首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Long-term storage of desiccated nucleated mammalian cells at ambient temperature may be accomplished in a stable glassy state, which can be achieved by removal of water from the biological sample in the presence of glass-forming agents including trehalose. The stability of the glass may be compromised due to a nonuniform distribution of residual water and trehalose within and around the desiccated cells. Thus, quantification of water and trehalose contents at the single-cell level is critical for predicting the glass formation and stability for dry storage. Using Raman microspectroscopy, we estimated the trehalose and residual water contents in the microenvironment of spin-dried cells. Individual cells with or without intracellular trehalose were embedded in a solid thin layer of extracellular trehalose after spin-drying. We found strong evidence suggesting that the residual water was bound at a 2:1 water/trehalose molar ratio in both the extracellular and intracellular milieus. Other than the water associated with trehalose, we did not find any more residual water in the spin-dried sample, intra- or extracellularly. The extracellular trehalose film exhibited characteristics of an amorphous state with a glass transition temperature of ∼22°C. The intracellular milieu also dried to levels suitable for glass formation at room temperature. These findings demonstrate a method for quantification of water and trehalose in desiccated specimens using confocal Raman microspectroscopy. This approach has broad use in desiccation studies to carefully investigate the relationship of water and trehalose content and distribution with the tolerance to drying in mammalian cells.  相似文献   

2.
Two primary biochemical reactions in seed ageing (lipid peroxidation and non-enzymatic protein glycosylation with reducing sugars) have been studied under different seed water contents and storage temperatures, and the role of the glassy state in retarding biochemical deterioration examined. The viability loss of Vigna radiata seeds during storage is associated with Maillard reactions; however, the contribution of primary biochemical reactions varies under different storage conditions. Biochemical deterioration and viability loss are greatly retarded in seeds stored below a high critical temperature (approximately 40 degrees C above glass transition temperature). This high critical temperature corresponds to the cross-over temperature (T(c)) of glass transition where molecular dynamics changes from a solid-like system to a normal liquid system. The data show that seed ageing slows down significantly, even before seed tissue enters into the glassy state.  相似文献   

3.
The glassy state and accelerated aging of soybeans   总被引:3,自引:0,他引:3  
Deteriorative changes in seeds may be expected to reflect changes in physical state as well as in chemical composition. In the present study, measurements of changes in glass transition, lipid phase transition and sugar content were made during accelerated aging of two cultivars of soybeans ( Glycine max Merrill cv. Chippewa 64 and cv. Hodgson 78). The glass transition in axes, as measured by the thermally stimulated depolarization current method, showed gradual decreases in both magnitude and transition temperature during accelerated aging, and eventually, axes of seeds lost their ability to enter the glassy state. Sucrose, raffinose and stachyose contents in seed axes showed little or no change during the aging treatment. Membrane lipids in aged axes retained the liquid crystalline phase during aging. These data suggest that the changes of glass transition during accelerated aging occurred without associated changes in soluble sugar contents or changes in the liquid crystalline state of membrane lipids. The loss of the glass transition during accelerated aging could be a consequence of the annealing effect due to elevated temperature and moisture content. We propose that a loss of the glassy state during accelerated aging leads to an enhanced rate of subsequent deteriorative reactions in seeds and accelerates the loss of viability.  相似文献   

4.
Raison JK  Brown MA 《Plant physiology》1989,91(4):1471-1475
The transition temperature of the leaf polar lipids and the critical temperature for chill-induced inhibition of photosynthesis was determined for three altitudinal ecotypes of the wild tomato Lycopersicon hirsutum. Photosynthesis was measured as CO2-dependent O2 evolution at 25°C after leaf slices were exposed to chilling temperatures for 2 hours at a moderate photon flux density of 450 micromoles per square meter per second. The transition temperature of the leaf polar lipids was detected from the change in the temperature coefficient of the fluorescence intensity of trans-parinaric acid. Chill-induced photoinhibition was evident in the three tomato ecotypes when they were chilled below a critical temperature of 10°, 11°, and 13°C, respectively, for the high (LA1777), mid (LA1625), and low (LA1361) altitudinal ecotypes. The temperature differential, below the critical temperature, required to produce a 50% inhibition was also similar for the three ecotypes. A transition was detected in the leaf polar lipids of these plants at a temperature similar to that of the critical temperature for photoinhibition. The results show that the three tomato ecotypes are similar with respect to their critical temperature for chilling-induced photoinhibition and the rate of their response to the chilling stress. They are, thus, similarly sensitive to chilling.  相似文献   

