首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Among various amyloidogenic proteins, beta(2)-microglobulin (beta2-m) responsible for dialysis-related amyloidosis is a target of extensive study because of its clinical importance and suitable size for examining the formation of amyloid fibrils in comparison with protein folding to the native state. The structure and stability of amyloid fibrils have been studied with various physicochemical methods, including H/D exchange of amyloid fibrils combined with dissolution of fibrils by dimethylsulfoxide and NMR analysis, thermodynamic analysis of amyloid fibril formation by isothermal calorimetry, and analysis of the effects of pressure on the structure of amyloid fibrils. The results are consistent with the view that amyloid fibrils are a main-chain-dominated structure with larger numbers of hydrogen bonds and pressure-accessible cavities in the interior, in contrast to the side-chain-dominated native structure with the optimal packing of amino acid residues. We consider that a main-chain dominated structure provides the structural basis for various conformational states even with one protein. When this feature is combined with another unique feature, template-dependent growth, propagation and maturation of the amyloid conformation, which cannot be predicted with Anfinsen's dogma, take place.  相似文献   

2.
Among various amyloidogenic proteins, β2-microglobulin (β2-m) responsible for dialysis-related amyloidosis is a target of extensive study because of its clinical importance and suitable size for examining the formation of amyloid fibrils in comparison with protein folding to the native state. The structure and stability of amyloid fibrils have been studied with various physicochemical methods, including H/D exchange of amyloid fibrils combined with dissolution of fibrils by dimethylsulfoxide and NMR analysis, thermodynamic analysis of amyloid fibril formation by isothermal calorimetry, and analysis of the effects of pressure on the structure of amyloid fibrils. The results are consistent with the view that amyloid fibrils are a main-chain-dominated structure with larger numbers of hydrogen bonds and pressure-accessible cavities in the interior, in contrast to the side-chain-dominated native structure with the optimal packing of amino acid residues. We consider that a main-chain dominated structure provides the structural basis for various conformational states even with one protein. When this feature is combined with another unique feature, template-dependent growth, propagation and maturation of the amyloid conformation, which cannot be predicted with Anfinsen's dogma, take place.  相似文献   

3.
Beta2-microglobulin (beta2-m), a protein responsible for dialysis-related amyloidosis, adopts an immunoglobulin domain fold in its native state. Although beta2-m has Trp residues at positions 60 and 95, both are located near the surface of the domain. Hence, beta2-m does not have a conserved Trp common to other immunoglobulin domains, which is buried in close proximity to the disulfide bond. To study the structure of amyloid fibrils in relation to their native fold, we prepared a series of Trp mutants. Trp60 and Trp95 were both replaced with Phe, and a single Trp was introduced at various positions. Among various mutants, W39-beta2-m, in which a Trp was introduced at the position corresponding to the conserved Trp, exhibited a remarkable quenching of fluorescence in the native state, as observed for other immunoglobulin domains. An x-ray structural analysis revealed that W39-beta2-m assumes the native fold with Trp39 located in the vicinity of the disulfide bond. Comparison of the fluorescence spectra of various mutants for the native and fibrillar forms indicated that, while the Trp residues introduced in the middle of the beta2-m sequence tend to be buried in the fibrils, those located in the C-terminal region are more exposed. In addition, the fluorescence spectra of fibrils prepared at pH 2.5 and 7.0 revealed a large difference in the fluorescence intensity for W60-beta2-m, implying a major structural difference between them.  相似文献   

4.
Although the stability of globular proteins has been studied extensively, that of amyloid fibrils is scarcely characterized. Beta2-microglobulin (beta2-m) is a major component of the amyloid fibrils observed in patients with dialysis-related amyloidosis. We studied the effects of guanidine hydrochloride on the amyloid fibrils of beta2-m, revealing a cooperative unfolding transition similar to that of the native state. The stability of amyloid fibrils increased on the addition of ammonium sulfate, consistent with a role of hydrophobic interactions. The results indicate that the analysis of unfolding transition is useful to obtain insight into the structural stability of amyloid fibrils.  相似文献   

