which we had developed a variety of immunological assays. We infected eight Mamu-A*01-positive macaques and five Mamu-A*01-negative macaques with the molecularly cloned virus SIV(mac)239 and determined all of the simian immunodeficiency virus-specific CD8(+) T-cell responses against overlapping peptides spanning the entire virus. We also monitored the evolution of particular CD8(+) T-cell responses by tetramer staining of peripheral lymphocytes as well as lymph node cells in situ. In this first analysis of the entire CD8(+) immune response to autologous virus we show that between 2 and 12 responses are detected during the acute phase in each animal. CTL against the early proteins (Tat, Rev, and Nef) and against regulatory proteins Vif and Vpr dominated the acute phase. Interestingly, CD8(+) responses against Mamu-A*01-restricted epitopes Tat(28-35)SL8 and Gag(181-189)CM9 were immunodominant in the acute phase. After the acute phase, however, this pattern of reactivity changed, and the Mamu-A*01-restricted response against the Gag(181-189)CM9 epitope became dominant. In most of the Mamu-A*01-positive macaques tested, CTL responses against epitopes bound by Mamu-A*01 dominated the CD8(+) cellular immune response.  相似文献   

5.
Despite the seemingly important role of cytotoxic T-lymphocyte (CTL) responses in human immunodeficiency virus (HIV) disease pathogenesis, their measurement has relied on a variety of different techniques. We utilized three separate methodologies for the detection of CTLs in a cohort of HIV-infected individuals who were also human leukocyte antigen A2 (HLA-A2) positive. Among the different CTL assays, a correlation was seen only when the Gag epitope-specific HLA A*0201-restricted tetramer assay was compared with the ELISPOT assay performed after stimulation with the Gag epitope; however, this correlation was of borderline statistical significance. On average, the tetramer reagent detected a 10-fold-higher number of cells than were seen to produce gamma interferon by the ELISPOT assay. The implications of this CTL assay comparison and the possibility of phenotypic differences in HIV-specific CD8(+) T lymphocytes are discussed.  相似文献   

6.
Antiviral CD8(+) T cells are thought to play a significant role in limiting the viremia of human and simian immunodeficiency virus (HIV and SIV, respectively) infections. However, it has not been possible to measure the in vivo effectiveness of cytotoxic T cells (CTLs), and hence their contribution to the death rate of CD4(+) T cells is unknown. Here, we estimated the ability of a prototypic antigen-specific CTL response against a well-characterized epitope to recognize and kill infected target cells by monitoring the immunodominant Mamu-A*01-restricted Tat SL8 epitope for escape from Tat-specific CTLs in SIVmac239-infected macaques. Fitting a mathematical model that incorporates the temporal kinetics of specific CTLs to the frequency of Tat SL8 escape mutants during acute SIV infection allowed us to estimate the in vivo killing rate constant per Tat SL8-specific CTL. Using this unique data set, we show that at least during acute SIV infection, certain antiviral CD8(+) T cells can have a significant impact on shortening the longevity of infected CD4(+) T cells and hence on suppressing virus replication. Unfortunately, due to viral escape from immune pressure and a dependency of the effectiveness of antiviral CD8(+) T-cell responses on the availability of sufficient CD4(+) T cells, the impressive early potency of the CTL response may wane in the transition to the chronic stage of the infection.  相似文献   

7.
Few studies have examined longitudinal changes in human immunodeficiency virus type 1 (HIV)-specific cytotoxic T lymphocytes (CTL). To more closely define the natural history of HIV-specific CTL, we used HLA-peptide tetrameric complexes to study the longitudinal CD8(+) T-cell response evolution in 16 A*0201-positive untreated individuals followed clinically for up to 14 years. As early as 1 to 2 years after seroconversion, we found a significant association between high frequencies of A*0201-restricted p17(Gag/Pol) tetramer-binding cells and slower disease progression (P < 0.01). We observed that responses could remain stable over many months, but any longitudinal changes that occurred were typically accompanied by reciprocal changes in RNA viral load. Phenotypic analysis with markers CD45RO, CD45RA, and CD27 identified distinct subsets of antigen-specific cells and the preferential loss of CD27(+) CD45RO(+) cells during periods of rapid decline in the frequency of tetramer-binding cells. In addition we were unable to confirm previous studies showing a consistent selective loss of HIV-specific cells in the context of sustained Epstein-Barr virus-specific cell frequencies. Overall, these data support a role of HIV-specific CTL in the control of disease progression and suggest that the ultimate loss of such CTL may be preferentially from the CD27(+) CD45RO(+) subset.  相似文献   