5.
《Annals of botany》1997,79(3):291-297
The relationship between the glassy state in seeds and storage stability was examined, using the glass transition curve and a seed viability database from previous experiments. Storage data for seeds at various water contents were studied by Williams–Landel–Ferry (WLF) kinetics, whereas the glass transition curves of seeds with different storage stability were analysed by the Gordon–Taylor equation in terms of the plasticization effect of water on seed storage stability. It was found that the critical temperatures (Tc) for long-term storage of three orthodox seeds were near or below their glass transition temperatures (Tg), indicating the requirement for the presence of the glassy state for long-term seed storage. The rate of seed viability loss was a function of T-Tgat T>Tg, which fitted the WLF equation well, suggesting that storage stability was associated with the glass transition, and that the effect of water content on seed storage was correlated with the plasticization effect of water on intracellular glasses. A preliminary examination suggested a possible link between the glass transition curve and seed storage stability. According to the determined WLF constants, intracellular glasses in seeds fell into the second class of amorphous systems as defined by Slade and Levine (Critical Reviews in Food Science and Nutrition30: 115–360, 1991). These results support the interpretation that the glassy state plays an important role in storage stability and should be a major consideration in optimizing storage conditions.  相似文献   

6.
There is no generally accepted value for the lower temperature limit for life on Earth. We present empirical evidence that free-living microbial cells cooling in the presence of external ice will undergo freeze-induced desiccation and a glass transition (vitrification) at a temperature between −10°C and −26°C. In contrast to intracellular freezing, vitrification does not result in death and cells may survive very low temperatures once vitrified. The high internal viscosity following vitrification means that diffusion of oxygen and metabolites is slowed to such an extent that cellular metabolism ceases. The temperature range for intracellular vitrification makes this a process of fundamental ecological significance for free-living microbes. It is only where extracellular ice is not present that cells can continue to metabolise below these temperatures, and water droplets in clouds provide an important example of such a habitat. In multicellular organisms the cells are isolated from ice in the environment, and the major factor dictating how they respond to low temperature is the physical state of the extracellular fluid. Where this fluid freezes, then the cells will dehydrate and vitrify in a manner analogous to free-living microbes. Where the extracellular fluid undercools then cells can continue to metabolise, albeit slowly, to temperatures below the vitrification temperature of free-living microbes. Evidence suggests that these cells do also eventually vitrify, but at lower temperatures that may be below −50°C. Since cells must return to a fluid state to resume metabolism and complete their life cycle, and ice is almost universally present in environments at sub-zero temperatures, we propose that the vitrification temperature represents a general lower thermal limit to life on Earth, though its precise value differs between unicellular (typically above −20°C) and multicellular organisms (typically below −20°C). Few multicellular organisms can, however, complete their life cycle at temperatures below ∼−2°C.  相似文献   

7.
Raison JK  Orr GR 《Plant physiology》1986,81(3):807-811
The thermal response of mitochondrial polar lipids from a variety of chilling-sensitive and chilling-insensitive plants was determined by differential scanning calorimetry. A phase transition was observed at 15°C for mitochondria from soybeam (Glycine max. cv Davis) hypocotyl, at 16°C for tomato (Lycopersicon esculentum cv Flora-Dade and cv Grosse Lisse) fruit, at 15°C for cucumber (Cucumus sativus L.) fruit, at 14°C for mung bean (Vigna radiata var Berken) hypocotyl, and at 15°C for sweet potato (Ipomea batatas L.) roots. The transition temperature was not significantly altered by the scan rate and was reversible. Changes in the temperature coefficient of motion for a spin label, intercalated with the polar lipids, occurred at a temperature slightly below that of the phase transition, indicating that the polar lipids phase separate below the transition. No phase transition was observed for mitochondrial polar lipids from barley (Hordeum vulgare) roots, wheat (Triticum aestivum L. cv Falcon) roots, and Jerusalem artichoke (Helianthus tuberosus L.) tubers. The results show that a phase change occurs in the membrane lipids of mitochondria a few degrees above the temperature below which chilling injury is evident in the sensitive species. Thus they are consistent with the hypothesis that sensitivity to chilling injury is related to a temperature-induced alteration in the structure of cell membranes.  相似文献   

