首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An experimental study of cellobiose inhibition in cellulose hydrolysis by synergism of cellobiohydrolyse I and endoglucanase I is presented. Cellobiose is the structural unit of cellulose molecules and also the main product in enzymatic hydrolysis of cellulose. It has been identified that cellobiose can strongly inhibit hydrolysis reaction of cellulase, whereas it has no effect on the adsorption of cellulase on cellulose surface. The experimental data of FT-IR spectra, fluorescence spectrum and circular dichroism suggested that cellobiose can be combined with tryptophan residue located near the active site of cellobiohydrolase and then form steric hindrance, which prevents cellulose molecule chains from diffusing into active site of cellulase. In addition, the molecular conformation of cellobiohydrolase changes after cellobiose binding, which also causes most of the non-productive adsorption. Under these conditions, microfibrils cannot be separated from cellulose chains, thus further hydrolysis of cellulose can hardly proceed.  相似文献   

2.
3.
Despite intensive research, the mechanism of the rapid retardation in the rates of cellobiohydrolase (CBH) catalyzed cellulose hydrolysis is still not clear. Interpretation of the hydrolysis data has been complicated by the inability to measure the catalytic constants for CBH‐s acting on cellulose. We developed a method for measuring the observed catalytic constant (kobs) for CBH catalyzed cellulose hydrolysis. It relies on in situ measurement of the concentration of CBH with the active site occupied by the cellulose chain. For that we followed the specific inhibition of the hydrolysis of para‐nitrophenyl‐β‐D ‐lactoside by cellulose. The method was applied to CBH‐s TrCel7A from Trichoderma reesei and PcCel7D from Phanerochaete chrysosporium and their isolated catalytic domains. Bacterial microcrystalline cellulose, Avicel, amorphous cellulose, and lignocellulose were used as substrates. A rapid decrease of kobs in time was observed on all substrates. The kobs values for PcCel7D were about 1.5 times higher than those for TrCel7A. In case of both TrCel7A and PcCel7D, the kobs values for catalytic domains were similar to those for intact enzymes. A model where CBH action is limited by the average length of obstacle‐free way on cellulose chain is proposed. Once formed, productive CBH–cellulose complex proceeds with a constant rate determined by the true catalytic constant. After encountering an obstacle CBH will “get stuck” and the rate of further cellulose hydrolysis will be governed by the dissociation rate constant (koff), which is low for processive CBH‐s. Biotechnol. Bioeng. 2010;106: 871–883. © 2010 Wiley Periodicals, Inc.  相似文献   

4.
The hydrolysis of cellulose by processive cellulases, such as exocellulase TrCel7A from Trichoderma reesei, is typically characterized by an initial burst of high activity followed by a slowdown, often leading to incomplete hydrolysis of the substrate. The origins of these limitations to cellulose hydrolysis are not yet fully understood. Here, we propose a new model for the initial phase of cellulose hydrolysis by processive cellulases, incorporating a bound but inactive enzyme state. The model, based on ordinary differential equations, accurately reproduces the activity burst and the subsequent slowdown of the cellulose hydrolysis and describes the experimental data equally well or better than the previously suggested model. We also derive steady-state expressions that can be used to describe the pseudo-steady state reached after the initial activity burst. Importantly, we show that the new model predicts the existence of an optimal enzyme-substrate affinity at which the pseudo-steady state hydrolysis rate is maximized. The model further allows the calculation of glucose production rate from the first cut in the processive run and reproduces the second activity burst commonly observed upon new enzyme addition. These results are expected to be applicable also to other processive enzymes.  相似文献   

