首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Of the total 14C-leucine taken up by intact apple (Pyrus malus L., Golden Delicious) leaf discs, 44 to 62% is incorporated into protein from June to early October. Of this amount, an average of 35% is released by mild, room temperature acid hydrolysis. Prior to mid-August when leaf protein begins to decline, 15 to 20% of the 14C-leucine incorporated into protein occurs in water-(buffer) soluble protein, of which only 3% is released by mild acid hydrolysis. After mid-August, 40% of the label in protein occurs in soluble protein. The specific radio-activity of the soluble protein increases by 4- to 5-fold after mid-August, while that of total protein increases by less than 2-fold. In presenescent leaves (before the decline of protein in August) 20 micrograms per milliliter cycloheximide inhibits the incorporation of 14C-leucine into protein by 71%, and 20 micrograms per milliliter chloramphenicol inhibits it by 30%. In senescing leaves, cycloheximide inhibits 14C-leucine by 85% or more, while chloramphenicol inhibits it by less than 15%. Coincident to the initial decline of leaf protein, chloramphenicol greatly loses its ability to inhibit the incorporation of 14C-leucine into apple leaf protein. At all leaf ages, chloramphenicol increases the loss of chlorophyll from apple leaf discs. The effect of cycloheximide on leaf disc senescence changes with leaf age: in early season samples, it increases the loss of chlorophyll; in mid-season samples, it has no effect; and in late season samples, it retards the loss of chlorophyll.  相似文献   

2.
Control of senescence in rumex leaf discs by gibberellic Acid   总被引:8,自引:5,他引:3       下载免费PDF全文
The kinetics of chlorophyll and protein decomposition and the effect of gibberellic acid (GA) were examined in senescing leaf discs of Rumex crispus and R. obtusifolius. Loss of Rumex total chlorophyll proceeds at a slow rate for about 2 days followed by a period of rapid logarithmic decline. Chlorophyll b is lost at a slightly faster rate than chlorophyll a during senescence in discs as well as in situ. GA causes a complete cessation of net chlorophyll and protein degradation for several days in Rumex, in contrast to the incomplete senescence inhibition generally observed with cytokinins. GA is fully effective even when added at the middle of the logarithmic phase of chlorophyll loss. Senescence inhibition by GA is apparently gradually reversed upon GA removal. The cytokinins, kinetin and 6-benzylaminopurine, were also effective in Rumex leaf discs, indicating that the senescence retarding effect was not restricted to the gibberellins.  相似文献   

3.
 Leaf aging and senescence in Clusia multiflora H.B.K. was investigated by artificial treatments, such as floating leaf discs on water in darkness, or darkening leaves attached to the parent plant in situ in trees living in a tropical cloud forest. In both cases several parameters modified by age were evaluated such as nitrogen levels, chlorophyll content, succulence and carbohydrates levels. A prolonged senescence (nearly 3 months in floating leaf discs) was observed, contrasting with species such as Heliocarpus americanus (5 days) and Cecropia palmatisecta (20 days), characterized by low values of leaf weight per area, but similar to species with high leaf weight per area and with high levels of organic acids such as Clusia minor and Fourcroya humboldtiana, where acids may act as a reserve of C and energy. After 30 days in darkness C. multiflora leaf samples collected in the field did not show differences in comparison to non-darkened opposite leaves with respect to chlorophyll, titratable protons and carbohydrates, and leaves performed photosynthesis after 2 months in darkness. The effect of age in leaves was evaluated in a gradient of leaves, sampled at different positions from the apex and ranging in age from 15 days to 2 years old. The study of senescence in tropical wild plants is uncommon, but it is important knowledge for understanding foliar development, and response to internal rather than environmental regulation in climates where seasons are not strongly marked as is the case in the tropical mountain forest, where C. multiflora constitutes an important component in the early successional vegetation. Received: 21 October 1996 / Accepted: 12 November 1996  相似文献   