8.
Changes in the physical state of microsomal membrane lipids during senescence of rose flower petals (Rosa hyb. L. cv Mercedes) were measured by x-ray diffraction analysis. During senescence of cut flowers held at 22°C, lipid in the ordered, gel phase appeared in the otherwise disordered, liquid-crystalline phase lipids of the membranes. This was due to an increase in the phase transition temperature of the lipids. The proportion of gel phase in the membrane lipids of 2-day-old flowers was estimated as about 20% at 22°C. Ethylene may be responsible, at least in part, for the increase in lipid transition temperature during senescence since aminooxyacetic acid and silver thiosulfate inhibited the rise in transition temperature. When flowers were stored at 3°C for 10 to 17 days and then transferrd to 22°C, gel phase lipid appeared in membranes earlier than in freshly cut flowers. This advanced senescence was the result of aging at 3°C, indicated by increases in membrane lipid transition temperature and ethylene production rate during the time at 3°C. It is concluded that changes in the physical state of membrane lipids are an integral part of senescence of rose petals, that they are caused, at least in part, by ethylene action and that they are responsible, at least in part, for the increase in membrane permeability which precedes flower death.  相似文献   

9.
Oxidative processes are probable determinants of longevity of seeds in storage. Measurements of actual oxygen uptake rates were made for soybean and pea seeds as a comparison of short and long lived seeds when light, temperature, and moisture contents were varied. In both peas and soybeans, the oxygen uptake was depressed at low temperatures (<16°C) and low water contents (<0.25 gram H2O per gram dry weight). Apparent activation energies under these conditions are very high, while apparent activation energies of seeds at higher water contents and at temperatures greater than 22°C are much less. Light enhances the level of oxygen uptake in pea, but reduces the level of oxygen uptake in soybean. The complexities of the interactions of oxygen uptake with environmental conditions in soybean compared to pea suggest that oxidative processes occur in soybean at low water contents, but are essentially absent in pea. It is suggested that the additional oxidative processes in soybean with moisture contents between 0.10 and 0.24 gram per gram may contribute to the poorer longevity of soybean seed compared to pea seed.  相似文献   

10.
The polar lipid classes from thylakoids of Nerium oleander L. were studied with the aim of relating changes in their composition and thermal behavior with reported changes in the transition temperature of their polar lipids and chilling sensitivity of their leaves. With an increase in growth temperature, the transition temperature of phosphatidylglycerol increased from 16°C to 26°C, and for sulfoquinovosyldiacylglycerol from 19°C to 24°C. Transitions in the other lipid classes were below −10°C for plants grown at both growth temperature. The major changes in the molecular species of phosphatidylglycerol, with increasing growth temperature, were an increase in 1-oleoyl-2-palmitoyl phosphatidylglycerol from 21 to 39% and a decrease in 1-oleoyl-2-trans-3-hexadecanoic phosphatidylglycerol from 51 to 25%. Although the disaturated species increased from 8 to 23%, the maximum was less than that reported for chilling-sensitive plants. There was no change in the sum of the palmitic, hexadeca-trans-3-enoic and stearic acids. Dipalmitoyl sulfoquinovosyldiacylglycerol increased from 12 to 20% and 1-linolenoyl-2-palmitoyl sulfoquinovosyldiacylglycerol decreased from 40 to 30%. It is concluded that the increase in the transition temperature of the polar lipids and the sensitivity of acclimated oleander plants to chilling could not be predicted by the absolute sum of the saturated fatty acids or disaturated molecular species in phosphatidylglycerol. The polar lipid transition appears to be a product of mixing of both high and low melting-point lipids.  相似文献   