5.
High hydrostatic pressure reversibly transforms the amyloid fibrils of beta2-microglobulin (beta2-m) into a more tightly packed, reorganized structure, which has provided insight into the polymorphic properties of amyloid fibrils. Here, to further investigate the molecular mechanism that controls fibril structure, seed-dependent fibril growth from an acid-unfolded monomeric form under high pressure was studied. At all pressures up to 400 MPa, the fibril growth could be approximated by a single-exponential kinetics, although pressure above 300 MPa decreased the growth rate significantly. The fibrils formed at high pressure were similar to the reorganized fibrils formed initially at ambient pressure and then pressurized, suggesting that the reorganized fibrils were formed directly at high pressure. A systematic investigation of the extension rate under various pressures indicated that the activation free energies for the original and reorganized fibrils are significantly different, suggesting that different amino acid contacts are involved in these two types of fibrils. On the other hand, for the seed-dependent extension reactions of both types of fibrils, the activation volume was much smaller than the change in reaction volume, implying that only small numbers of side-chain interactions are achieved in the transition state. Importantly, we observed a marked acceleration of fibril growth, i.e., maturation, on repeated self-seeding above 300 MPa, revealing the coexistence of another type of fibril with a similar structure but with an increased growth-rate under high pressure.  相似文献   

6.
beta 2-Microglobulin-related (A beta 2M) amyloidosis is a common and serious complication in patients on long-term hemodialysis, and beta 2-microglobulin (beta 2-m) is a major structural component of A beta 2M amyloid fibrils. Fluorescence spectroscopic analysis with thioflavin T and electron microscopic study revealed that A beta 2M amyloid fibrils readily depolymerize into monomeric beta 2-m at a neutral to basic pH. Circular dichroism analysis revealed that soon after the initiation of the depolymerization reaction at pH 7.5, the characteristic spectrum of beta 2-m in A beta 2M amyloid fibrils changes to resemble that of monomeric beta 2-m at pH 7.5. Apolipoprotein E (apoE), a representative amyloid-associated protein, formed a stable complex with A beta 2M amyloid fibrils and inhibited the depolymerization of A beta 2M amyloid fibrils dose-dependently in a range of 0--10 microM. These results showed that apoE could enhance the deposition of amyloid fibrils in vivo, possibly by binding directly to the surface of the fibrils and stabilizing the conformation of beta 2-m in the fibrils.  相似文献   

7.
Real-time monitoring of fibril growth is essential to clarify the mechanism of amyloid fibril formation. Thioflavin T (ThT) is a reagent known to become strongly fluorescent upon binding to amyloid fibrils. Here, we show that, by monitoring ThT fluorescence with total internal reflection fluorescence microscopy (TIRFM), amyloid fibrils of beta2-microgobulin (beta2-m) can be visualized without requiring covalent fluorescence labeling. One of the advantages of TIRFM would be that we selectively monitor fibrils lying along the slide glass, so that we can obtain the exact length of fibrils. This method was used to follow the kinetics of seed-dependent beta2-m fibril extension. The extension was unidirectional with various rates, suggesting the heterogeneity of the amyloid structures. Since ThT binding is common to all amyloid fibrils, the present method will have general applicability for the analysis of amyloid fibrils. We confirmed this with the octapeptide corresponding to the C terminus derived from human medin and the Alzheimer's amyloid beta-peptide.  相似文献   

8.
Dialysis-related amyloidosis, which occurs in the patients receiving a long-term hemodialysis with high frequency, accompanies the deposition of amyloid fibrils composed of beta(2)-microglobulin (beta2-m). In vitro, beta2-m forms two kinds of fibrous structures at acidic pH. One is a rigid "mature fibril", and the other is a flexible thin filament often called an "immature fibril". In addition, a 22-residue peptide (K3 peptide) corresponding to Ser20 to Lys41 of intact beta2-m forms rigid amyloid-like fibrils similar to mature fibrils. We compared the core of these three fibrils at single-residue resolution using a recently developed hydrogen/deuterium (H/D) exchange method with the dissolution of fibrils by dimethylsulfoxide (DMSO). The exchange time-course of these fibrils showed large deviations from a single exponential curve showing that, because of the supramolecular structures, the same residue exists in different environments from molecule to molecule, even in a single fibril. The exchange profiles revealed that the core of the immature fibril is restricted to a narrow region compared to that of the mature fibril. In contrast, all residues were protected from exchange in the K3 fibril, indicating that a whole region of the peptide is engaged in the beta-sheet network. These results suggest the mechanism of amyloid fibril formation, in which the core beta-sheet formed by a minimal sequence propagates to form a rigid and extensive beta-sheet network.  相似文献   