8.
HIV-specific CD8+ T cells are critical in controlling human immunodeficiency virus (HIV) replication. We present the evaluation of a gamma-interferon (IFN-gamma)-based enzyme linked immunospot (ELISPOT) assay for the quantification of HIV-specific CD8+ T cells from HIV-infected children. We studied 20 HLA-A*0201-positive HIV-infected children. The IFN-gamma production in response to stimulation with two HLA-A*0201-restricted immunodominant CD8 epitopes (SLYNTVATL [SL9] in Gag and ILKEPVHGV [IV9] in Pol) was tested using the ELISPOT assay. The results were compared to labeling with the corresponding tetramers. Among the 20 children, 18 had detectable responses against the SL9 and/or the IV9 epitope using the ELISPOT assay (medians, 351 and 134 spot-forming cells/10(6) peripheral blood mononuclear cells, respectively). Comparison of results from the tetramer and ELISPOT assays suggests that only a fraction of HIV-specific CD8+ T cells were able to produce IFN-gamma. Most importantly, we found that the frequencies of IFN-gamma-producing CD8+ T cells were positively correlated with the viral load whereas the frequencies of tetramer-binding CD8+ T cells were not. The high sensitivity of the ELISPOT assay and the fact that this functional assay provided information different from that of tetramer labeling support its use for measurement of HIV-specific CD8+ T cells. In conclusion, our results show that the ex vivo-activated IFN-gamma-producing HIV-specific CD8+ T-cell subset is dependent upon continuous antigenic stimulation.  相似文献   

9.
Certain major histocompatibility complex class I (MHC-I) alleles are associated with delayed disease progression in individuals infected with human immunodeficiency virus (HIV) and in macaques infected with simian immunodeficiency virus (SIV). However, little is known about the influence of these MHC alleles on acute-phase cellular immune responses. Here we follow 51 animals infected with SIV(mac)239 and demonstrate a dramatic association between Mamu-A*01 and -B*17 expression and slowed disease progression. We show that the dominant acute-phase cytotoxic T lymphocyte (CTL) responses in animals expressing these alleles are largely directed against two epitopes restricted by Mamu-A*01 and one epitope restricted by Mamu-B*17. One Mamu-A*01-restricted response (Tat(28-35)SL8) and the Mamu-B*17-restricted response (Nef(165-173)IW9) typically select for viral escape variants in early SIV(mac)239 infection. Interestingly, animals expressing Mamu-A*1 and -B*17 have less variation in the Tat(28-35)SL8 epitope during chronic infection than animals that express only Mamu-A*01. Our results show that MHC-I alleles that are associated with slow progression to AIDS bind epitopes recognized by dominant CTL responses during acute infection and underscore the importance of understanding CTL responses during primary HIV infection.  相似文献   