11.
Vertucci CW 《Plant physiology》1989,90(3):1121-1128
In an attempt to correlate freezable water with freezing injury, the thermal behavior of pea (Pisum sativum L.) and soybean (Glycine max L. Merr) seed parts at different moisture contents were compared with survival of the seeds when exposed to low temperatures. Thermal transitions between −150 and 10°C were studied using differential scanning calorimetry. In pea, reduction of germinability, after exposure of seeds to temperatures between − 18 and − 180°C, occurred at a constant moisture content (about 0.33 gram H2O/gram dry weight) regardless of the temperature; this moisture level was above that at which freezable water was first detectable by differential scanning calorimetry (0.26 gram H2O/gram dry weight). In contrast, damage to soybean seeds was observed at progressively lower moisture contents (from 0.33 to 0.20 gram H2O/gram dry weight) when the temperature was decreased from −18°C to −50°C. At −18 and −30°C, moisture contents at which damage to soybean seeds was evident were above that at which freezable water was first detectable (0.23 gram H2O/gram dry weight). However, at −50, −80, and −180°C, damage was evident even when freezable water was not detectable. The data suggest that, while the quantity of water is important in the expression of freezing injury, the presence of freezable water does not account for the damage.  相似文献   

12.
Glassy State and Seed Storage Stability: A Viability Equation Analysis   总被引:4,自引:0,他引:4  
Dry seeds exist generally in a glassy (or vitrified) state.The high viscosity of the glassy state would be expected tohave a retarding effect on deteriorative reactions in the cytoplasm.Thus the glassy state may be considered to be a biophysicalbarrier for seed deterioration. The present study aims to testthe hypothesis that seed storage stability is associated withthe glassy state. With the equations derived from the seed viabilityequation, we have calculated the maximum temperature (Tmax)for long-term storage of corn, pea and soybeans. The Tmax forlong-term seed storage is found to be in a good agreement withthe glass transition temperature (Tg) in each instance, suggestingthat seed deterioration would be accelerated when seeds arenot in the glassy state. Experiments with soybeans given acceleratedageing show that the loss of glassy state is followed by a rapiddecrease in seed viability. These observations provide indirectevidence that the glassy state may play a significant role inseed storage stability.Copyright 1994, 1999 Academic Press Glassy state, seed longevity, storage stability, viability analysis  相似文献   

13.
The postinduction period of Oenothera biennis L. seed germination was examined by temperature treatments. For all experiments, seeds received a standard 24 hour/24°C preinduction period and 12 hour/32°C photoinduction period. Germination is inhibited by postinduction temperatures above 32°C. When seeds are briefly incubated at 44°C and then transferred to 28°C, they germinate at a much lower percentage than 28°C controls. When thermally inhibited seeds are placed in the dark at 28°C for 20 hours, they can be promoted to germinate by a single pulse of red light. Seeds incubated at 12°C or below immediately after photoinduction enter a lag period in which they germinate slowly or not at all for a long time and then resume germination. The length of the lag period is exponentially related to the postinduction temperature. When seeds are incubated at a low temperature and then transferred to a warm temperature, they germinate much more rapidly than seeds not incubated at a low temperature. A model is proposed which is consistent with these and additional results. In the model, a germination promoter is irreversibly formed from a precursor and the synthesis of the precursor is favored at low temperatures and its degradation is favored at high temperatures.  相似文献   