5.
Understanding the mechanism by which cellulases from bacteria, fungi, and protozoans catalyze the digestion of lignocellulose is important for developing cost-effective strategies for bioethanol production. Cel7A from the fungus Trichoderma reesei is a model exoglucanase that degrades cellulose strands from their reducing ends by processively cleaving individual cellobiose units. Despite being one of the most studied cellulases, the binding and hydrolysis mechanisms of Cel7A are still debated. Here, we used single-molecule tracking to analyze the dynamics of 11,116 quantum dot-labeled TrCel7A molecules binding to and moving processively along immobilized cellulose. Individual enzyme molecules were localized with a spatial precision of a few nanometers and followed for hundreds of seconds. Most enzyme molecules bound to cellulose in a static state and dissociated without detectable movement, whereas a minority of molecules moved processively for an average distance of 39 nm at an average speed of 3.2 nm/s. These data were integrated into a three-state model in which TrCel7A molecules can bind from solution into either static or processive states and can reversibly switch between states before dissociating. From these results, we conclude that the rate-limiting step for cellulose degradation by Cel7A is the transition out of the static state, either by dissociation from the cellulose surface or by initiation of a processive run. Thus, accelerating the transition of Cel7A out of its static state is a potential avenue for improving cellulase efficiency.  相似文献   

6.
Amorphous acid-swollen cellulose dyed with Reactive Orange was used to determine the relevant inhibition constants of cellulases from Trichoderma longibrachiatum by cellulose hydrolysis products (glucose and cellobiose). The method is based on the initial rate of increasing the hydrolysate absorbance (A490mn) in the presence of added product. On adding glucose, the initial rate of glucose formation from cellulose and the rate of dye release were lower than the relevant rates in the absence of added product; however, the rate of cellobiose formation did not change. On the other hand, added cellobiose inhibited the rate of cellobiose formation from dyed cellulose and the rate of increase of the hydrolysate absorbance but did not affect the glucose formation. The constants of competitive inhibition of cellulases by glucose and cellobiose were 0.072 and 0.012 M, respectively. These inhibition parameters differed from those obtained from the analysis of the progress kinetics for extended reaction times.  相似文献   

7.
The inhibition effect of cellobiose on the initial stage of hydrolysis when cellobiohydrolase Cel 7A and endoglucanases Cel 7B, Cel 5A, and Cel 12A from Trichoderma reesei were acting on bacterial cellulose and amorphous cellulose that were [(3)H]- labeled at the reducing end was quantified. The apparent competitive inhibition constant (K(i)) for Cel 7A on [(3)H]-bacterial cellulose was found to be 1.6 +/- 0.5 mM, 100-fold higher than that for Cel 7A acting on low-molecular-weight model substrates. The hydrolysis of [(3)H]-amorphous cellulose by endoglucanases was even less affected by cellobiose inhibition with apparent K(i) values of 11 +/- 3 mM and 34 +/- 6 mM for Cel 7B and Cel 5A, respectively. Contrary to the case for the other enzymes studied, the release of radioactive label by Cel 12A was stimulated by cellobiose, possibly due to a more pronounced transglycosylating activity. Theoretical analysis of the inhibition of Cel 7A by cellobiose predicted an inhibition analogous to that of mixed type with two limiting cases, competitive inhibition if the prevalent enzyme-substrate complex without inhibitor is productive and conventional mixed type when the prevalent enzyme-substrate complex is nonproductive.  相似文献   

8.
A novel function for the cellulose binding module of cellobiohydrolase I   总被引:1,自引:0,他引:1  
A homogeneous cellulose-binding module(CBM)of cellobiohydrolase I(CBHI)from Trichoderma pseudokoningii S-38 was obtained by the limited proteolysis with papain and a series of chromatographs filtration.Analysis of FT-IR spectra demonstrated that the structural changes result from a weakening and splitting of the hydrogen bond network in cellulose by the action of CBMCBHI at 40℃for 24 h.The results of molecular dynamic simulations are consistent with the experimental conclusions, and provide a nanoscopic view of the mechanism that strong and medium H-bonds decreased dramatically when CBM was bound to the cellulose surface.The function of CBMCBHI is not only limited to locating intact CBHI in close proximity with cellulose fibrils,but also is involved in the structural disruption at the fibre surface.The present studies provided considerable evidence for the model of the intramolecular synergy between the catalytic domain and their CBMs.  相似文献   

