首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R G Lister 《Life sciences》1987,41(12):1481-1489
The intrinsic effect of the benzodiazepine receptor inverse agonists RO 15-4513 and FG 7142 on the behavior of mice in a holeboard were investigated. Both drugs caused dose-related decreases in exploratory head-dipping. The highest dose of FG 7142 (40 mg/kg) also reduced locomotor activity. RO 15-4513 (1.5 and 3.0 mg/kg) and FG 7142 (10 and 20 mg/kg) reversed the reductions in the number of head-dips caused by ethanol (2 g/kg). The higher doses of these two drugs also partially reversed the locomotor stimulant action of ethanol. Animals that received ethanol in combination with either inverse agonist spent less time head-dipping than vehicle-treated controls. These data indicate that FG 7142 and RO 15-4513 can reverse, at least in part, some of the behavioral effects of ethanol. Neither drug significantly altered blood alcohol concentrations suggesting that the antagonism does not result from pharmacokinetic changes.  相似文献   

2.
We have found that the partial inverse benzodiazepine agonists Ro 15-4513 and FG 7142 antagonize the depressant electrophysiologial effects of locally applied ethanol in the cerebellum. Although absolute tissue concentrations are not known, dose-response curves constructed using pressure-ejection doses as previously described (31, 25) we found that FG 7142 was more efficacious, but less potent than Ro 15-4513. Our observation that ethanol and inverse benzodiazepine agonists have interactions which are not competitive might suggest that these two drugs act through separate, but interactive mechanisms in order to produce the observed ethanol antagonism. If such independent interactions were mediated at different sites on a given macromolecular complex, such as the GABAa/Cl channel, then one might expect to find allosteric interactions between those sites as well as with the functional response of the complex to GABA activation. Indeed, this hypothesis is consistent with the recent finding of Harris and collaborators that ethanol potentiates the inverse agonist actions of Ro 15-4513 and FG 7142. On the other hand, we were unable to find large ethanol-induced potentiations of GABA effects on all neurons which showed depressant responses to ethanol administration in rat cerebellum. However we did find that the GABAa antagonist, bicuculline, blocks the depressant effects of ethanol on the same neurons. We conclude that the interaction between ethanol and GABA probably does not occur directly at the GABAa receptor site, but that the GABAa mechanism does play a permissive role in the ethanol-induced depressions of cerebellar Purkinje neurons. Thus, although a postsynaptic GABAa mechanism may not be the primary locus of action at which ethanol causes depressant electrophysiological responses of neurons, activation of the GABAa receptor may be required to make cerebellar Purkinje neurons responsive to the depressant actions of ethanol. Further investigations will be required to determine the pre vs postsynaptic nature of this interaction of ethanol with the GABA mechanism of action.Special issue dedicated to Dr. Erminio Costa  相似文献   

3.
F Marrosu  G Mereu  O Giorgi  M G Corda 《Life sciences》1988,43(25):2151-2158
The aim of the present study was to compare the ability of Ro 15-4513 and FG 7142, two inverse agonists for benzodiazepine recognition sites, to antagonize the EEG effects of ethanol in freely moving rats. Ethanol (2.5 g/kg, p.o.) induced sedation and ataxia associated with a progressive suppression of the fast cortical activities and an enhancement of low frequencies in both cortical and hippocampal tracings. In contrast, Ro 15-4513 (2 mg/kg, i.p.) and FG 7142 (10 mg/kg, i.p.) both caused a state of alertness associated with desynchronized cortical activity and theta hippocampal rhythm as well as spiking activity which was predominantly observed in the cortical tracings. When rats were treated with FG 7142 or RO 15-4513 either before or after ethanol, a reciprocal antagonism of the behavioral and EEG effects of ethanol and of the partial inverse agonists was observed. These data support the view that the anti-ethanol effects of Ro 15-4513 may be related to its partial inverse agonist properties.  相似文献   