10.
HLA-A2-restricted CTL responses to immunodominant HIV-1 epitopes do not appear to be very effective in the control of viral replication in vivo. In this study, we studied human CD8+ T cell responses to the subdominant HLA-A2-restricted epitope TV9 (Gag p24(19-27), TLNAWVKVV) to explore the possibility of increasing its immune recognition. We confirmed in a cohort of 313 patients, infected by clade B or clade C viruses, that TV9 is rarely recognized. Of interest, the functional sensitivity of the TV9 response can be relatively high. The potential T cell repertoires for TV9 and the characteristics of constituent clonotypes were assessed by ex vivo priming of circulating CD8+ T cells from healthy seronegative donors. TV9-specific CTLs capable of suppressing viral replication in vitro were readily generated, suggesting that the cognate T cell repertoire is not limiting. However, these cultures contained multiple discrete populations with a range of binding avidities for the TV9 tetramer and correspondingly distinct functional dependencies on the CD8 coreceptor. The lack of dominant clonotypes was not affected by the stage of maturation of the priming dendritic cells. Cultures primed by dendritic cells transduced to present endogenous TV9 were also incapable of clonal maturation. Thus, a diffuse TCR repertoire appeared to be an intrinsic characteristic of TV9-specific responses. These data indicate that subdominance is not a function of poor immunogenicity, cognate TCR repertoire availability, or the potential avidity properties thereof, but rather suggest that useful responses to this epitope are suppressed by competing CD8+ T cell populations during HIV-1 infection.  相似文献   

11.
Cytotoxic T lymphocyte (CTL) responses against the simian immunodeficiency virus (SIV) envelope and Gag proteins were monitored in a Mamu-A*01-positive rhesus macaque infected with SIVsmE660. Peripheral blood mononuclear cells (PBMC) cultured with synthetic peptides spanning the entire gp160 and Gag coding region recognized a total of three epitopes. One located in Gag was identified as the previously described Mamu-A*01-restricted p11cC-->M epitope (CTPYDINQM). The other two epitopes, designated p15m and p54m, were located in the gp160 envelope protein. Both were nine amino acids in length and were predicted to bind Mamu-A*01 because they contained proline and leucine residues at positions 3 and 9, respectively. Indeed, expression of this class I major histocompatibility complex molecule was required for target cell recognition by envelope-specific CD8(+) T cells directed against both epitopes. These Mamu-A*01-restricted epitopes in the SIV envelope will be useful for monitoring immune responses in vaccinated or infected animals.  相似文献   

12.
CD8(+) T cells play a significant role in the control of HIV replication, yet the associated qualitative and quantitative factors that determine the outcome of infection remain obscure. In this study, we examined Ag-specific CD8(+) TCR repertoires longitudinally in a cohort of HLA-B*2705(+) long-term nonprogressors with chronic HIV-1 infection using a combination of molecular clonotype analysis and polychromatic flow cytometry. In each case, CD8(+) T cell populations specific for the immunodominant p24 Gag epitope KRWIILGLNK (KK10; residues 263-272) and naturally occurring variants thereof, restricted by HLA-B*2705, were studied at multiple time points; in addition, comparative data were collected for CD8(+) T cell populations specific for the CMV pp65 epitope NLVPMVATV (NV9; residues 495-503), restricted by HLA-A*0201. Dominant KK10-specific clonotypes persisted for several years and exhibited greater stability than their contemporaneous NV9-specific counterparts. Furthermore, these dominant KK10-specific clonotypes exhibited cross-reactivity with antigenic variants and expressed significantly higher levels of CD127 (IL-7Rα) and Bcl-2. Of note, we also found evidence that promiscuous TCR α-chain pairing associated with alterations in fine specificity for KK10 variants could contribute to TCR β-chain prevalence. Taken together, these data suggest that an antiapoptotic phenotype and the ability to cross-recognize variant epitopes contribute to clonotype longevity and selection within the peripheral memory T cell pool in the presence of persistent infection with a genetically unstable virus.  相似文献   