9.
The transient kinetic behavior of enzyme reactions prior to the establishment of steady state is a major source of mechanistic information, yet this approach has not been utilized for cellulases acting on their natural substrate, insoluble cellulose. Here, we elucidate the pre-steady-state regime for the exo-acting cellulase Cel7A using amperometric biosensors and an explicit model for processive hydrolysis of cellulose. This analysis allows the identification of a pseudo-steady-state period and quantification of a processivity number as well as rate constants for the formation of a threaded enzyme complex, processive hydrolysis, and dissociation, respectively. These kinetic parameters elucidate limiting factors in the cellulolytic process. We concluded, for example, that Cel7A cleaves about four glycosidic bonds/s during processive hydrolysis. However, the results suggest that stalling the processive movement and low off-rates result in a specific activity at pseudo-steady state that is 10-25-fold lower. It follows that the dissociation of the enzyme-substrate complex (half-time of ~30 s) is rate-limiting for the investigated system. We suggest that this approach can be useful in attempts to unveil fundamental reasons for the distinctive variability in hydrolytic activity found in different cellulase-substrate systems.  相似文献   

10.
Removal of beta-glucosidase (BG) from cellulase is essential to the enzymatic production of cellobiose from cellulose because of the high reactivity of BG with cellobiose to form glucose. Chitosan is a reversibly soluble-insoluble polymer depending on pH, and it has an affinity with the other components, endo-beta-1,4-glucanase and cellobiohydrolase, or cellulase. The affinity precipitation technique using chitosan is an effective way to fractionate cellulase for the above purpose. Hydrolysis experiments of cellulose with the residual fractionated enzyme gave higher cellobiose contents in the soluble sugar products. (c) 1993 John Wiley & Sons, Inc.  相似文献   

11.
Igarashi K  Wada M  Samejima M 《The FEBS journal》2007,274(7):1785-1792
The crystalline polymorphic form of cellulose (cellulose I(alpha)-rich) of the green alga, Cladophora, was converted into cellulose III(I) and I(beta) by supercritical ammonium and hydrothermal treatments, respectively, and the hydrolytic rate and the adsorption of Trichoderma viride cellobiohydrolase I (Cel7A) on these products were evaluated by a novel analysis based on the surface density of the enzyme. Cellobiose production from cellulose III(I) was more than 5 times higher than that from cellulose I. However, the amount of enzyme adsorbed on cellulose III(I) was less than twice that on cellulose I, and the specific activity of the adsorbed enzyme for cellulose III(I) was more than 3 times higher than that for cellulose I. When cellulose III(I) was converted into cellulose I(beta) by hydrothermal treatment, cellobiose production was dramatically decreased, although no significant change was observed in enzyme adsorption. This clearly indicates that the enhanced hydrolysis of cellulose III(I) is related to the structure of the crystalline polymorph. Thus, supercritical ammonium treatment activates crystalline cellulose for hydrolysis by cellobiohydrolase.  相似文献   

12.
Enzymes that degrade cellulose into glucose are one of the most expensive components of processes for converting cellulosic biomass to fuels and chemicals. Cellulase enzyme Cel7A is the most abundant enzyme naturally employed by fungi to depolymerize cellulose, and like other cellulases is inhibited by its product, cellobiose. There is thus great economic incentive for minimizing the detrimental effects of product inhibition on Cel7A. In this work, we experimentally generated 10 previously proposed site‐directed mutant Cel7A enzymes expected to have reduced cellobiose binding energies (the majority of mutations were to alanine). We then tested their resilience to cellobiose as well as their hydrolytic activities on microcrystalline cellulose. Although every mutation tested conferred reduced product inhibition (and abolished it for some), our results confirm a trade‐off between Cel7A tolerance to cellobiose and enzymatic activity: Reduced product inhibition was accompanied by lower overall enzymatic activity on crystalline cellulose for the mutants tested. The tempering effect of mutations on inhibition was nearly constant despite relatively large differences in activities of the mutants. Our work identifies an amino acid in the Cel7A product binding site of interest for further mutational studies, and highlights both the challenge and the opportunity of enzyme engineering toward improving product tolerance in Cel7A. Biotechnol. Bioeng. 2016;113: 330–338. © 2015 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.  相似文献   

