首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neutral dinuclear Cu(II) complexes of Schiff base ligands derived from d-glucose have been synthesized and structurally characterized. These complexes were evaluated for their interaction with DNA, and DNA cleavage was observed even in the presence of radical inhibitors.  相似文献   

2.
Two asymmetric tridentate copper(II) complexes, [Cu(dppt)Cl(2)].0.25H(2)O (1) (dppt=3-(1,10-phenanthrolin-2-yl)-5,6-diphenyl-as-triazine) and [Cu(pta)Cl(2)] (2) (pta=3-(1,10-phenanthrolin-2-yl)-as-triazino[5,6-f]acenaphthylene), have been prepared and characterized by elemental analysis, IR and Fast atomic bombardment mass spectra. Complex 1 has also been structurally characterized. The complexes exist as distorted square pyramid with five co-ordination sites occupied by the tridentate ligand and the two chlorine anions. DNA interaction studies suggest that the ligand planarity of the complex has a significant effect on DNA binding affinity increasing in the order [Cu(dppt)Cl(2)]< [Cu(pta)Cl(2)]. In the presence of ascorbate or glutathione, the two complexes are found to cause significant cleavage of double-strand pBR 322 DNA and [Cu(pta)Cl(2)] exhibited the higher cleaving efficiency.  相似文献   

3.
The new homodinuclear complexes, [Cu(2)(II)(HLdtb)(mu-OCH(3))](ClO(4))(2) (1) and [Cu(2)(II)(Ldtb)(mu-OCH(3))](BPh(4)) (2), with the unsymmetrical N(5)O(2) donor ligand (H(2)Ldtb) - {2-[N,N-Bis(2-pyridylmethyl)aminomethyl]-6-[N',N'-(3,5-di-tert-butylbenzyl-2-hydroxy)(2-pyridylmethyl)]aminomethyl}-4-methylphenol have been synthesized and characterized in the solid state by X-ray crystallography.In both cases the structure reveals that the complexes have a common {Cu(II)(mu-phenoxo)(mu-OCH(3))Cu(II)} structural unit.Magnetic susceptibility studies of 1 and 2 reveal J values of -38.3 cm(-1) and -2.02 cm(-1), respectively, and that the degree of antiferromagnetic coupling is strongly dependent on the coordination geometries of the copper centers within the dinuclear {Cu(II)(mu-OCH(3))(mu-phenolate)Cu(II)} structural unit.Solution studies in dichloromethane, using UV-Visible spectroscopy and electrochemistry, indicate that under these experimental conditions the first coordination spheres of the Cu(II) centers are maintained as observed in the solid state structures, and that both forms can be brought into equilibrium ([Cu(2)(HLdtb)(mu-OCH(3))](2+)=[Cu(2)(Ldtb)(mu-OCH(3))](+)+H(+)) by adjusting the pH with Et(3)N (Ldtb(2-) is the deprotonated form of the ligand).On the other hand, potentiometric titration studies of 1 in an ethanol/water mixture (70:30 V/V; I=0.1M KCl) show three titrable protons, indicating the dissociation of the bridging CH(3)O(-) group.The catecholase activity of 1 and 2 in methanol/water buffer (30:1 V/V) demonstrates that the deprotonated form is the active species in the oxidation of 3,5-di-tert-butylcatechol and that the reaction follows Michaelis-Menten behavior with k(cat)=5.33 x 10(-3)s(-1) and K(M)=3.96 x 10(-3)M. Interestingly, 2 can be electrochemically oxidized with E(1/2)=0.27 V vs.Fc(+)/Fc (Fc(+)/Fc is the redox pair ferrocinium/ferrocene), a redox potential which is believed to be related to the formation of a phenoxyl radical.Since these complexes are redox active species, we analyzed their activity toward the nucleic acid DNA, a macromolecule prone to oxidative damage.Interestingly these complexes promoted DNA cleavage following an oxygen dependent pathway.  相似文献   