4.
The imidazobenzodiazepine Ro 15-4513 antagonizes methoxyflurane anesthesia   总被引:1,自引:0,他引:1  
E J Moody  P Skolnick 《Life sciences》1988,43(16):1269-1276
Parenteral administration of the imidazobenzodiazepine Ro 15-4513 (a high affinity ligand of the benzodiazepine receptor with partial inverse agonist qualities) produced a dose dependent reduction in sleep time of mice exposed to the inhalation anesthetic, methoxyflurane. The reductions in methoxyflurane sleep time ranged from approximately 20% at 4 mg/kg to approximately 38% at 32 mg/kg of Ro 15-4513. Co-administration of the benzodiazepine receptor antagonist Ro 15-1788 (16 mg/kg) or the inverse agonists DMCM (5-20 mg/kg) and FG 7142 (22.5 mg/kg) blocks this effect which suggests that the reductions in methoxyflurane sleep time produced by Ro 15-4513 are mediated via occupation of benzodiazepine receptors. Moreover, neither DMCM (5-20 mg/kg) nor FG 7142 (22.5 mg/kg) reduced methoxyflurane sleep time which suggests this effect of Ro 15-4513 cannot be attributed solely to its partial inverse agonist properties. These observations support recent findings that inhalation anesthetics may produce their depressant effects via perturbation of the benzodiazepine/GABA receptor chloride channel complex, and suggest that Ro 15-4513 may serve as a prototype of agents capable of antagonizing the depressant effects of inhalation anesthetics such as methoxyflurane.  相似文献   

5.
A M Allan  L D Baier  X Zhang 《Life sciences》1992,51(12):931-943
Withdrawal seizure prone (WSP) and withdrawal seizure resistant (WSR) mice were treated with 5 mg/kg lorazepam for 7 days via implanted osmotic mini pumps. Following chronic drug treatment, brains were assayed for GABA-mediated chloride flux (GABA-Cl-). Under control (drug naive) conditions, brain membranes prepared from WSP and WSR lines did not differ in flunitrazepam or ethanol stimulation of GABA-mediated 36Cl- uptake, but the WSP lines were more sensitive to inhibition of 36Cl- flux by the inverse agonist, FG-7142. Membranes from lorazepam tolerant WSP and WSR mice were resistant to flunitrazepam- and ethanol-stimulation of GABA-Cl-. Withdrawal from chronic treatment, by an acute injection with the benzodiazepine antagonist RO15-1788, returned flunitrazepam stimulation of GABA-Cl- to near control levels in WSR membranes but not in WSP membranes and restored ethanol modulation of the channel to control levels in both lines. Inhibition of chloride flux by the benzodiazepine partial inverse agonist, FG-7142 was greater in membranes from WSP mice compared with WSR mice. Tolerance to lorazepam increased sensitivity of the WSR membranes to FG-7142 without altering the response in the WSP line. Again, withdrawal restored the Cl- flux response to FG-7142 back to near control levels. Lorazepam tolerance lowered [3H]-flunitrazepam binding affinity slightly only in the WSR strain with no change in binding number. Withdrawal from chronic lorazepam treatment produced no significant change in binding affinity or number. The initial genotypic differences in benzodiazepine inverse agonist sensitivity, may be related to the selection for withdrawal seizure severity. Chronic administration of lorazepam reduces the coupling between the benzodiazepine agonist site and the chloride channel and concomitantly increases coupling between the channel and the inverse agonist site, while withdrawal resets the receptor coupling back to control response levels. However, for the WSP line, this drug environment dependent shift in channel coupling bias appears to be deficient compared with the WSR line.  相似文献   

6.
The imidazobenzodiazepine, Ro15-4513, which is a partial inverse agonist at brain benzodiazepine receptors, reversed the incoordinating effect of ethanol in mice, as measured on an accelerating Rotarod. This effect was blocked by benzodiazepine receptor antagonists. In contrast, Ro15-4513 had no effect on ethanol-induced hypothermia in mice. However, Ro15-4513 reversed the hypothermic effect of pentobarbital, and, at a higher dose, also reversed the incoordinating effect of pentobarbital in mice. The data support the hypothesis that certain of the pharmacological effects of ethanol are mediated by actions at the GABA-benzodiazepine receptor-coupled chloride channel.  相似文献   