13.
CD8(+) T lymphocytes appear to play a role in controlling human immunodeficiency virus (HIV) replication, yet routine immunological assays do not measure the antiviral efficacy of these cells. Furthermore, it has been suggested that CD8+ T cells that recognize epitopes derived from proteins expressed early in the viral replication cycle can be highly efficient. We used a functional in vitro assay to assess the abilities of different epitope-specific CD8+ T-cell lines to control simian immunodeficiency virus (SIV) replication. We compared the antiviral efficacies of 26 epitope-specific CD8+ T-cell lines directed against seven SIV epitopes in Tat, Nef, Gag, Env, and Vif that were restricted by either Mamu-A*01 or Mamu-A*02. Suppression of SIV replication varied depending on the epitope specificities of the CD8+ T cells and was unrelated to whether the targeted epitope was derived from an early or late viral protein. Tat(28-35)SL8- and Gag(181-189)CM9-specific CD8+ T-cell lines were consistently superior at suppressing viral replication compared to the other five SIV-specific CD8+ T-cell lines. We also investigated the impact of viral escape on antiviral efficacy by determining if Tat(28-35)SL8- and Gag(181-189)CM9-specific CD8+ T-cell lines could suppress the replication of an escaped virus. Viral escape abrogated the abilities of Tat(28-35)SL8- and Gag(181-189)CM9-specific CD8+ T cells to control viral replication. However, gamma interferon (IFN-gamma) enzyme-linked immunospot and IFN-gamma/tumor necrosis factor alpha intracellular-cytokine-staining assays detected cross-reactive immune responses against the Gag escape variant. Understanding antiviral efficacy and epitope variability, therefore, will be important in selecting candidate epitopes for an HIV vaccine.  相似文献   

14.
CD8(+) T cells are thought to play an important role in protective immunity to tuberculosis. Although several nonprotein ligands have been identified for CD1-restricted CD8(+) CTLs, epitopes for classical MHC class I-restricted CD8(+) T cells, which most likely represent a majority among CD8(+) T cells, have remained ill defined. HLA-A*0201 is one of the most prevalent class I alleles, with a frequency of over 30% in most populations. HLA-A2/K(b) transgenic mice were shown to provide a powerful model for studying induction of HLA-A*0201-restricted immune responses in vivo. The Ag85 complex, a major component of secreted Mycobacterium tuberculosis proteins, induces strong CD4(+) T cell responses in M. tuberculosis-infected individuals, and protection against tuberculosis in Ag85-DNA-immunized animals. In this study, we demonstrate the presence of HLA class I-restricted, CD8(+) T cells against Ag85B of M. tuberculosis in HLA-A2/K(b) transgenic mice and HLA-A*0201(+) humans. Moreover, two immunodominant Ag85 peptide epitopes for HLA-A*0201-restricted, M. tuberculosis-reactive CD8(+) CTLs were identified. These CD8(+) T cells produced IFN-gamma and TNF-alpha and recognized Ag-pulsed or bacillus Calmette-Guérin-infected, HLA-A*0201-positive, but not HLA-A*0201-negative or uninfected human macrophages. This CTL-mediated killing was blocked by anti-CD8 or anti-HLA class I mAb. Using fluorescent peptide/HLA-A*0201 tetramers, Ag85-specific CD8(+) T cells could be visualized in bacillus Calmette-Guérin-responsive, HLA-A*0201(+) individuals. Collectively, our results demonstrate the presence of HLA class I-restricted CD8(+) CTL against a major Ag of M. tuberculosis and identify Ag85B epitopes that are strongly recognized by HLA-A*0201-restricted CD8(+) T cells in humans and mice. These epitopes thus represent potential subunit components for the design of vaccines against tuberculosis.  相似文献   

15.
Across several cohorts, human immunodeficiency virus type 1 (HIV-1) Gag- and Env-specific CD8(+) T lymphocyte (CTL) responses have demonstrated inverse and positive correlations, respectively, to viremia. The mechanism has been proposed to be superior antiviral activity of Gag-specific CTLs in general. Addressing this hypothesis, we created two HIV-1 constructs with an epitope translocated from Gag (SLYNTVATL, SL9) to Env, thereby switching the protein source of the epitope. A virus expressing SL9 in Env was similar to the original virus in susceptibility to SL9-specific CTLS. This finding suggests that Env targeting is not intrinsically inferior to Gag targeting for CTL antiviral activity.  相似文献   