4.
Aliphatic polyamines (PAs) are involved in the delay or prevention of plant senescence, but the molecular mechanism is not clarified. The hypothesis is put forward that one of the mechanisms by which PAs modulate leaf senescence and chlorophyll stabilisation could be due to their modification of chlorophyll-bound proteins, catalysed by transglutaminase (TGase, R-glutaminylpeptide-amine γ-glutamyltransferase; E.C. 2.3.2.13). The retardation of leaf senescence of Lactuca sativa L. by spermine (Spm) was examined during induced cell death using leaf discs, or during the normal developmental senescence of leaves. Over 3 days, in leaf discs, Spm caused a delay of chlorophyll (Chl) decay, an increase of endogenous TGase activity, and a three-fold increase in chlorophyll content when supplied together with exogenous TGase. Spm was conjugated, via TGase, mainly to 22–30 kDa proteins. Long-term experiments over 5 days showed a general decrease in all three parameters with or without Spm. When leaves remained on the plants, Spm-sprayed leaves showed an increase in free Spm 1 h after spraying, mainly in the young leaves, whereas over longer periods (15 days) there was an increase in perchloric acid-soluble and -insoluble Spm metabolites. In senescing leaves, Spm prevented degradation of chlorophyll b and some proteins, and increased TGase activity, producing more PA-protein conjugates. Spm was translocated to chloroplasts and bound mainly onto fractions enriched in PSII, but also those enriched in PSI, whose light-harvesting complexes (LHC) sub-fractions contained TGase. Spm was conjugated by TGase mainly to LHCII, more markedly in the light. Immunodetection of TGase revealed multiple proteins in young leaves, possibly representing different TGase isoforms when TGase activity was high, whereas in already senescent leaves, when its activity decreased, one high-molecular-mass band was found, possibly because of enzyme polymerisation. Spm thus protected senescing Lactuca leaves from the decay of their chloroplast photosystem complexes. The senescence-delaying effects of Spm could be mediated by TGase, as TGase was re-activated to the level in young leaves following Spm treatment.  相似文献   

5.
Senescence and rejuvenation were investigated in detached cucumber (Cucumis sativus L.) leaves after cultivation in nutrient solution for one week or four weeks. Rooting of the petiole (visible generally from the 7th day) elicited a combination of different morphological, anatomical, and physiological changes in the lamina. Extensive growth in area and thickness, extreme regreening, changes of chloroplast structure and activity, as well as the pattern of Chl-protein complexes were observed and compared either to the corresponding parameters of young detached leaves or mature attached leaves. These responses could be provoked separately by treating excised leaf discs with kinetin, benzyladenine, or indolylacetic acid. The hormones showed mutuality in their effects, benzyladenine being responsible for the growth of cells, while indolylacetic acid and kinetin promoted an increase in chlorophyll content. However, none of the treatments resulted in the growth of the chloroplasts in the leaf discs, which was only prominent in the rooting leaves.  相似文献   

6.
Effect of head removal on leaf senescence of sunflower   总被引:1,自引:1,他引:0       下载免费PDF全文
Greenhouse and field studies examined the effect of flower or seedhead removal on leaf senescence and associated changes in sunflower (Helianthus annuus L.) plants. At intervals during seed development, selected leaves (leaves 6 through 8 from the top in the greenhouse and leaf 7 from the top in the field) were harvested and analyzed for chlorophyll, specific leaf weight, N, P, soluble protein, and electrophoretic gel profiles of soluble polypeptides. In both the greenhouse and the field, the leaves of headless plants retained or accumulated more N, P, soluble protein, and dry weight than leaves of plants with heads. Obviously, head removal affected the partitioning of these metabolites during seed development. None of the treatments resulted in the formation of new polypeptides (electrophoretic gel profiles). Comparisons of the rates and extent of loss of chlorophyll, soluble protein, and polypeptide bands (especially ribulose 1,5-bisphosphate carboxylase) from the leaves of headed and deheaded plants showed that head removal delayed the rate of development of leaf senescence for the greenhouse-grown but had much less effect on field-grown plants. These findings illustrate the variability in different parameters commonly associated with the leaf senescence processes of headed and deheaded sunflower plants grown under different environments.  相似文献   