7.
C Belzung  R Misslin  E Vogel 《Life sciences》1988,42(18):1765-1772
The antagonistic effects of the benzodiazepine receptor inverse agonist beta-CCM (1 mg/kg) and of the partial inverse agonist RO 15-3505 (3 mg/kg) on the anxiolytic properties of ethanol (1 g/kg) in mice confronted with a light/dark choice procedure and with the staircase test were investigated. Both drugs reversed the effects of ethanol on some of the behavioral parameters, but beta-CCM alone elicited anxiogenic intrinsic effects. RO 15-3505 induced seizures in mice treated with a subconvulsant dose of pentylenetetrazole, the most efficient doses being 3 and 6 mg/kg. These data indicate that beta-CCM and RO 15-3505 can reverse some of the anxiolytic effects of ethanol, acting probably to oppose GABA function via the benzodiazepine receptor.  相似文献   

8.
M Mizowaki  K Toriizuka  T Hanawa 《Life sciences》2001,69(18):2167-2177
We assessed the anxiolytic effect of Kami-Shoyo-San (Jia-wei-xiao-yao-san; TJ-24), one of a traditional Chinese herbal medicine used for the treatment of menopausal anxiety, by the social interaction (SI) test in male mice. Acute administration of TJ-24 (25-100 mg/kg, p.o.), as well as the gamma-amino-butyric acidA/benzodiazepine (GABA(A)/BZP) receptor agonist diazepam (1-3 mg/kg, i.p.), dose dependently increased the SI time, respectively. The GABA(A) receptor antagonist picrotoxin blocked the effects of TJ-24 and diazepam. TJ-24-induced SI behavior was significantly blocked by the GABA(A)/BZP receptor inverse agonist Ro 15-4513 and the GABA(A)/BZP receptor antagonist flumazenil. In addition, 5alpha-reductase inhibitor finasteride potently blocked the effect of TJ-24 without attenuating the basal level by itself. These findings suggest that TJ-24 shows the anxiolytic effect through the neurosteroid synthesis followed by GABA(A)/BDZ receptor stimulations.  相似文献   

9.
In vivo microdialysis was used to determine the effect of diazepam, flumazenil and FG-7142 upon the biogenic amine response to acute and repeated swim stress in the medial prefrontal cortex of the rat. Acute swim stress increased norepinephrine levels, although dopamine and serotonin levels remained stable. Upon re-exposure to swim stress twenty-four hours later, sustained increases (200–300% of baseline) in all three biogenic amines were detected. This enhanced response to re-stress was not seen in rats pretreated with either a benzodiazepine agonist (diazepam, 2 mg/kg), an antagonist (flumazenil, 10 mg/kg), or an inverse agonist (FG-7142, 10 mg/kg) given prior to the first swim stress. Therefore, the sensitization of biogenic amine response to re-stress may be prevented by compounds which differ in their activity at the benzodiazepine receptor.  相似文献   

10.
Ethanol-induced limb defects in mice: effect of strain and Ro15-4513   总被引:1,自引:0,他引:1  
It is now thought that ethanol exerts many of its behavioral effects in the CNS by interaction with the gamma-aminobutyric acid (GABA) receptor, and it has been shown that the benzodiazepine reverse agonist Ro15-4513 reverses some of the CNS effects produced by ethanol. The hypothesis was tested that ethanol exerts its teratogenic effects through interaction with a putative embryonic GABA receptor by determining whether Ro15-4513 reverses ethanol-induced forelimb ectrodactyly in C57BL/6 mice. First, pregnant C57BL/6 dams were injected twice i.p. with ethanol (2.9 g/kg body weight, 4 hr apart) on day 10 of gestation: 49% of the fetuses were resorbed or dead and 46% of the survivors showed forelimb ectrodactyly. In contrast, when SWV mice were treated with ethanol, embryolethality was only 11.9% and no forelimb ectrodactyly was observed. In a second experiment, when ethanol (2.6 g/kg x 2) was administered to C57BL/6 mice, 34% resorptions and 31% forelimb ectrodactyly were observed. Ectrodactyly induced by ethanol was primarily of the forelimb and exclusively postaxial. Ethanol produced an unusual forelimb defect in a small number of instances where there was a postaxial autopod reduction defect coupled with a preaxial zeugopod reduction defect. Ro15-4513 administered alone (50 mg/kg x 2) was neither embryolethal nor teratogenic in C57BL/6 mice. To attempt to reverse the teratogenic effect of ethanol, dams that were injected 5 min before each ethanol administration with Ro15-4513 (0.5, 1, 2.5, 5, 10 mg/kg twice) showed no significant change in frequency of forelimb ectrodactyly compared to embryos treated with ethanol alone. However, resorptions increased significantly to 77% and 62% with the 5 and 10 mg/kg doses of Ro15-4513. Thus there appears to be an embryolethal interaction of Ro15-4513 with ethanol. Nevertheless, since Ro15-4513 did not reverse the teratogenic effect induced by ethanol, these results do not support the hypothesis that the teratogenic mechanism of ethanol is mediated through a putative embryonic GABA receptor.  相似文献   