16.
To evaluate the impact of the diversity of antigen recognition by T lymphocytes on disease pathogenesis, we must be able to identify and analyze simultaneously cytotoxic T-lymphocyte (CTL) responses specific for multiple viral epitopes. Many of the studies of the role of CD8(+) CTLs in AIDS pathogenesis have been done with simian immunodeficiency virus (SIV)- and simian-human immunodeficiency virus (SHIV)-infected rhesus monkeys. These studies have frequently made use of the well-defined SIV Gag CTL epitope p11C,C-M presented to CTL by the HLA-A homologue molecule Mamu-A*01. In the present study we identified and fine mapped two novel Mamu-A*01-restricted CTL epitopes: the SIVmac Pol-derived epitope p68A (STPPLVRLV) and the human immunodeficiency virus type 1 (HIV-1) Env-derived p41A epitope (YAPPISGQI). The frequency of CD8(+) CTLs specific for the p11C,C-M, p68A, and p41A epitopes was quantitated in the same animals with a panel of tetrameric Mamu-A*01/peptide/beta2m complexes. All SHIV-infected Mamu-A*01(+) rhesus monkeys tested had a high frequency of SIVmac Gag-specific CTLs to the p11C,C-M epitope. In contrast, only a fraction of the monkeys tested had detectable CTLs specific for the SIVmac Pol p68A and HIV-1 Env p41A epitopes, and these responses were detected at very low frequencies. Thus, the p11C,C-M-specific CD8(+) CTL response is dominant and the p41A- and p68A-specific CD8(+) CTL responses are nondominant. These results indicate that CD8(+) CTL responses to dominant CTL epitopes can be readily quantitated with the tetramer technology; however, CD8(+) CTL responses to nondominant epitopes, due to the low frequency of these epitope-specific cells, may be difficult to detect and quantitate by this approach.  相似文献   

17.
It is now accepted that an effective vaccine against AIDS must include effective cytotoxic-T-lymphocyte (CTL) responses. The simian immunodeficiency virus (SIV)-infected rhesus macaque is the best available animal model for AIDS, but analysis of macaque CTL responses has hitherto focused mainly on epitopes bound by a single major histocompatibility complex (MHC) class I molecule, Mamu-A*01. The availability of Mamu-A*01-positive macaques for vaccine studies is therefore severely limited. Furthermore, it is becoming clear that different CTL responses are able to control immunodeficiency virus replication with varying success, making it a priority to identify and analyze CTL responses restricted by common MHC class I molecules other than Mamu-A*01. Here we describe two novel epitopes derived from SIV, one from Gag (Gag(71-79) GY9), and one from the Nef protein (Nef(159-167) YY9). Both epitopes are bound by the common macaque MHC class I molecule, Mamu-A*02. The sequences of these two eptiopes are consistent with the molecule's peptide-binding motif, which we have defined by elution of natural ligands from Mamu-A*02. Strikingly, we found evidence for the selection of escape variant viruses by CTL specific for Nef(159-167) YY9 in 6 of 6 Mamu-A*02-positive animals. In contrast, viral sequences encoding the Gag(71-79) GY9 epitope remained intact in each animal. This situation is reminiscent of Mamu-A*01-restricted CTL that recognize Tat(28-35) SL8, which reproducibly selects for escape variants during acute infection, and Gag(181-189) CM9, which does not. Differential selection by CTL may therefore be a paradigm of immunodeficiency virus infection.  相似文献   