14.
Although the presence of intracellular aqueous glasses has been established in seeds, their physiological role in storage stability is still conjectural. Therefore, we examined, using differential scanning calorimetry, the thermal behavior of glass transitions in axes of bean (Phaseolus vulgaris L.) with water contents (WC) between 0 and 1 g H2O/g dry weight (g/g) and temperatures between -120 and +120[deg]C. Three types of thermal behaviors associated with the glass transition were observed. The appearance, the glass -> liquid transition temperature, and the amount of energy released during these transitions were dependent on the tissue WC. No glass transitions were observed at WC lower than 0.03 and higher than 0.45 g/g. A brief exposure to 100[deg]C altered the glass properties of tissues with WC between 0.03 and 0.08 g/g but did not affect the thermal behavior of glasses with higher WC, demonstrating that thermal history is important to the intracellular glass behavior at lower WC. Correspondence of data from bean to models predicting the effects of glass components on the glass -> liquid transition temperature suggests that the intracellular glasses are composed of a highly complex sugar matrix, in which sugar and water molecules interact together and influence the glass properties. Our data provide evidence that additional glass properties must be characterized to understand the implications of a glassy state in storage stability of seeds.  相似文献   

15.
Murata N  Yamaya J 《Plant physiology》1984,74(4):1016-1024
Seven major lipid classes were isolated from leaves of chilling-sensitive and chilling-resistant plants, and the temperature-dependent phase behaviors of their aqueous dispersions were studied by a fluorescence polarization method using trans-parinaric acid and its methyl ester. Phosphatidylglycerols from the chilling-sensitive plants went from the liquid crystalline state into the phase separation state at about 30°C in 100 mm NaCl and at about 40°C in 5 mm MgCl2. In contrast, phosphatidylglycerols from the chilling-resistant plants went into the phase separation state at a much lower temperature. The other classes of lipids remained in the liquid crystalline state at all temperatures between 5°C and 40°C regardless of the chilling sensitivity of the plants, except sulfoquinovosyl diacylglycerol from sponge cucumber in which phase separation seemed to begin at about 15°C. Compositions and positional distributions of fatty acids of the lipids suggest that the phosphatidylglycerols from the chilling-sensitive plants, but no other lipids, contained large proportions of molecular species which undergo phase transition at room temperature or above. The thermotropic phase behaviors and the fatty acid compositions suggest that, among the major lipid classes from leaves of the chilling-sensitive plants, only phosphatidylglycerol can induce a phase transition. Since a major part of this lipid in leaves originates from the chloroplasts, phase transition probably occurs in the chloroplast membranes.  相似文献   

16.
The rate of oxygen consumption by germinating seeds of Lupinus albus and of Zea mays was studied as a function of temperature (7–26°C.). The Warburg manometer technique was used, with slight modifications. Above and below a critical temperature at 19.5°C. the temperature characteristic for oxygen consumption by Lupinus albus was found to be µ = 11,700± and 16,600 respectively. The same critical temperature was encountered in the case of Zea mays, with temperature characteristics µ = 13,100± above and µ = 21,050 below that temperature.  相似文献   

17.
The temperature boundary for phase separation of membrane lipids extracted from Nerium oleander leaves was determined by analysis of spin label motion using electron spin resonance spectroscopy and by analysis of polarization of fluorescence from the probe, trans-parinaric acid. A discontinuity of the temperature coefficient for spin label motion, and for trans-parinaric acid fluorescence was detected at 7°C and −3°C with membrane lipids from plants grown at 45°C/32°C (day/night) and 20°C/15°C, respectively. This change was associated with a sharp increase in the polarization of fluorescence from trans-parinaric acid indicating that significant domains of solid lipid form below 7°C or −3°C in these preparations but not above these temperatures. In addition, spin label motion indicated that the lipids of plants grown at low temperatures are more fluid than those of plants grown at higher temperatures.

A change in the molecular ordering of lipids was also detected by analysis of the separation of the hyperfine extrema of electron spin resonance spectra. This occurred at 2°C and 33°C with lipids from the high and low temperature grown plants, respectively. According to previous interpretation of spin label data the change at 29°C (or 33°C) would have indicated the temperature for the initiation of the phase separation process, and the change at 7°C (or −3°C) its completion. Because of the present results, however, this interpretation needs to be modified.

Differences in the physical properties of membrane lipids of plants grown at the hot or cool temperatures correlate with differences in the physiological characteristics of plants and with changes in the fatty acid composition of the corresponding membrane lipids. Environmentally induced modification of membrane lipids could thus account, in part, for the apparently beneficial adjustments of physiological properties of this plant when grown in these regimes.