11.
To determine whether genetic differences in development of ethanol dependence are related to changes in gamma-aminobutyric acidA (GABAA) receptor function, we measured 36Cl- uptake by brain cortical membrane vesicles from withdrawal seizure prone and withdrawal seizure resistant (WSP/WSR) mice treated chronically with ethanol. Muscimol-stimulated chloride flux was not different between WSP and WSR mice before or after ethanol treatment. Also, augmentation of muscimol action by flunitrazepam or inhibition of muscimol action by the inverse agonists Ro 15-4513 (ethyl-8-azido-5,6-dihydro-5-methyl-6-oxo-4H-imidazo[1,5a]- [1,4]benzodiazepine-3-carboxylate) and methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM) was not different for ethanol-naive WSP and WSR mice. However, chronic ethanol administration enhanced the inhibitory actions of DMCM and Ro 15-4513 on membranes from WSP but not WSR mice. Conversely, chronic ethanol treatment attenuated the action of flunitrazepam on membranes from WSR but not WSP mice, suggesting that the actions of benzodiazepine agonists and inverse agonists are under separate genetic control. These genetic differences in actions of DMCM and Ro 15-4513 indicate that sensitization to benzodiazepine inverse agonists produced by chronic ethanol treatment may be related to development of withdrawal seizures and suggest that differences in the GABA/benzodiazepine receptor complex represent alleles that have segregated during the selection of the WSP/WSR mice.  相似文献   

12.
Photolabeling of the benzodiazepine receptor, which to date has been done with benzodiazepine agonists such as flunitrazepam, can also be achieved with Ro 15-4513, a partial inverse agonist of the benzodiazepine receptor. [3H]Ro 15-4513 specifically and irreversibly labeled a protein with an apparent molecular weight of 51,000 (P51) in cerebellum and at least two proteins with apparent molecular weights of 51,000 (P51) and 55,000 (P55) in hippocampus. Photolabeling was inhibited by 10 microM diazepam but not by 10 microM Ro 5-4864. The BZ1 receptor-selective ligands CL 218872 and beta-carboline-3-carboxylate ethyl ester preferentially inhibited irreversible binding of [3H]Ro 15-4513 to protein P51. Not only these biochemical results but also the distribution and density of [3H]Ro 15-4513 binding sites in rat brain sections were similar to the findings with [3H]flunitrazepam. Thus, the binding sites for agonists and inverse agonists appear to be located on the same proteins. In contrast, whereas [3H]flunitrazepam is known to label only 25% of the benzodiazepine binding sites in brain membranes, all binding sites are photolabeled by [3H]Ro 15-4513. Thus, all benzodiazepine receptor sites are associated with photolabeled proteins with apparent molecular weights of 51,000 and/or 55,000. In cerebellum, an additional protein (MW 57,000) unrelated to the benzodiazepine receptor was labeled by [3H]Ro 15-4513 but not by [3H]flunitrazepam. In brain sections, this component contributed to higher labeling by [3H]Ro 15-4513 in the granular than the molecular layer.  相似文献   

13.
The effects of benzodiazepine receptor agonist, diazepam, and inverse agonist, FG 7142, were examined. Strong antagonism between FG 7142 (10 mg/kg) and diazepam (1 mg/kg) activity was revealed in the open field test. On the other hand, both FG 7142 and diazepam inhibited isolation-induced intraspecies aggressive behaviour of rats. FG 7142 also reduced interspecies aggression of mouse-killing rats. The findings suggest that both diazepam and FG 7142 have antiaggressive properties in the isolation-induced aggression model, which are mediated by benzodiazepine receptors of the central nervous system.  相似文献   

