首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Platelet-derived growth factor (PDGF), apotent serum mitogen for vascular smooth muscle cells (VSMCs), plays animportant role in membrane transport regulation and in atherosclerosis. K-Cl cotransport (K-Cl COT/KCC), the coupled-movement of K and Cl, isinvolved in ion homeostasis. VSMCs possess K-Cl COT activity and theKCC1 and KCC3 isoforms. Here, we report on the effect of PDGF on K-ClCOT activity and mRNA expression in primary cultures of rat VSMCs. K-ClCOT was determined as the Cl-dependent Rb influx and mRNA expression bysemiquantitative RT-PCR. Twenty four-hour serum deprivation inhibitedbasal K-Cl COT activity. Addition of PDGF increased total proteincontent and K-Cl COT activity in a time-dependent manner. PDGFactivated K-Cl COT in a dose-dependent manner, both acutely (10 min)and chronically (12 h). AG-1296, a selective inhibitor of the PDGFreceptor tyrosine kinase, abolished these effects. Actinomycin D andcycloheximide had no effect on the acute PDGF activation of K-Cl COT,suggesting posttranslational regulation by the drug. Furthermore, PDGFincreased KCC1 and decreased KCC3 mRNA expression in a time-dependentmanner. These results indicate that chronic activation of K-Cl COTactivity by PDGF may involve regulation of the two KCC mRNA isoforms,with KCC1 playing a dominant role in the mechanism of PDGF-mediated activation.

  相似文献   

2.
Cultured smooth muscle cells (SMC) undergo induction of smooth muscle (SM) alpha actin at confluency. Since confluent cells exhibit contact inhibition of growth, this finding suggests that induction of SM alpha actin may be associated with cell cycle withdrawal. This issue was further examined in the present study using fluorescence-activated cell sorting of SMC undergoing induction at confluency and by examination of the effects of FBS and platelet-derived growth factor (PDGF) on SM alpha actin expression in postconfluent SMC cultures that had already undergone induction. Cell sorting was based on DNA content or differential incorporation of bromodeoxyuridine (Budr). The fractional synthesis of SM alpha actin in confluent cells was increased two- to threefold compared with subconfluent log phase cells, but no differences were observed between confluent cycling (Budr+) and noncycling (Budr-) cells. In cultures not exposed to Budr, confluent cycling S + G2 cells exhibited similar induction. These data indicate that cell cycle withdrawal is not a prerequisite for the induction of SM alpha actin synthesis in SMC at confluency. Growth stimulation of postconfluent cultures with either FBS or PDGF resulted in marked repression of SM alpha actin synthesis but the level of repression was not directly related to entry into S phase in that PDGF was a more potent repressor of SM alpha actin synthesis than was FBS despite a lesser mitogenic effect. This differential effect of FBS versus PDGF did not appear to be due to transforming growth factor-beta present in FBS since addition of transforming growth factor-beta had no effect on PDGF-induced repression. Likewise, FBS (0.1-10.0%) failed to inhibit PDGF-induced repression. Taken together these data demonstrate that factors other than replicative frequency govern differentiation of cultured SMC and suggest that an important function of potent growth factors such as PDGF may be the repression of muscle-specific characteristics.  相似文献   

3.
本研究用培养大鼠主动脉血管平滑肌细胞(VSMCs),结果如下:(1)用生物活性检测法发现VSMCs无血清条件培养液可刺激巨噬细胞集落形成,其作用能被抗巨噬细胞集落刺激因子(MCSF)抗体抑制;(2)用免疫细胞化学技术证明VSMCs存在MCSF受体;(3)用Northern blot技术证明VSMCs有MCSF及其受本的mRNA表达,血清刺激使两者表达明显增强。本研究首次报道了培养大鼠主动脉VSMC  相似文献   