4.
Three hexaaza macrocyclic copper (II) complexes with different functional groups have been synthesized and characterized by elemental analysis and infrared spectra. Absorption and fluorescence spectral, cyclic voltammetric and viscometric studies have been carried out on the interaction of [CuL(1)]Cl(2) (L(1)[double bond]3,10-bis(2-methylpyridine)-1,3,5,8,10,12-hexaazacyclotetradecane), [CuL(2)]Cl(2) (L(2)[double bond]3,10-bis(2-propionitrile)-1,3,5,8,10,12-hexaazacyclotetradecane) and [CuL(3)]Cl(2) (L(3)=3,10-bis(2-hydroxyethyl)-1,3,5,8,10,12-hexaazacyclotetradecane) with calf thymus DNA. The results suggest that three complexes can bind to DNA by different binding modes. The spectroscopic studies together with viscosity experiments and cyclic voltammetry suggest that [CuL(1)](2+) could bind to DNA by partial intercalation via pyridine ring into the base pairs of DNA. [CuL(2)](2+) may bind to DNA by hydrogen bonding and hydrophobic interaction while [CuL(3)](2+) may be by weaker hydrogen bonding. The functional groups on the side chain of macrocycle play a key role in deciding the mode and extent of binding of complexes to DNA. Noticeably, the three complexes have been found to cleave double-strand pUC18 DNA in the presence of 2-mercaptoethanol and H(2)O(2).  相似文献   

5.
The complexes [Cu(II)(phen)(L-Pro)(H2O)]+ ClO4(-) (1; phen = 1,10-phenanthroline) and [Cu(II)(bipy)(L-Pro)(H2O)]+ ClO4(-) (2; bipy = 2,2'-bipyridine) were synthesized and characterized by IR, magnetic susceptibility, UV/VIS, EPR, ESI-MS, elemental analysis, and theoretical calculations. The metal center was found in a square-pyramidal geometry. UV/VIS, thermal-denaturation, and fluorescence-spectroscopic studies were conducted to assess the interaction of the complexes with CT-DNA. An intercalative mode of binding was found, with intrinsic binding constants (Kb) of 3.86x10(3) and 4.6x10(3) M(-1) and Stern-Volmer quenching constants (K) of 0.15 and 0.11 for 1 and 2, respectively. Interestingly, none of the Cu(II) complexes was able to cleave pUC-19 DNA, which is attributed to the absence of a Pro amide H-atom and inhibition of the formation of an OH radical from the axially coordinated H2O molecule.  相似文献   

6.
The DNA binding behavior of [Cu(phen)(phen-dione)Cl]Cl (1) and [Cu(bpy)(phen-dione)Cl]Cl (2) was studied with a series of techniques including UV-vis absorption, circular dichroism spectroscopy, and viscometric methods. Cytotoxicity effect and DNA unwinding properties were also investigated. The results indicate that the Cu(II) complexes interact with calf-thymus DNA by both partially intercalative and hydrogen binding. These findings have been further substantiated by the determination of intrinsic binding constants spectrophotometrically, 12.5?×?10(5) and 5?×?10(5) for 1 and 2, respectively. Our findings suggest that the type of ligands and structure of complexes have marked effect on the binding affinity of complexes involving CT-DNA. Circular dichroism results show that complex 1 causes considerable increase in base stacking of DNA, whereas 2 decreases the base stacking, which is related to more extended aromatic area of 1,10-phenanthroline in 1 rather than bipyridine in 2. Slow decrease in DNA viscosity indicates partially intercalative binding in addition to hydrogen binding on the surface of DNA. The second binding mode was also confirmed by additional tests: interaction in denaturation condition and acidic pH. Also, these new complexes induced cleavage in pUC18 plasmid DNA as indicated in gel electrophoresis and showed excellent antitumor activity against K562 (human chronic myeloid leukemia) cells.  相似文献   