9.
beta(2)-Microglobulin (beta2-m), a light chain of the major histocompatibility complex class I, forms amyloid fibrils in patients undergoing long-term haemodialysis, causing dialysis-related amyloidosis. Based on a comparison of the X-ray structure obtained at pH 5.7 and that of beta2-m in the histocompatibility complex, it has been proposed that the continuous D-strand observed in the crystal structure at pH 5.7 increases the propensity of beta2-m to self-associate via edge-to-edge interactions, thus initiating the formation of fibrils. To obtain further insight into the mechanism by which amyloid fibrils form, we determined the crystal structure of beta2-m at pH 7.0 at a resolution of up to 1.13 A. The crystal structure at pH 7.0 was basically the same as that at pH 5.6, suggesting that the conversion of the beta-bulge in strand D into a contiguous beta-strand is not unique to the crystals formed under slightly acidic conditions. In other words, although the formation of beta2-m fibrils was enhanced under acidic conditions, it remains unknown if it is related to the increased propensity for the disappearance of the beta-bulge in strand D. We consider that the enhanced fibrillation is more directly coupled with the decreased stability leading to the increased propensity of exposing amyloidogenic regions.  相似文献   

10.
Dialysis-related amyloidosis frequently develops in patients undergoing long-term hemodialysis, in which the major component of fibrils is β2-microglobulin (β2-m). To prevent the disease, it is important to stop the formation of fibrils. β2-m has one disulfide bond, which stabilizes the native structure, and amyloid fibrils. Here, the effects of reductants (i.e., dithiothreitol and cysteine) on the formation of β2-m amyloid fibrils were examined at neutral pH. Fibrils were generated by three methods: seed-dependent, ultrasonication-induced, and salt-and-heat-induced fibrillation. Thioflavin T fluorescence, electron microscopy, and far-UV circular dichroism revealed that the addition of reductants significantly inhibits seed-dependent and ultrasonication-induced fibrillation. For salt-and-heat-induced fibrillation, where the solution of β2-m was strongly agitated, formation of amyloid fibrils was markedly reduced in the presence of reductants, although a small number of fibrils formed even after the reduction of the disulfide bond. The results suggest that reductants such as cysteine and dithiothreitol would be useful for preventing the formation of β2-m amyloid fibrils under physiological conditions.  相似文献   

11.
Abeta2M (beta(2)-microglobulin-related) amyloidosis is a frequent and serious complication in patients on long-term dialysis. Partial unfolding of beta2-m (beta(2)-microglobulin) may be essential to its assembly into Abeta2M amyloid fibrils in vivo. Although SDS around the critical micelle concentration induces partial unfolding of beta2-m to an alpha-helix-containing aggregation-prone amyloidogenic conformer and subsequent amyloid fibril formation in vitro, the biological molecules with similar activity under near-physiological conditions are still unknown. The effect of various NEFAs (non-esterified fatty acids), which are representative anionic amphipathic compounds in the circulation, on the growth of Abeta2M amyloid fibrils at a neutral pH was examined using fluorescence spectroscopy with thioflavin T, CD spectroscopy, and electron microscopy. Physiologically relevant concentrations of laurate, myristate, oleate, linoleate, and mixtures of palmitate, stearate, oleate and linoleate, induced the growth of fibrils at a neutral pH by partially unfolding the compact structure of beta2-m to an aggregation-prone amyloidogenic conformer. In the presence of human serum albumin, these NEFAs also induced the growth of fibrils when their concentrations exceeded the binding capacity of albumin, indicating that the unbound NEFAs rather than albumin-bound NEFAs induce the fibril growth reaction in vitro. These results suggest the involvement of NEFAs in the development of Abeta2M amyloidosis, and in the pathogenesis of Abeta2M amyloidosis.  相似文献   