4.
Platelet-derived growth factor BB (PDGF) is a potent mitogen and chemoattractant for vascular smooth muscle cells (VSMC). In the present study, we have examined the effects of PDGF on the 12-lipoxygenase (12-LO) pathway of arachidonate metabolism in porcine aortic VSMC (PVSMC). The rationale for this is previous studies showing that LO products have growth and chemotactic effects in VSMC and that another VSMC growth factor, angiotensin II, is a potent positive regulator of 12-LO activity and expression. We observed that PDGF causes a significant increase in the formation of the 12-LO product, 12-hydroxyeicosatetraenoic acid (12-HETE) in PVSMC. In addition, PDGF also markedly increased leukocyte-type 12-LO messenger RNA and protein expression. PDGF-induced PVSMC migration was inhibited significantly by two LO blockers but not by a cyclooxygenase blocker. Furthermore, although the proliferative effects of PDGF on PVSMC were not altered by cell culture under hyperglycemic conditions (25 mM glucose, HG), the chemotactic effects of PDGF as well as those of 10% fetal calf serum were significantly greater in cells cultured in HG as compared to normal glucose conditions (5.5 mM), thus indicating a potential new mechanism for the accelerated cardiovascular disease usually observed in diabetes. These results indicate a novel mechanism for the biological effects of PDGF in leading to cardiovascular disease. © 1996 Wiley-Liss, Inc.  相似文献   

5.
6.
7.
8.
In previous experiments (Grotendorst et al, 1981), we showed that platelet-derived growth factor promotes the migration of smooth muscle cells in vitro. Using a "checkerboard" analysis, we now establish that platelet-derived growth factor (PDGF) acts as a true chemoattractant for cultured aortic smooth muscle cells. Other growth factors such as epidermal growth factor, fibroblast growth factor, and insulin are not chemoattractants. The chemotactic response occurs before the initiation of DNA synthesis and is not affected by inhibition of DNA synthesis. Chemotaxis occurs at levels of PDGF lower than required for mitogenesis. RNA and protein synthesis are required for the chemotactic response. As found previously in bacteria and leucocytes, we find that methylation reactions are required for the chemotactic response. The possibility is discussed that PDGF acts in vivo at sites of vascular injury to attract smooth muscle cells from the medial layer to the luminal surface, and is involved in the early stages of the formation of atherosclerotic plaques.  相似文献   

9.
Previous studies have demonstrated that rat aortic smooth muscle cells (SMC) show marked changes in smooth muscle (SM) alpha-actin content and fractional synthesis as a function of cell density and growth (Owens, G. K., Loeb, A., Gordon, D., and Thompson, M. M. (1986) J. Cell Biol. 102, 343-352; Blank, R., Thompson, M. M., and Owens, G. K. (1988) J. Cell Biol. 107, 299-306). Results of this study show that, although there is a 6-fold increase in SM alpha-actin content in postconfluent density arrested cultures as compared to proliferating subconfluent cultures, SM alpha-actin mRNA levels are not different between these cells. This suggests that the SM alpha-actin gene is constitutively active under both of these conditions and that accumulation of SM alpha-actin in postconfluent cells is due to translational and/or post-translational controls. The relationship between growth and cytodifferentiation was further explored by examining the effects of platelet-derived growth factor (PDGF)- or serum-induced growth on actin expression in postconfluent, quiescent cultures maintained in a defined serum-free media. Although both factors have been shown to stimulate proliferation and decrease fractional SM alpha-actin synthesis (Blank et al., 1988), their effects on actin mRNA levels were quite different. PDGF was found to induce a dramatic drop in SM alpha-actin steady state mRNA level but had no effect on nonmuscle beta-actin mRNA level. In contrast, serum stimulation was shown to increase nonmuscle beta-actin mRNA level, whereas SM alpha-actin mRNA level remained constant. Taken together these results indicate that PDGF is a specific and potent repressor of SM alpha-actin expression in vascular SMC and implicate a possible developmental role for PDGF in control of SMC differentiation. In addition, the observation that the level of SM alpha-actin mRNA is unaltered in serum-stimulated cells indicates that an absolute decrease in SM alpha-actin mRNA is not obligatory for cell cycle entrance.  相似文献   