7.
Wells R 《Plant physiology》1988,87(1):274-279
This study was conducted to determine if reproductive growth in cotton (Gossypium hirsutum L.) affects concurrent leaf development. Apparent photosynthesis (AP), stomatal conductance (Cs), soluble protein (SP), ribulose bisphosphate carboxylase (RuBisCO), and chlorophyll (Chl) were monitored in four main-stem cotton leaves which emerged at approximately 2 week intervals. The leaf which emerged during vegetative growth (48 days after planting) had higher AP, SP, and RuBisCO levels than that present in any leaves which emerged during fruit development. The last leaf studied (89 days after planting) was still present after boll maturation was completed and exhibited a rejuvenation in AP, SP, RuBisCO, and Chl starting at 30 days after leaf emergence. At 96 days after planting, the P700 Chl a-protein complex (PSI) was virtually absent from the leaves that emerged at 48 and 62 days after planting. The light harvesting Chl a/b complex was still present in these leaves, indicating greater degradation of PSI. The data emphasize the influence of developing fruit on concurrently developing leaves, an effect which was alleviated after boll maturation was completed. The declining AP per unit leaf area and smaller leaf size at the top of the plant results in a reduced photosynthetic potential of successively later emerging leaves. This reduction in leaf AP is consistent with earlier reported seasonal canopy photosynthesis patterns.  相似文献   

8.
G. B. Bremer 《Hydrobiologia》1995,295(1-3):89-95
This paper deals with the association of members of the Labyrinthulomycetes (Thraustochytriales and Labyrinthulales) with decaying or decayed leaves at an intertidal mangrove at Morib, Malaysia. Representatives of both orders of these obligately marine unicellular eukaryotes of unresolved taxonomic affinities (Chamberlain & Moss, 1998) were consistently isolated from leaves at all stages of decay from the recently fallen to those in an advanced stage of decay, but not from either green or senescent yellow leaves attached to trees. Baiting experiments using -irradiated leaf discs of Sonneratia and Rhizophora spp. immersed in the aquatic environment of the mangrove, revealed that leaf material was colonised by both labyrinthulids and thraustochytrids within 24 hours of immersion at the test site and these organisms were isolated from the leaf material throughout the 14 day study period. In vitro experiments using axenic cultures of three thraustochytrid genera inoculated onto sterile discs of Sonneratia leaves and incubated for 14 days caused loss of both biomass and structural integrity of the leaf material. Freeze fracture, followed by scanning electron microscopy of leaves inoculated with a thraustochytrid and a strain of Labyrinthula, revealed that penetration of the leaf occured after 4 days and that the thraustochytrid was associated with localised degradation of internal leaf tissues. Cellulase production by an isolate of Schizochytrium aggregatum was detected. The results of all the above investigations are discussed with reference to the role of members of the Labyrinthulomycetes in nutrient cycling in the mangrove.  相似文献   

9.
Ethylene as a regulator of senescence in tobacco leaf discs   总被引:24,自引:18,他引:6       下载免费PDF全文
The regulatory role of ethylene in leaf senescence was studied with excised tobacco leaf discs which were allowed to senesce in darkness. Exogenous ethylene, applied during the first 24 hours of senescence, enhanced chlorophyll loss without accelerating the climacteric-like pattern of rise in both ethylene and CO2, which occurred in the advanced stage of leaf senescence. Rates of both ethylene and CO2 evolution increased in the ethylene-treated leaf discs, especially during the first 3 days of senescence. The rhizobitoxine analog, aminoethoxy vinyl glycine, markedly inhibited ethylene production and reduced respiration and chlorophyll loss. Pretreatment of leaf discs with Ag+ or enrichment of the atmosphere with 5 to 10% CO2 reduced chlorophyll loss, reduced rate of respiration, and delayed the climacteric-like rise in both ethylene and respiration. Ag+ was much more effective than CO2 in retarding leaf senescence. Despite their senescence-retarding effect, Ag+ and CO2, which are known to block ethylene action, stimulated ethylene production by the leaf discs during the first 3 days of the senescing period; Ag+ was more effective than CO2. The results suggest that although ethylene production decreases prior to the climacteric-like rise during the later stages of senescence, endogenous ethylene plays a considerable role throughout the senescence process, presumably by interacting with other hormones participating in leaf senescence.  相似文献   