7.
8.
Several new mononuclear and dinuclear ruthenium(II) complexes - incorporating 2,2′:6′,2″-terpyridine and acetylacetonate as ancillary ligands and phenylcyanamide derivative ligands - of the type [Ru(tpy)(acac)(L)] and [{Ru(tpy)(acac)}2(μ-L′)] (where tpy = 2,2′:6′,2″-terpyridine, acac = acetylacetonate, L = hmbpcyd = 4-(3-hydroxy-3-methylbutynyl)phenylcyanamide anion (2) and epcyd = 4-ethynylphenylcyanamide anion (3) and L′ = bcpda = bis(4-cyanamidophenyl)diacetylene dianion (4) and bcpea = 9,10-bis(4-cyanamidophenylethynyl)anthracene dianion (5)) were synthesized in a stepwise manner starting from [Ru(tpy)(acac)(Ipcyd)] (1), where Ipcyd = 4-iodophenylcyanamide anion. Tetraphenylarsonium salts of the phenylcyanamide derivative ligands were also prepared. The four complexes have been characterized by UV-Vis, IR, ES-MS, electrochemistry and 1H NMR. Mononuclear complexes 2 and 3 were further characterized by 13C NMR. The single crystal X-ray structure of 2 was determined, it crystallized with one molecule of water with empirical formula of C32H31N5O5Ru, in a monoclinic crystal system and space group of P21/n with a = 17.642(5) Å, b = 9.634(2) Å, c = 20.063(7) Å, β = 92.65(3)°, V = 3406(2) Å3 and Z = 4. The structure was refined to a final R factor of 0.040. The Ru(III/II) couple of 1-3 appeared around 0.34 V versus the saturated calomel electrode in dimethylformamide and at a slightly higher potential, around 0.36-0.37 V for 4 and 5. Spectroelectrochemical studies were also performed for 4 and 5, no intervalence transition was observed despite all attempts.  相似文献   

9.
Two novel dinuclear copper(II) complexes of formulae [Cu2(tren)2(bpda)](ClO4)4 (2) and [Cu2(tren)2(tpda)](ClO4)4 (3) containing the tripodal tris(2-aminoethyl)amine (tren) terminal ligand and the 4,4′-biphenylenediamine (bpda) and 4,4″-p-terphenylenediamine (tpda) bridging ligands have been synthesized and structurally, spectroscopically, and magnetically characterized. Their experimentally available electronic spectroscopic and magnetic properties have been reasonably reproduced by DFT and TDDFT calculations. Single crystal X-ray diffraction analysis of 2 shows the presence of dicopper(II) cations where the bpda bridging ligand adopts a bismonodentate coordination mode toward two [Cu(tren)]2+ units with an overall non-planar, orthogonal anti configuration of the N-Cu-N threefold axis of the trigonal bipyramidal CuII ions and the biphenylene group. The electronic absorption spectra of 2 and 3 in acetonitrile reveal the presence of four moderately weak d-d transitions characteristic of a slightly distorted trigonal bipyramid stereochemistry of the CuII ions. TDDFT calculations on 2 identify these transitions as those taking place between the four lower-lying, doubly occupied a2 (dyz)2, b2 (dxz)2, b1 (dxy)2, and a1 (dx2-y2)2 orbitals and the upper, singly occupied a1 (dz2)1 orbital of each trigonal bipyramidal CuII ion. Variable-temperature magnetic susceptibility measurements of 2 and 3 show the occurrence of moderate (J = −8.5 cm−1) to weak intramolecular antiferromagnetic couplings (J = −2.0 cm-1) [H = −JS1·S2 with S1 = S2 = SCu = ½] inspite of the relatively large copper-copper separation across the para-substituted biphenylene- (r = 12.3 Å) and terphenylenediamine (r = 16.4 Å) bridges, respectively. DFT calculations on 2 and 3 support the occurrence of a spin polarization mechanism for the propagation of the exchange interaction between the two unpaired electrons occupying the dz2 orbital of each trigonal bipyramidal CuII ion through the predominantly π-type orbital pathway of the oligo-p-phenylenediamine bridges, as reported earlier for the parent compound [Cu2(tren)2(ppda)](ClO4)4·2H2O (1) with the 1,4-phenylenediamine (ppda) bridging ligand. Finally, a rather slow exponential decay of the antiferromagnetic coupling (-J) with the number of phenylene repeat units, -(C6H4)n- (n = 1-3), has been found both experimentally and theoretically along this series of oligo-p-phenylenediamine-bridged dicopper(II) complexes. These results further support the ability of linear π-conjugated oligo-p-phenylene spacers to transmit the exchange interaction between the unpaired electrons of the two CuII centers with intermetallic distances in the range of 7.5-16.4 Å.  相似文献   