12.
Amyloid fibrils can be generated from proteins with diverse sequences and folds. Although amyloid fibrils assembled in vitro commonly involve a single protein precursor, fibrils formed in vivo can contain more than one protein sequence. How fibril structure and stability differ in fibrils composed of single proteins (homopolymeric fibrils) from those generated by co-polymerization of more than one protein sequence (heteropolymeric fibrils) is poorly understood. Here we compare the structure and stability of homo and heteropolymeric fibrils formed from human β2-microglobulin and its truncated variant ΔN6. We use an array of approaches (limited proteolysis, magic angle spinning NMR, Fourier transform infrared spectroscopy, and fluorescence) combined with measurements of thermodynamic stability to characterize the different fibril types. The results reveal fibrils with different structural properties, different side-chain packing, and strikingly different stabilities. These findings demonstrate how co-polymerization of related precursor sequences can expand the repertoire of structural and thermodynamic polymorphism in amyloid fibrils to an extent that is greater than that obtained by polymerization of a single precursor alone.  相似文献   

13.
Zheng J  Jang H  Nussinov R 《Biochemistry》2008,47(8):2497-2509
Beta2-microglobulin (beta2-m) can form dialysis-related amyloid deposits. The structure of a fragment of beta2-m (K3, Ser20-Lys41) in the oligomeric state has recently been solved. We modeled equilibrium structures of K3 oligomers with different organizations (single and double layers) and morphologies (linear-like and annular-like) for the wild-type and mutants using all-atom molecular dynamics (MD) simulations. We focused on the sheet-to-sheet association force, which is the key in the amyloid organization and morphology. For the linear-like morphology, we observed two stable organizations: (i) single-layered parallel-stranded beta-sheets and (ii) double-layered parallel-stranded antiparallel beta-sheets stacked perpendicular to the fibril axis through the hydrophobic N-terminal-N-terminal (NN) interface. No stable annular structures were observed. The structural instability of the annular morphology was mainly attributed to electrostatic repulsion of three negatively charged residues (Asp15, Glu17, and Asp19) projecting from the same beta-strand surface. Linear-like and annular-like double-layered oligomers with the NN interface are energetically more favorable than other oligomers with C-terminal-C-terminal (CC) or C-terminal-N-terminal (CN) interfaces, emphasizing the importance of hydrophobic interactions and side-chain packing in stabilizing these oligomers. Moreover, only linear-like structures, rather than annular structures, with parallel beta-strands and antiparallel beta-sheet arrangements are possible intermediate states for the K3 beta2-m amyloid fibrils in solution. Comparing the beta2-m fragment with Abeta indicates that while both adopt similar beta-strand-turn-beta-strand motifs, the final amyloid structures can be dramatically different in size, structure, and morphology due to differences in side-chain packing arrangements, intermolecular driving forces, sequence composition, and residue positions, suggesting that the mechanism leading to distinct morphologies and the aggregation pathways is sequence specific.  相似文献   

14.
In beta(2)-microglobulin-related (Abeta2M) amyloidosis, partial unfolding of beta(2)-microglobulin (beta2-m) is believed to be prerequisite to its assembly into Abeta2M amyloid fibrils in vivo. Although low pH or 2,2,2-trifluoroethanol at a low concentration has been reported to induce partial unfolding of beta2-m and subsequent amyloid fibril formation in vitro, factors that induce them under near physiological conditions have not been determined. Using fluorescence spectroscopy with thioflavin T, circular dichroism spectroscopy, and electron microscopy, we here show that at low concentrations, sodium dodecyl sulfate (SDS) converts natively folded beta2-m monomers into partially folded, alpha-helix-containing conformers. Surprisingly, this results in the extension of Abeta2M amyloid fibrils at neutral pH, which could be explained basically by a first-order kinetic model. At low concentrations, SDS also stabilized the fibrils at neutral pH. These SDS effects were concentration-dependent and maximal at approximately 0.5 mM, around the critical micelle concentration of SDS (0.67 mM). As the concentration of SDS was increased above 1 mM, the alpha-helix content of beta2-m rose to approximately 10%, while the beta-sheet content decreased to approximately 20%, a change paralleled by a complete cessation of fibril extension and the destabilization of the fibrils. Detergents of other classes had no significant effect on the extension of fibrils. These findings are consistent with the hypothesis that in vivo, specific factors (e.g., phospholipids) that affect the conformation and stability of beta2-m and amyloid fibrils will have significant effects on the kinetics of Abeta2M fibril formation.  相似文献   