10.
Kinetin retarded the decrease in chlorophyll content in leafdiscs from 5 species of plants with amphistomatous leaves, wherethe upper surface was exposed to air, but not in Rumex acetosera.When leaf discs were floated so that the lower surface was exposed,the effect of kinetin was less evident. Kinetin also stimulatedtranspiration in leaf discs from Nicotiana tabacum (amphistomatous),but not in leaf discs from Paederia chinensis (hypostomatous).Nor kinetin did retard chlorophyll breakdown in this specieswhen leaf discs were floated so that the stomatal surface wasin contact with the solution. The ineffectiveness of cytokininsin chlorophyll retention in leaf discs from hypostomatous leaveswas not due to reduced uptake of benzylaminopurine-14C. Chlorophyll retention was severely inhibited by coating theleaf surface with vaseline either in the presence or absenceof kinetin. Leaf discs floated on a solution exposed to CO2-lessair retained more chlorophyll than those in normal air. Thereis thus a close relationship between stomatal opening (as measuredby stimulation of transpiration) and chlorophyll retention,as influenced by cytokinins. It is suggested that cytokinin-induced chlorophyll retentionand odier effects on leaf tissues could be mediated throughits effects on stomatal opening. (Received January 22, 1976; )  相似文献   

11.
Effects of senescence on chloroplasts of the tobacco leaf   总被引:4,自引:0,他引:4  
Chloroplast fine structure, oxygen evolution and plastid composition studies were made on ageing leaves over a 30-day period. Plastids in leaves which were approaching maximum levels of chlorophyll generated large numbers of alveolate suborganelles, named plastosomes, which were released into the cytoplasm. There was some evidence that these were of lipid composition. The relationship between net oxygen evolution by leaf discs and chlorophyll decline in leaf tissue varied with age of leaf or its position on the stalk. In no case studied was there a continuous parallel between the two processes. The rate of oxygen used nearly doubled for some leaves during the 30-day period. The volume of plastid pellet obtained from homogenized leaf samples rapidly declined immediately after maximum chlorophyll levels were reached. Plastid chlorophyll and protein also declined but not at the same rate. Absorption spectra of methanol extracts showed no qualitative change in pigments during the ageing process.  相似文献   

12.
Changes in activities of photosynthetic enzymes and photochemical processes were followed with aging of vegetative and flag leaves of wheat (Triticum aestivum L. cv Roy). Activities of stromal enzymes began to decline prior to photochemical activities. In general, total soluble protein and the activities of ribulose-1,5-bisphosphate carboxylase and NADP-triose-phosphate dehydrogenase declined in parallel and at an earlier age than leaf chlorophyll (Chl), leaf photosynthesis, and photosynthetic electron transport activity. Leaves appeared to lose whole chloroplasts as opposed to a general degradation of all chloroplasts based on three lines of evidence: (a) electron transport activity calculated on an area basis declined much earlier than the same data expressed on a Chl basis; (b) Chl content per chloroplast was similar for mature and senescent tissue; and (c) the absorbance at 550 nanometers (light scattering) per unit of Chl remained essentially constant until the end of senescence. Chloroplasts did, however, undergo some modifications before they were lost (e.g. loss of stromal enzyme activities), but the reduction in leaf photosynthesis was apparently caused by a loss of whole chloroplasts.  相似文献   

13.
The effect of kinetin on aspects of the metabolism of discs cut from mature leaves of Nicotiana tabacum and cultured in the light on agar containing mineral salts and sucrose was studied. In the first few days of culture there was a rapid decline in chlorophyll content. Discs treated with kinetin in the light began to resynthesise chlorophyll after 3–4 days and this was correlated with chloroplast replication. Kinetin promoted chloroplast replication but was not always essential. An increase in fresh weight also occurred, due mainly to cell expansion. Nitrate reductase activity increased rapidly during the first few hours after placing discs on the culture medium but kinetin had no effect on this reponse. Subsequently there were dramatic increases in RNA and protein content which were largely independent of kinetin. Gel electrophoresis showed that cytoplasmic and chloroplast ribosomal RNA and a large amount of soluble RNA were synthesised during culture of the discs. These results are discussed in relation to the role of kinetin in delaying leaf sensescence.  相似文献   