10.
Mononuclear macrocyclic polyamine zinc(II), copper(II), cobalt(II) complexes, which could attach to peptide nucleic acid (PNA), were synthesized as DNA cleavage agents. The structures of these new mononuclear complexes were identified by MS and (1)H NMR spectroscopy. The catalytic activities on DNA cleavage of these mononuclear complexes with different central metals were subsequently studied, which showed that copper complex was better catalyst in the DNA cleavage process than zinc and cobalt complexes. The effects of reaction time, concentration of complexes were also investigated. The results indicated that the copper(II) complexes could catalyze the cleavage of supercoiled DNA (pUC 19 plasmid DNA) (Form I) under physiological conditions to produce selectively nicked DNA (Form II, no Form III produced) with high yields. The mechanism of the cleavage process was also studied.  相似文献   

11.
New copper(II) complexes with sulfonamide ligands have been prepared and characterized. Sulfonamide ligands were prepared through a reaction between 8-aminoquinoline and either 2-mesitylene (Hqmesa), 4-tert-butylbenzene (Hqtbsa), or alpha-toluene (Halphaqtsa) sulfonyl chlorides. The structural analysis carried out for complex [Cu(alphaqtsa)(2)] indicated that the local environment of the Cu(II) cation is between a square planar and a tetrahedral geometry, with stacking of the benzene rings of the sulfonyl ligands between neighbor molecules. Powder EPR spectra at room temperature gave rhombic spectra for the [Cu(alphaqtsa)(2)] and [Cu(qmesa)(2)] complexes and an axial spectrum for the [Cu(qtbsa)(2)] complex, probably due to the steric hindrance of the methyl groups. Complexes [Cu(alphaqtsa)(2)] and [Cu(qmesa)(2)] are artificial chemical nucleases that degrade DNA in the presence of sodium ascorbate. A study of the radical scavengers revealed that the ROS (reactive oxygen species) involved in the DNA damage were hydroxyl, singlet oxygen-like species, and superoxide anion.  相似文献   

12.
Two new Cu(II) complexes, [Cu(acac)(dpq)Cl] () and [Cu(acac)(dppz)Cl] () (acac = acetylacetonate, dpq = dipyrido[3,2-d:20,30-f]quinoxaline, dppz = dipyrido[3,2-a:20,30-c] phenazine), have been synthesized and their DNA binding, photo-induced DNA cleavage activity and cell cytotoxicity are studied. The complexes show good binding propensity to calf thymus DNA in the order: 2(dppz) > 1(dpq). Furthermore, two complexes exhibit efficient DNA cleavage activity on natural light or UV-A (365 nm) irradiation via a mechanistic pathway involving formation of singlet oxygen as the reactive species. The photo-induced DNA cleavage activity of the dppz complex 2 is found to be more efficient than its dpq analogue. In vitro study of the photocytotoxicity of two complexes on HeLa cells indicate that both of them have the potential to act as effective anticancer drugs, with IC50 values of 5.25 ± 0.83 μM (1) and 4.40 ± 0.52 μM (2) in the natural light, and 2.57 ± 0.92 μM (1) and 2.18 ± 0.52 μM (2) in UV-A light. In addition, to detect an apoptotic HeLa body, cells were stained with Hoechst 33342 dye.  相似文献   