15.
The tissue specificity of fibrillar deposition in dialysis-related amyloidosis is most likely associated with the peculiar interaction of beta2-microglobulin (beta2-m) with collagen fibers. However, other co-factors such as glycosaminoglycans might facilitate amyloid formation. In this study we have investigated the role of heparin in the process of collagen-driven amyloidogenesis. In fact, heparin is a well known positive effector of fibrillogenesis, and the elucidation of its potential effect in this type of amyloidosis is particularly relevant because heparin is regularly given to patients subject to hemodialysis to prevent blood clotting. We have monitored by atomic force microscopy the formation of beta2-m amyloid fibrils in the presence of collagen fibers, and we have discovered that heparin strongly accelerates amyloid deposition. The mechanism of this effect is still largely unexplained. Using dynamic light scattering, we have found that heparin promotes beta2-m aggregation in solution at pH 6.4. Morphology and structure of fibrils obtained in the presence of collagen and heparin are highly similar to those of natural fibrils. The fibril surface topology, investigated by limited proteolysis, suggests that the general assembly of amyloid fibrils grown under these conditions and in vitro at low pH is similar. The exposure of these fibrils to trypsin generates a cleavage at the C-terminal of lysine 6 and creates the 7-99 truncated form of beta2-m (DeltaN6beta2-m) that is a ubiquitous constituent of the natural beta2-m fibrils. The formation of this beta2-m species, which has a strong propensity to aggregate, might play an important role in the acceleration of local amyloid deposition.  相似文献   

16.
beta(2)-Microglobulin (beta2-m), a light chain of the major histocompatibility complex type I, is also found as a major component of amyloid fibrils formed in dialysis-related amyloidosis. Denaturation of beta2-m is considered to initiate the formation of fibrils. To clarify the mechanism of fibril formation, it is important to characterize the intermediate conformational states at the atomic level. Here, we investigated the refolding of beta2-m from the acid-unfolded state by heteronuclear magnetic resonance and circular dichroism spectroscopies. At low temperature, beta2-m refolded slowly, accumulating a rate-limiting intermediate with non-native chemical shift dispersions for several residues, but with compactness and secondary structures similar to those of the native protein. beta2-m has a cis proline residue at Pro32, located on the turn connecting the betaB and betaC strands. The slow refolding phase disappeared upon mutation of Pro32 to Val, indicating that Pro32 is responsible for the accumulation of the intermediate. The distribution of the perturbed residues in the intermediate suggests that the non-native prolyl peptide bond of Pro32 affects large areas of the molecule. A cis proline residue is common to various immunoglobulin domains involved in amyloidosis, implying that a non-native prolyl peptide bond that might occur under physiological conditions is related to the amyloidogenicity of these immunoglobulin domains.  相似文献   

17.
Beta(2)-Microglobulin (beta(2)m) is one of over 20 proteins known to be involved in human amyloid disease. Peptides equivalent to each of the seven beta-strands of the native protein, together with an eighth peptide (corresponding to the most stable region in the amyloid precursor conformation formed at pH 3.6, that includes residues in the native strand E plus the eight succeeding residues (named peptide E')), were synthesised and their ability to form fibrils investigated. Surprisingly, only two sequences, both of which encompass the region that forms strand E in native beta(2)m, are capable of forming amyloid-like fibrils in vitro. These peptides correspond to residues 59-71 (peptide E) and 59-79 (peptide E') of intact beta(2)m. The peptides form fibrils under the acidic conditions shown previously to promote amyloid formation from the intact protein (pH <5 at low and high ionic strength), and also associate to form fibrils at neutral pH. Fibrils formed from these two peptides enhance fibrillogenesis of the intact protein. No correlation was found between secondary structure propensity, peptide length, pI or hydrophobicity and the ability of the peptides to associate into amyloid-like fibrils. However, the presence of a relatively high content of aromatic side-chains correlates with the ability of the peptides to form amyloid fibrils. On the basis of these results we propose that residues 59-71 may be important in the self-association of partially folded beta(2)m into amyloid fibrils and discuss the relevance of these results for the assembly mechanism of the intact protein in vitro.  相似文献   