14.
The application of 6N-benzyladenine (BA) to primary bean-leaves attached to the intact plant resulted in increased leaf area. This was due to an extension of the duration of the period of leaf expansion. The dry-weight percentage of untreated leaves decreased continuously from emergence to abscission. In BA treated leaves this decrease stopped with the cessation of leaf expansion. Net chlorophyll synthesis occurs in untreated leaves as long as they continue to expand, shortly afterwards net chlorophyll decomposition starts. Benzyladenine treatments diminished the rate of chlorophyll synthesis immediately after its first application, but prevented the loss of chlorophyll afterwards. The abscission of primary leaves was also delayed by BA. During the period of rapid leaf expansion in slices cut from BA treated leaves, sodium absorption rates were lower than in those from untreated leaves. From the age of 14 days after sowing, till abscission time of untreated primary leaves, the BA treatment did not significantly affect sodium absorption rates by leaf slices.  相似文献   

15.
Potvin C 《Plant physiology》1985,78(4):883-886
The effect of leaf detachment on chlorophyll fluorescence was analyzed for Zea mays, Cucumis sativus, Phaseolus vulgaris, and Echinochloa crus-galli. Results clearly indicate that detachment hastens the decrease in chlorophyll fluorescence during the course of chilling experiments. For maize and bean, the activity of photosystem II of chloroplasts isolated from detached leaves is lower than that of chloroplasts isolated from attached leaves. There are also large differences in ionic loss between detached and attached leaves of barnyard grass which could correlate with changes in leaf water status. The detached leaves lost some 50% of their total ionic content. Finally, detachment alters the ranking of the species with regard to their chilling tolerance.  相似文献   

16.
Excised soybean (Glycine max [L.] Merrill) cv Anoka leaf discs tend to remain green even after the corresponding intact leaves have turned yello on fruiting plants. We have found that explants which include a leaf along with a stem segment (below the node) and one or more pods (maintained on distilled H2O) show similar but accelerated leaf yellowing and abscission compared with intact plants. In podded explants excised at pre-podfill, the leaves begin to yellow after 16 days, whereas those excised at late podfill begin to yellow after only 6 days. Although stomatal resistances remain low during the first light period after excision, they subsequently increase to levels above those in leaves of intact plants. Explants taken at mid to late podfill with one or more pods per node behave like intact plants in that pod load does not affect the time lag to leaf yellowing. Explant leaf yellowing and abscission are delayed by removal of the pods or seeds or by incubation in complete mineral nutrient solution or in 4.6 micromolar zeatin. Like chorophyll breakdown, protein loss is accelerated in the explants, but minerals or especially zeatin can retard the loss. Pods on explants show rates and patterns of color change (green to yellow to brown) similar to those of pods on intact plants. These changes start earlier in explants on water than in intact plants, but they can be delayed by adding zeatin. Seed dry weight increased in explants, almost as much as in intact plants. Explants appear to be good analogs of the corresponding parts of the intact plant, and they should prove useful for analyzing pod development and mechanisms of foliar senescence. Moreover, our data suggest that the flux of minerals and cytokinin from the roots could influence foliar senescence in soybeans, but increased stomatal resistance does not seem to cause foliar senescence.  相似文献   

17.
The study described patterns of leaf dry mass change, leaf mass per area (LMA), relative growth rate and leaf life span (LL) for 14 evergreen and 7 deciduous species of a tropical forest of Southern Assam, India. Leaf expansion in both the groups was, in general, completed before June (i.e. well before the onset of monsoon rains). Although leaf dry mass during leaf initiation phase was significantly higher (P < 0.01) in evergreen species than in deciduous species, at the time of full leaf expansion, average leaf dry mass relative to the peak leaf dry mass, realised by the evergreen species was lower (66 %) than for deciduous species (76 %). Leaf dry mass increase in both groups continued after leaf full expansion. Evergreen species had a longer leaf dry mass steady phase than deciduous species (2–6 vs 2–3 months). Average LMA of mature leaves for evergreen species (77.43 g m?2) was significantly greater than that of deciduous species (48.43 g m?2). LL ranged from 165 days in Gmelina arborea (deciduous) to 509 days in Dipterocarpus turbinatus (evergreen). LMA was correlated positively with LL, indicating that evergreen species with higher leaf construction cost retain leaves for longer period to pay back. The average leaf dry mass loss before leaf shedding was greater (P < 0.01) for deciduous species (30.29 %) than for evergreen species (18.31 %). Although the cost of leaf construction in deciduous species was lower than for evergreen species, they replace leaves at a faster rate. Deciduous species perhaps compensate the cost involved in faster leaf replacement through higher reabsorption of dry mass during senescence, which they remobilise to initiate growth in the following spring when soil resources remain limiting.  相似文献   