13.
DNA-binding properties of novel copper(II) complex [Cu(l-Phe)(TATP)(H(2)O)](+), where L-Phe=L-phenylalaninate and TATP=1,4,8,9-tetra-aza-triphenylene are investigated using electronic absorption spectroscopy, fluorescence spectroscopy, voltammetry and viscosity measurement. It is found that the presence of calf thymus DNA results in a hypochromism and red shift in the electronic absorption, a quenching effect on fluorescence nature of ethidium bromide-DNA system, an enhanced response on voltammograms of [Co(phen)(3)](3+/2+)-DNA system, and an obvious change in viscosity of DNA. From absorption titration, fluorescence analysis and voltammetric measurement, the binding constant of the complex with DNA is calculated. The latter two methods reveal the stronger binding of [Cu(l-Phe)(TATP)(H(2)O)](+) complex to double strand DNA by the moderate intercalation than [Co(phen)(3)](3+). Such a binding induces the cleavage of plasmid pBR322 DNA in the presence of H(2)O(2).  相似文献   

14.
Four new symmetric mixed-chelate dinuclear complexes type [Cu2(L)2(TAE)]X2, where TAE = tetraacetylethane; L = N,N-dimethyl-N′-benzylethylenediamine (L1) or N,N′-dibenylethylenediamine (L2); X = ClO4 or BPh4 have been synthesized and characterized on the bases of elemental analysis, spectroscopic and conductance measurements. The X-ray crystal analysis of [Cu2(L1)2(TAE)](ClO4)2 demonstrated that the two copper(II) ions are not equivalent. The axial position of the first copper is occupied by a ClO4 ion with a square pyramidal geometry whereas; the second copper ion resides in an octahedral environment determined by two perchlorate anions. However, in solution, the perchlorate ions are driven out by solvent molecules leading to their solvatochromism. The solvatochromism of the complexes were investigated in various organic solvents and also were compared with those of the corresponding mononuclear complexes [Cu(L)(acac)]ClO4. Their solvatochromism were also investigated with different solvent parameters models using stepwise multiple linear regression (SMLR) method. The results suggested that the DN parameter of the solvent has the dominate contribution to the shift of the d-d absorption band of the complexes. The results demonstrated that the complexes with counter ions of BPh4 are more solvatochromic in very weak donor solvents owing to their disinclination in ion-pair formation.  相似文献   

15.
Stable Cu(II) complexes with histamine- and histidine-containing dipeptides histidylserine and histidylphenylalanine have been developed. Their interaction in solution has been investigated, and the stability of their complexes was determined. The nature of binding in these complexes has been explained with the help of potentiometric pH titrations and 1H-NMR spectroscopy. The geometry of these complexes has been established by electronic spectra. The DNA-binding and -cleavage abilities of these Cu(II) complexes have been probed by the absorption, thermal denaturation, fluorescence, and electrophoresis experiments. The results suggest that these peptide-based Cu(II) complexes effectively bind and efficiently cleave DNA under mild biological conditions. Since Cu(II) complexes are known to play an important role in phosphodiester bond cleavages, these results assume importance.  相似文献   

16.
Two copper(II) complexes, 1 and 2 with L1 and L2 [L1 = 2-hydroxybenzyl(2-(pyridin-2-yl)ethylamine); L2 = 2-hydroxybenzyl(2-(pyridin-2-yl)methylamine)] ligands, respectively, have been synthesized and characterized. The interaction of both the complexes with DNA has been studied to explore their potential biological activity. The DNA binding properties of the complexes with calf thymus (CT) DNA were studied by spectroscopic titration. The complexes show binding affinity to CT DNA with binding constant (Kb) values in the order of 105 M−1. Thermal denaturation and circular dichroism studies suggest groove binding of the complexes to CT DNA. Complexes also exhibit strong DNA cleavage activity in presence of reducing agents like 3-mercaptopropionic acid and β-mercaptoethanol. Mechanistic studies reveal the involvement of reactive hydroxyl radicals for their DNA cleavage activity.  相似文献   