18.
To obtain insight into the mechanism of fibril formation, we examined the effects of ultrasonication, a strong agitator, on beta2-microglobulin (beta2-m), a protein responsible for dialysis-related amyloidosis. Upon sonication of an acid-unfolded beta2-m solution at pH 2.5, thioflavin T fluorescence increased markedly after a lag time of 1-2 h with a simultaneous increase of light scattering. Atomic force microscopy images showed the formation of a large number of short fibrils 3 nm in diameter. When the sonication-induced fibrils were used as seeds in the next seeding experiment at pH 2.5, a rapid and intense formation of long fibrils 3 nm in diameter was observed demonstrating seed-dependent fibril growth. We then examined the effects of sonication on the native beta2-m at neutral pH, conditions under which amyloid deposits occur in patients. In the presence of 0.5 mm sodium dodecyl sulfate, a model compound of potential trigger and stabilizer of amyloid fibrils in patients, a marked increase of thioflavin T fluorescence was observed after 1 day of sonication at pH 7.0. The products of sonication caused the accelerated fibril formation at pH 7.0. Atomic force microscopy images showed that the fibrils formed at pH 7.0 have a diameter of more than 7 nm, thicker than those prepared at pH 2.5. These results indicate that ultrasonication is one form of agitation triggering the formation of amyloid fibrils of beta2-m, producing fibrils adapted to the respective pH.  相似文献   

19.
Although native beta(2)-microglobulin (beta2-m), the light chain of the major histocompatibility complex class I antigen, assumes an immunoglobulin domain fold, it is also found as a major component of dialysis-related amyloid fibrils. In the amyloid fibrils, the conformation of beta2-m is considered to be largely different from that of the native state, and a monomeric denatured form is likely to be a precursor to the amyloid fibril. To obtain insight into the conformational dynamics of beta2-m leading to the formation of amyloid fibrils, we studied the reduction and reoxidation of the disulfide bond by reduced and oxidized dithiothreitol, respectively, and the effects on the reduction of the chaperonin GroEL, a model protein that might destabilize the native state of beta2-m. We show that beta2-m occasionally unfolds into a denatured form even under physiological conditions and that this transition is promoted upon interaction with GroEL. The results imply that in vivo interactions of beta2-m with other proteins or membrane components could destabilize its native structure, thus stabilizing the amyloid precursor.  相似文献   

20.
To obtain insight into the mechanism of amyloid fibril formation from beta(2)-microglobulin (beta2-m), we prepared a series of peptide fragments using a lysine-specific protease from Achromobacter lyticus and examined their ability to form amyloid fibrils at pH 2.5. Among the nine peptides prepared by the digestion, the peptide Ser(20)-Lys(41) (K3) spontaneously formed amyloid fibrils, confirmed by thioflavin T binding and electron microscopy. The fibrils composed of K3 peptide induced fibril formation of intact beta2-m with a lag phase, distinct from the extension reaction without a lag phase observed for intact beta2-m seeds. Fibril formation of K3 peptide with intact beta2-m seeds also exhibited a lag phase. On the other hand, the extension reaction of K3 peptide with the K3 seeds occurred without a lag phase. At neutral pH, the fibrils composed of either intact beta2-m or K3 peptide spontaneously depolymerized. Intriguingly, the depolymerization of K3 fibrils was faster than that of intact beta2-m fibrils. These results indicated that, although K3 peptide can form fibrils by itself more readily than intact beta2-m, the K3 fibrils are less stable than the intact beta2-m fibrils, suggesting a close relation between the free energy barrier of amyloid fibril formation and its stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号