14.
The effect of the anxiogenic beta-carboline methyl-beta-carboline-3-carboxyamide (FG 7142) on dopamine release in prefrontal cortex and striatum in the awake freely moving rat was determined using the technique of microdialysis. FG 7142 (25 mg/kg, i.p.) caused a time-dependent increase in dopamine release in prefrontal cortex which was statistically significantly greater than the response to vehicle administration. Dopamine release in striatum was unaltered by FG 7142. Pretreatment of animals with the benzodiazepine antagonist Ro 15-1788 (30 mg/kg, i.p., 15 min prior to FG 7142 administration) completely abolished the increase in dopamine release caused by FG 7142 in prefrontal cortex. These data indicate that the anxiogenic benzodiazepine inverse agonist FG 7142 can selectively increase dopamine release in prefrontal cortex, and that this effect appears to be mediated via the gamma-aminobutyric acid/benzodiazepine receptor complex.  相似文献   

15.
S Liljequist  J A Engel 《Life sciences》1984,34(25):2525-2533
The effects of RO 15-1788, RO 5-3663, picrotoxin and bicuculline on the anti-conflict properties of valproate were studied in rats using a modified Vogel 's conflict test procedure. A low dose of the benzodiazepine (BDZ) antagonist, RO 15-1788 (5 mg/kg), blocked the anti-punishment properties of valproate (400 mg/kg), whereas no antagonism was observed after a high dose (25 mg/kg) of the BDZ antagonist. High doses of RO 5-3663 or picrotoxin also reversed the anti-conflict action of valproate. Bicuculline did not change the effects of valproate in this test situation. The suppressive effect of valproate on locomotor activity was reversed by a low dose (5 mg/kg) of RO 15-1788, but not by the other antagonists. RO 5-3663 was the only antagonist which effectively reversed the muscle relaxant effects of valproate observed in a Rotarod performance test. These findings indicate that various pharmacological actions of valproate may be due to a complex interplay with several sites at the GABA-BDZ-receptor complex.  相似文献   

16.
Gatch MB  Jung ME  Wallis CJ  Lal H 《Life sciences》2002,71(22):2657-2665
Male Long-Evans rats were trained to discriminate mCPP (1.4 mg/kg, i.p.) from saline, using a two-lever, food-reinforced operant task. The GABA(A) antagonist, bicuculline (0.16-0.64 mg/kg), partially substituted for mCPP, whereas the benzodiazepine antagonist, flumazenil (1-10 mg/kg), and the benzodiazepine inverse agonist, Ro 15-4513 (0.25-2.5 mg/kg), failed to substitute for mCPP. Bicuculline produced no change in response rate, whereas Ro 15-4513 dose-dependently decreased responding. Flumazenil produced a small increase in response rates. Flumazenil (10 mg/kg), Ro 15-4513 (1.25 mg/kg), and the benzodiazepine agonists alprazolam (0.64 mg/kg) and diazepam (5 mg/kg) full agonist all failed to block the mCPP discriminative stimulus. When given in combination with mCPP, Ro15-4513 and alprazolam both produced lower response rates than did mCPP alone, whereas flumazenil and diazepam did not significantly alter response rates. These findings provide evidence that GABA(A) antagonists modulate the discriminative stimulus effects of mCPP, but that these effects are not mediated by activity at the benzodiazepine site.  相似文献   