10.
ATP-induced calcium transient in cultured rat aortic smooth muscle cells   总被引:7,自引:0,他引:7  
To characterize the excitatory purinoceptors in vascular smooth muscle cells and the biochemical mechanisms of their actions, the effects of ATP and other nucleotides on Ca2+ mobilization in cultured smooth muscle cells mainly from rat aorta were investigated. ATP induced a transient and dose-dependent increase in the cytosolic Ca2+ concentration. ATP also induced a rapid production of inositol trisphosphate (IP3). The agonist form of ATP was metal-free ATP and its half-maximal effect was obtained at about 0.1 microM. 4-beta-Phorbol 12-myristate 13-acetate (PMA) or 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8) inhibited both Ca2+ response and IP3 production. In addition, TMB-8 but not PMA, significantly decreased the amount of releasable Ca2+ presumably in the sarcoplasmic reticulum. Pertussis toxin also inhibited the Ca2+ response. Based on the dose-dependent effects of various nucleotides and adenosine on the Ca2+ response, it was concluded that the P2 subclass of purinoceptor is involved in the observed ATP effects. In addition, the observed absence or very weak effect of alpha, beta-methylene ATP relative to the effect of ATP suggests that the excitatory P2-purinoceptors in vascular smooth muscle cells do not form a homogeneous group, because the opposite order of potency for these two nucleotides was reported previously for the P2 purinoceptors involved in contraction of some isolated blood vessels.  相似文献   

11.
The ATP-binding cassette transporter A1 (ABCA1) regulates lipid efflux from peripheral cells to High-density lipoprotein. The platelet-derived growth factor (PDGF) is a potent mitogen that enables vascular smooth muscle cells to participate in atherosclerosis. In this report, we showed that PDGF suppressed endogenous expression of ABCA1 in cultured vascular smooth muscle cells. Exposure of CRL-208 cells to PDGF elicited a rapid phosphorylation of a kinase downstream from PI3-K, Akt. The constitutively active form of both p110, a subunit of PI3-K, and Akt inhibited activity of the ABCA1 promoter. In conclusion, PI3-K-Akt pathways participate in PDGF-suppression of ABCA1 expression.  相似文献   

12.
13.
14.
15.
Vascular smooth muscle cell is a major cell component involved in the process of atherosclerosis. In the present study, we investigated the effects of platelet-derived growth factor (PDGF)-BB dimer on the expression of macrophage-colony stimulating factor (M-CSF) in vascular smooth muscle cells isolated from human umbilical artery. On Northern blot analysis of total RNAs isolated from smooth muscle cells, with human cDNA for M-CSF, a marked dose-dependent reduction of mRNA level was found in PDGF-BB-treated smooth muscle cells. Cellular production of M-CSF was estimated by immunoblot analysis of cell lysate with specific polyclonal antibody against recombinant human M-CSF. A concentration of 10 ng/ml PDGF-BB significantly reduced M-CSF mass in smooth muscle cells compared with that in the absence of PDGF-BB. These results suggest that PDGF-BB plays an important role in the cellular metabolism of vascular wall by regulating the rate of M-CSF production in vascular smooth muscle cells.  相似文献   