  相似文献   

18.
Recruitment for many arid‐zone plant species is expected to be impacted by the projected increase in soil temperature and prolonged droughts associated with global climate change. As seed dormancy is considered a strategy to avoid unfavorable conditions, understanding the mechanisms underpinning vulnerability to these factors is critical for plant recruitment in intact communities, as well as for restoration efforts in arid ecosystems. This study determined the effects of temperature and water stress on recruitment processes in six grass species in the genus Triodia R.Br. from the Australian arid zone. Experiments in controlled environments were conducted on dormant and less‐dormant seeds at constant temperatures of 25°C, 30°C, 35°C, and 40°C, under well‐watered (Ψsoil = −0.15 MPa) and water‐limited (Ψsoil = −0.35 MPa) conditions. Success at three key recruitment stages—seed germination, emergence, and survival—and final seed viability of ungerminated seeds was assessed. For all species, less‐dormant seeds germinated to higher proportions under all conditions; however, subsequent seedling emergence and survival were higher in the more dormant seed treatment. An increase in temperature (35–40°C) under water‐limited conditions caused 95%–100% recruitment failure, regardless of the dormancy state. Ungerminated seeds maintained viability in dry soil; however, when exposed to warm (30–40°C) and well‐watered conditions, loss of viability was greater from the less‐dormant seeds across all species. This work demonstrates that the transition from seed to established seedling is highly vulnerable to microclimatic constraints and represents a critical filter for plant recruitment in the arid zone. As we demonstrate temperature and water stress‐driven mortality between seeds and established seedlings, understanding how these factors influence recruitment in other arid‐zone species should be a high priority consideration for management actions to mitigate the impacts of global change on ecosystem resilience. The knowledge gained from these outcomes must be actively incorporated into restoration initiatives.  相似文献   

19.
Temperature Dependence of Vasopressin Action on the Toad Bladder   总被引:6,自引:4,他引:2  
Toad bladders were challenged with vasopressin at one temperature, fixed on the mucosa with 1% glutaraldehyde, and then subjected to an osmotic gradient at another temperature. Thus, the temperature dependence of vasopressin action on membrane permeability was distinguished from the temperature dependence of osmotic water flux. As the temperature was raised from 20° to 38°C, there was a substantial increase in the velocity of vasopressin action, but osmotic flux was hardly affected. In this range of temperature the apparent energy of activation for net water movement across the bladder amounted to only 1.2 kcal/mole, a value well below the activation energy for bulk water viscosity. It is suggested that osmotic water flux takes place through narrow, nonpolar channels in the membrane. When the temperature was raised from 4° to 20°C, both vasopressin action as well as osmotic water flux were markedly enhanced. Activation energies for net water movement were now 8.5 kcal/mole (4°–9°C) and 4.1 kcal/mole (9°–20°C), indicating that the components of the aqueous channel undergo conformational changes as the temperature is lowered from 20°C. At 43°C bladder reactivity to vasopressin was lost, and irreversible changes in selective permeability were observed. The apparent energy of activation for net water movement across the denatured membrane was 6.6 kcal/mole. Approximately 1 µosmol of NaCl was exchanged for 1 µl of H2O across the denatured membrane.  相似文献   

20.
Correlating measurements from differential scanning calorimetry, freeze-fracture freeze-etch electron microscopy, and survival of twigs after two-step cooling experiments, we provide strong evidence that winter-hardened Populus balsamifera v. virginiana (Sarg.) resists the stresses of freezing below −28°C by amorphous solidification (glass formation) of most of its intracellular contents during slow cooling (≤5°C per hour). It is shown that other components of the intracellular medium go through glass transitions during slow cooling at about −45°C and below −70°C. This `three glass' model was then used to predict the results of differential scanning calorimetry, freeze-fracture freeze-etch electron microscopy, and biological experiments. This model is the first definitive explanation for the resistance of a woody plant to liquid N2 temperatures even if quench cooling (1200°C per minute) begins at temperatures as high as −20°C and warming is very slow (≤5°C per hour). It is also the first time high temperature natural intracellular glass formation has been demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号