18.
Nearly all human immunodeficiency virus (HIV) infections are acquired mucosally, and the gut-associated lymphoid tissues are important sites for early virus replication. Thus, vaccine strategies designed to prime virus-specific cytotoxic T lymphocyte (CTL) responses that home to mucosal compartments may be particularly effective at preventing or containing HIV infection. The Salmonella type III secretion system has been shown to be an effective approach for stimulating mucosal CTL responses in mice. We therefore tested DeltaphoP-phoQ attenuated strains of Salmonella enterica serovar Typhimurium and S. enterica serovar Typhi expressing fragments of the simian immunodeficiency virus (SIV) Gag protein fused to the type III-secreted SopE protein for the ability to prime virus-specific CTL responses in rhesus macaques. Mamu-A*01(+) macaques were inoculated with three oral doses of recombinant Salmonella, followed by a peripheral boost with modified vaccinia virus Ankara expressing SIV Gag (MVA Gag). Transient low-level CTL responses to the Mamu-A*01 Gag(181-189) epitope were detected following each dose of SALMONELLA: After boosting with MVA Gag, strong Gag-specific CTL responses were consistently detected, and tetramer staining revealed the expansion of Gag(181-189)-specific CD8(+) T-cell responses in peripheral blood. A significant percentage of the Gag(181-189)-specific T-cell population in each animal also expressed the intestinal homing receptor alpha4beta7. Additionally, Gag(181-189)-specific CD8(+) T cells were detected in lymphocytes isolated from the colon. Yet, despite these responses, Salmonella-primed/MVA-boosted animals did not exhibit improved control of virus replication following a rectal challenge with SIVmac239. Nevertheless, this study demonstrates the potential of mucosal priming by the Salmonella type III secretion system to direct SIV-specific cellular immune responses to the gastrointestinal mucosa in a primate model.  相似文献   

19.
Investigating escape mechanisms of human immunodeficiency virus type 1 (HIV-1) from cytotoxic T lymphocytes (CTLs) is essential for understanding the pathogenesis of HIV-1 infection and developing effective vaccines. To study the processing and presentation of known CTL epitopes, we prepared Epstein-Barr virus-transformed B cells that endogenously express the gag gene of six field isolates by adopting an env/nef-deletion HIV-1 vector pseudotyped with vesicular stomatitis virus G protein and then tested them for the recognition by Gag epitope-specific CTL lines or clones. We observed that two field variants, SLFNTVAVL and SVYNTVATL, of an A*0201-restricted Gag CTL epitope SLYNTVATL, and three field variants, KYRLKHLVW, QYRLKHIVW, and RYRLKHLVW, of an A24-restricted Gag CTL epitope KYKLKHIVW escaped from being killed by the CTL lines, despite the fact that they were recognized when the synthetic peptides corresponding to these variant sequences were exogenously loaded onto the target cells. Thus, their escape is likely due to the changes that occur during the processing and presentation of epitopes in the infected cells. Mutations responsible for this mode of escape were located within the epitope regions rather than the flanking regions, and such mutations did not influence the virus replication. The results suggest that the impaired antigen processing and presentation often occur in HIV-1 field isolates and thus are one of the major mechanisms that enable HIV-1 to escape from CTL recognition. We emphasize the importance of testing HIV-1 variants in an endogenous expression system.  相似文献   

20.
Resting CD4+ T cells are a reservoir of latent HIV-1. Understanding the turnover of HIV DNA in these cells has implications for the development of eradication strategies. Most studies of viral latency focus on viral persistence under antiretroviral therapy (ART). We studied the turnover of SIV DNA resting CD4+ T cells during active infection in a cohort of 20 SIV-infected pigtail macaques. We compared SIV sequences at two Mane-A1*084:01-restricted CTL epitopes using serial plasma RNA and resting CD4+ T cell DNA samples by pyrosequencing, and used a mathematical modeling approach to estimate SIV DNA turnover. We found SIV DNA turnover in resting CD4+ T cells was slow in animals with low chronic viral loads, consistent with the long persistence of latency seen under ART. However, in animals with high levels of chronic viral replication, turnover was high. SIV DNA half-life within resting CD4 cells correleated with viral load (p = 0.0052) at the Gag KP9 CTL epitope. At a second CTL epitope in Tat (KVA10) there was a trend towards an association of SIV DNA half-life in resting CD4 cells and viral load (p = 0.0971). Further, we found that the turnover of resting CD4+ T cell SIV DNA was higher for escape during early infection than for escape later in infection (p = 0.0084). Our results suggest viral DNA within resting CD4 T cells is more labile and may be more susceptible to reactivation/eradication treatments when there are higher levels of virus replication and during early/acute infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号