16.
Li J  Chai S  Tang C  Du J 《Life sciences》2003,74(4):451-461
Aortic calcification was demonstrated in experimental animal models of hyperhomocysteinemia. Mild hyperhomocysteinemia was associated with aortic calcification, suggesting a relationship between homocysteine (HCY) and the pathogenesis of aortic calcification. In the present study, the effect of HCY on vascular calcification was examined in calcifying and non-calcifying vascular smooth muscle cells (VSMCs). Cell calcification was induced by incubation of VSMCs with beta-glycerophosphate. Proliferation of VSMCs was studied by cell counting, 3H-thymidine (3H-TdR) and 3H-leucine (3H-Leu) incorporation. 45Ca accumulation, cell calcium content, and alkaline phosphatase (ALP) activity were measured as indices of calcification. The results showed that the proliferation of calcifying VSMCs, which was indicated by cell counting, 3H-TdR and 3H-Leu incorporation in calcifying VSMCs, was enhanced as compared with that of non-calcifying VSMCs. HCY promoted increases in cell number, 3H-TdR and 3H-Leu incorporation in both calcifying and non-calcifying VSMCs, but with more prominent effect in calcifying VSMCs. The stimulating effects of HCY on the three parameters in calcifying VSMCs were antagonized by PD98059, a specific inhibitor of mitogen activated protein kinase kinase (MAPKK). The ALP activity, 45Ca uptake, and calcium deposition in the calcifying VSMCs were greater than those in non-calcifying VSMCs. PD98059 had no effect on ALP activity, 45Ca uptake, and calcium deposition in calcifying VSMCs. HCY caused marked increases in 45Ca uptake and calcium deposition both in calcifying and non-calcifying VSMCs. HCY, however, enhanced ALP activity in the calcified VSMCs but not in the non-calcifying VSMCs. The non-calcifying VSMCs treated with HCY showed the same low ALP activity, as did the control VSMCs. In calcifying VSMCs, the HCY-induced increases in 45Ca uptake, calcium deposition, and ALP activity were also attenuated by PD98059. The results demonstrated that HCY potentiated VSMC calcification probably through the mechanisms by which HCY promotes atherosclerosis.  相似文献   

17.
Induction of Fibronectin (FN) gene expression by platelet-derived growth factor (PDGF) isoforms in rat thoracic aortic smooth muscle cells (SMC) was examined. PDGF-BB enhances FN levels in SMC cultures in a time- and concentration-response fashion. PDGF-AA and PDGF-AB show no effect on FN levels. The effects of insulin and insulin-like growth factor-I (IGF-I) on PDGF-BB-induced FN levels were examined. No additivity of FN levels is observed between PDGF-BB and insulin and/or IGF-I. Experiments also show that PDGF-BB enhances FN mRNA levels, implying that acquisition of additional FN mRNA units accounts for the increase in FN levels. Induction of FN and FN mRNA levels by PDGF-BB could be one of the initial events in vascular SMC proliferation and extracellular matrix expansion, leading to atherosclerosis and hypertension.  相似文献   

18.
In attempts to determine the mechanism of proliferation of arterial smooth muscle cells (SMC) in intimal atheromatous lesions, autocrine secretion of growth factors by SMC has recently received much attention. Here we report a new growth factor named smooth muscle cell derived growth factor (SDGF). Cultured rabbit medial SMC secreted SDGF for 1 week during their incubation in serum-free media only after at least 4 passages. SDGF differed from platelet derived growth factor (PDGF) physicochemically, immunologically, and biologically. The properties of SDGF also seemed different from those of other known growth factors that stimulate the proliferation of mesenchymal cells.  相似文献   

19.
20.
Regulation of (Na+ + K+)-adenosine triphosphatase (NaK-ATPase) by platelet-derived growth factor (PDGF) in cultured rat thoracic aortic smooth muscle cells (SMC) was examined. PDGF-BB enhances SMC proliferation and NaK-ATPase activity. Ouabain, an inhibitor of NaK-ATPase activity, prevents PDGF-BB-induced SMC proliferation. As shown by Western blot and immunochemiluminescence analysis, PDGF-BB also enhances 1, truncated 1, and 1 NaK-ATPase subunit levels. PDGF-AA and PDGF-AB show no effect on 1 and truncated 1 levels in slot blot analysis. Induction of NaK-ATPase subunit levels by PDGF-BB could be one of the initial events in vascular SMC proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号