18.
The effect of nitrogen (N) fertility and its subsequent impact on ethylene production varies with plant species. Additionally, ethylene production reportedly increases or decreases with leaf age for several species. We examined leaf age and N fertility effects on ethylene production of cotton (Gossypium hirsutum L.) during the early vegetative stages of development (14 to 42 days after emergence) in a controlled environment. Ethylene production was determined by sampling leaf discs from the topmost fully expanded, middle, and bottom leaves of the canopy at 14, 21, 28, 35, and 42 days after emergence. Ethylene was collected from leaf discs in sealed test tubes and quantified by gas chromatography. Early in development, a N deficiency was associated with elevated levels of ethylene, suggesting stress ethylene production was occurring in response to a N-deficiency stress. As plant development progressed, however, increased ethylene production was associated with higher levels of applied N. Additionally, higher ethylene production was linearly associated with higher chlorophyll levels in all three leaves sampled. Ethylene production within plants receiving any given rate of N initially increased and then decreased with leaf age. The dynamics of this relationship suggest that as the N status of the plant changes during plant development, the relative rate of ethylene production, with regard to leaf age, is significantly influenced.  相似文献   

19.
The interrelationship between ethylene and growth regulators in the senescence of romaine lettuce (Lactuca sativa L.) leaves was studied. Gibberellic acid (GA3), kinetin, and 3-indoleacetic acid (IAA) retarded chlorophyll loss from leaf discs which were floated on hormone solutions. Abscisic acid (ABA) and ethephon enhanced chlorophyll loss and antagonized the senescence-retarding effect of GA3 and kinetin. A high concentration of IAA (10–4 M) caused accelerated chlorophyll loss, whereas a similar concentration of kinetin neither retarded nor promoted chlorophyll loss. The ineffectiveness of IAA and kinetin at their supraoptimal concentrations in retarding leaf senescence was related to increased production of ethylene induced in the treated leaf discs. GA3 was the most effective in retarding chlorophyll loss and did not stimulate ethylene production at all. The senescence-enhancing effect of ABA was not mediated by ethylene. However, the moderately increased production of ethylene, induced by relatively high concentrations of ABA, could act synergistically with the latter to accelerate chlorophyll loss. It is proposed that the effectiveness of exogenously applied hormones, both in enhancing and retarding senescence, is greatly affected by the endogenous ethylene concentration of the treated plant tissue.Contribution from the Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel, No. 2571-E, 1988 series.  相似文献   

20.
The capacity for ABA synthesis during moisture stress of primary leaves of bean ( Phaseolus vulgaris cv. Kinghorn) was defined in terms of leaf age and associated changes in several physiological parameters. The leaves were fully expanded within 9 days after emergence. Fresh and dry weights per unit of leaf area fell during all 5 weeks of the study, from leaf expansion through advanced senescence. The most significant losses in weight occurred during the third and fourth weeks and coincided with a sharp drop in protein content that began immediately after full-leaf. Chlorophyll concentrations declined rapidly during leaf expansion and then more slowly through the end of the fifth week when the leaves were ready to abscise. The ratio of chlorophyll a to b rose steeply over the first 4 weeks of the study.
Although a rapid loss of protein provided the most definitive indication of the early stages of leaf senescence, a marked decline in the ability to synthesize ABA was more closely associated with the termination of rapid leaf growth. This relationship between leaf expansion and the capacity for ABA synthesis during moisture stress remained unchanged when ABA content was expressed on a per unit chlorophyll, protein or dry weight basis.
A water deficit between 5 and 10% of fresh weight, representing a drop in water potential of less than 150 kPa, was sufficient to initiate accumulation of ABA in young leaves. Slightly more intensive levels of stress were required to stimulate ABA synthesis in senescent leaves, but total accumulation was less than one-tenth of the amount recorded in the younger tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号