17.
The dinucleating ligand, tpbpd (tetrapyridyl biphenylenediamine) forms a dicopper complex with practically no electronic coupling between the two copper (II) centres. The EPR spectrum of the complex is consistent with coordination of each copper ion to two nitrogens of the binuclear ligand. Cyclic voltammogram of the complex also reveals that the two copper (II) centres have identical ligating environment. This dimeric copper (II) complex is found to be a very efficient catalyst for the cleavage of plasmid DNA in the absence of any added cofactor. The amount of conversion of supercoiled form (Form I) of plasmid to the open circular form (Form II) depends on the concentration of the complex as well as the duration of incubation of the complex with DNA. The maximum rate of conversion of the supercoiled form to the nicked circular form at pH 7.5 in the presence of 150 microM of the complex is found to be 1.8 x 10(-3) s(-1).  相似文献   

18.
Copper(II) cations coordinated with PMDTA (pentamethyldiethylenetriamine) and TMEDA (tetramethylethylenediamine) possess a high synthetic potential. The synthesis of these cations was carried out by metathesis reactions with silver salts. The cationic copper(II) complexes, [Cu(PMDTA)(Me2CO)Cl]+, [Cu(PMDTA)(H2O)Cl]+, [Cu(PMDTA)(DMF)]+, [Cu(PMDTA)Cl]+, [Cu(PMDTA)OAc]+, [Cu(PMDTA)(MeCN)2]2+, [Cu2(TMEDA)2Cl3]+ and [Cu(TMEDA)(MeCN)3]2+ were synthesised as PF6 salts, crystallised and characterised by single-crystal X-ray diffraction.  相似文献   

19.
The two complexes containing bioactive ligands of the type and [Fe(L)] (PF(6))(2) (1) (where L = [1-{[2-{[2-hydroxynaphthalen-1-yl)methylidine]amino}phenyl)imino] methyl}naphthalene-2-ol]) and [Co(L(1)L(2))] (PF(6))(3) (2) (where L(1)L(2) = mixed ligand of 2-seleno-4-methylquinoline and 1,10-phenanthroline in the ratio 1:2, respectively) were synthesized and structurally characterized. The DNA binding property of the complexes with calf thymus DNA has been investigated using absorption spectra, viscosity measurements, and thermal denaturation experiments. Intrinsic binding constant K(b) has been estimated at room temperature. The absorption spectral studies indicate that the complexes intercalate between the base pairs of the CT-DNA tightly with intrinsic DNA binding constant of 2.8 × 10(5) M(-1) for (1) and 4.8 × 10(5) M(-1) for (2) in 5 mM Tris-HCl/50 mM NaCl buffer at pH 7.2, respectively. The oxidative cleavage activity of (1) and (2) were studied by using gel electrophoresis and the results show that complexes have potent nuclease activity.  相似文献   

20.
Some oxindole-Schiff base copper(II) complexes have already shown potential antitumor activity towards different cells, inducing apoptosis in a process modulated by the ligand, and having nuclei and mitochondria as main targets. Here, three novel copper(II) complexes with analogous ligands were isolated and characterized by spectroscopic techniques, having their reactivity compared to the so far most active complex in this class. Cytotoxicity experiments carried out toward human neuroblastoma SH-SY5Y cells confirmed its pro-apoptosis property. DNA cleavage studies were then performed in the presence of these complexes, in order to verify the influence of ligand structural features in its nuclease activity. All of them were able to cause double-strand DNA scissions, giving rise to nicked circular Form II and linear Form III species, in the presence of hydrogen peroxide. Additionally, DNA Form II was also detected in the absence of peroxide when the most active complex, [Cu(isaepy)2]2+ 1, was used. In an effort to better elucidate their interactions with DNA, solutions of the different complexes titrated with DNA had their absorption spectra monitored. An absorbance hyperchromism observed at 260 nm pointed to the intercalation of these complexes into the DNA structure. Further, investigations of 2-deoxy-d-ribose (DR) oxidation catalyzed by each of those complexes, using 2-thiobarbituric acid reactive species (TBARS) method, and detection of reactive oxygen species (ROS) formation by spin-trapping EPR, suggested that their mechanism of action in performing efficiently DNA cleavage occurs preferentially, but not only by oxidative pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号