17.
The effects of treatment of brain membranes with diethyl pyrocarbonate (DEP), a histidine-modifying reagent, on the binding of 3H-labeled Ro 15-4513 (ethyl-8-azido-5,6-dihydro-5-methyl-6-oxo-4H-imidazo[1,5-a]- [1,4]benzodiazepine-3-carboxylate) and [3H]diazepam were compared. DEP pretreatment produced a dose-dependent decrease in [3H]diazepam binding, whereas low DEP concentrations enhanced the binding of [3H]Ro 15-4513. These effects were reversed by incubation with hydroxylamine after the treatment. The enhancement of [3H]Ro 15-4513 binding was due to an increase in the affinity of the binding sites (KD), without any effect on binding capacity (Bmax). The enhancement was perceived in cerebral cortical, cerebellar, and hippocampal membranes. DEP treatment decreased the displacement of [3H]Ro 15-4513 binding by diazepam and FG 7142 (N-methyl-beta-carboline-3-carboxamide) but not by Ro 15-4513 and Ro 19-4603 (tert-butyl-5,6-dihydro-5-methyl-6-oxo-4H-imidazol[1,5- a]thieno[2,3-f][1,4]diazepine-3-carboxylate). Although the stimulating effect of gamma-aminobutyric acid (GABA) on [3H]-diazepam binding was not affected by DEP treatment, such treatment reduced the inhibitory effect of GABA on [3H]Ro 15-4513 binding. The enhancement of [3H]Ro 15-4513 binding was observed in membranes pretreated with DEP in the presence of flunitrazepam, whereas such pretreatment reduced significantly the inhibitory effect of DEP on [3H]-diazepam binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
When rat brain membranes were incubated with the benzodiazepine agonist [3H]flunitrazepam or the partial inverse benzodiazepine agonist [3H]Ro 15-4513 in the presence of ultraviolet light one protein (P51) was specifically and irreversibly labeled in cerebellum and at least two proteins (P51 and P55) were labeled in hippocampus. After digestion of the membranes with trypsin, protein P51 was degraded into several peptides. When P51 was photolabeled with [3H]Ro 15-4513, four peptides with apparent molecular weights of 39,000, 29,000, 21,000, and 17,000 were observed. When P51 was labeled with [3H]flunitrazepam, only two peptides with apparent molecular weights of 39,000 and 25,000 were obtained. Protein P55 was only partially degraded by trypsin, and whether it was labeled with [3H]flunitrazepam or [3H]Ro 15-4513 it yielded the same two proteolytic peptides with apparent molecular weights of 42,000 and 45,000. These results support the existence of at least two different benzodiazepine receptor subtypes associated with proteins P51 and P55. The different receptors seem to be differentially protected against treatment with trypsin. In addition, these results indicate that in the benzodiazepine receptor subtype associated with P51 benzodiazepine agonists and partial inverse benzodiazepine agonists irreversibly bind to different parts of the molecule.  相似文献   

19.
Premazepam (PRZ) in vitro competitively displaced 3H-diazepam (DIA), 3H-flunitrazepam (FLU) and 3H-RO 15-1788 from their binding sites on rat brain synaptosomes, with a potency intermediate to other benzodiazepines (BDZs), and Hill coefficients near 1 in different brain regions. Incubation at 37 degrees C reduced premazepam's affinity for BDZ receptors to a lower extent than other benzodiazepines and had no effect on the Hill coefficient. The IC50 of PRZ on 3H-RO 15-1788 and 3H-FLU binding was markedly reduced by GABA in rat cortex, like those of reference classical BDZs, but was GABA-independent in the cerebellum. The IC50 of the BDZ antagonist, RO 15-1788 was unaffected by GABA in both brain areas. The possibility that PRZ behaves as a partial agonist in the cortex and as an antagonist in the cerebellum is discussed.  相似文献   

20.
R G Lister 《Life sciences》1988,42(14):1385-1393
The intrinsic effects of two imidazodiazepines RO 15-3505 and RO 17-1812 on the behavior of mice in a holeboard test were investigated. The interactions of these two drugs with ethanol were also studied. RO 15-3505 (0.75-6.0 mg/kg) failed to significantly alter either exploratory head-dipping or locomotor activity when administered alone but doses of 0.75 and 1.5 mg/kg reversed the reduction in the number of head-dips caused by ethanol (2 g/kg) and partially reversed ethanol's locomotor stimulant action. In contrast, RO 17-1812 (0.75-6.0 mg/kg) increased locomotor activity when administered alone, and enhanced the reduction in exploration caused by ethanol. Neither RO 15-3505 nor RO 17-1812 altered blood alcohol concentrations suggesting a pharmacodynamic basis for these interactions. The results suggest that in the holeboard test the interactions of imidazodiazepines with ethanol are related to the nature of their interaction with benzodiazepine receptors, inverse agonists antagonising and agonists enhancing ethanol's effects on exploration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号