13.
An amperometric enzyme biosensor for continuous detection of cellobiose has been implemented as an enzyme assay for cellulases. We show that the initial kinetics for cellobiohydrolase I, Cel7A from Trichoderma reesei, acting on different types of cellulose substrates, semi‐crystalline and amorphous, can be monitored directly and in real‐time by an enzyme‐modified electrode based on cellobiose dehydrogenase (CDH) from Phanerochaete chrysosporium (Pc). PcCDH was cross‐linked and immobilized on the surface of a carbon paste electrode which contained a mediator, benzoquinone. An oxidation current of the reduced mediator, hydroquinone, produced by the CDH‐catalyzed reaction with cellobiose, was recorded under constant‐potential amperometry at +0.5 V (vs. Ag/AgCl). The CDH‐biosensors showed high sensitivity (87.7 µA mM?1 cm?2), low detection limit (25 nM), and fast response time (t95% ~ 3 s) and this provided experimental access to the transient kinetics of cellobiohydrolases acting on insoluble cellulose. The response from the CDH‐biosensor during enzymatic hydrolysis was corrected for the specificity of PcCDH for the β‐anomer of cello‐oligosaccharides and the approach were validated against HPLC. It is suggested that quantitative, real‐time data on pure insoluble cellulose substrates will be useful in attempts to probe the molecular mechanism underlying enzymatic hydrolysis of cellulose. Biotechnol. Bioeng. 2012; 109: 3199–3204. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
An amperometric biosensor for the detection of cellobiose has been introduced to study the kinetics of enzymatic hydrolysis of crystalline cellulose by cellobiohydrolase. By use of a sensor in which pyrroloquinoline quinone-dependent glucose dehydrogenase was immobilized on the surface of electrode, direct and continuous observation of the hydrolysis can be achieved even in a thick cellulose suspension. The steady-state rate of the hydrolysis increased with increasing concentrations of the enzyme to approach a saturation value and was proportional to the amount of the substrate. The experimental results can be explained well by the rate equations derived from a three-step mechanism consisting of the adsorption of the free enzyme onto the surface of the substrate, the reaction of the adsorbed enzyme with the substrate, and the liberation of the product. The catalytic constant of the adsorbed enzyme was determined to be 0.044+/-0.011s(-1).  相似文献   

15.
The cellulolytic enzyme beta-1,4-glucan cellobiohydrolase (CBH) has been isolated from the crude mixture of cellulase enzymes of Trichoderma viride by gel filtration and ion-exchange methods, and some aspects of its kinetic behaviour have been examined. Studies of the initial rates of the CBH-catalyzed production of cellobiose from fibrous alpha-cellulose show that (i) the dissociation constant for cellobiose competitive product inhibition of the reaction is Ki = (1.13 +/- 0.37) X 10(-3) M, (ii) the adsorption of CBH on fibrous alpha-cellulose and its subsequent reaction conform to kinetic equations developed in conjunction with the Langmuir adsorption isotherm, (iii) the rate-pH curve has a maximum at pH 5.2 and decreases at higher and lower pH values, exhibiting enzyme pK values of 3.8 and 6.5, and (iv) the energy of activation of the overall reaction between 5 and 60 degrees C is 5.3 +/- 0.3 kcal mol-1 at pH 5.2. Studies of the time course of the reaction over extended periods of time up to 40% hydrolysis of the cellulose show that (v) the data fit better to a competitive product inhibition model than to models of anticompetitive product inhibition or noncompetitive product inhibition.  相似文献   

16.
An extremely highly active cellobiohydrolase (CBH IIb or Cel6B) was isolated from Chrysosporium lucknowense UV18-25 culture filtrate. The CBH IIb demonstrated the highest ability for a deep degradation of crystalline cellulose amongst a few cellobiohydrolases tested, including C. lucknowense CBH Ia, Ib, IIa, and Trichoderma reesei CBH I and II. Using purified C. lucknowense enzymes (CBH Ia, Ib, and IIb; endoglucanases II and V; beta-glucosidase, xylanase II), artificial multienzyme mixtures were reconstituted, displaying an extremely high performance in a conversion of different cellulosic substrates (Avicel, cotton, pretreated Douglas fir wood) to glucose. These mixtures were much or notably more effective in hydrolysis of the cellulosic substrates than the crude multienzyme C. lucknowense preparation and other crude cellulase samples produced by T. reesei and Penicillium verruculosum. Highly active cellulases are a key factor in bioconversion of plant lignocellulosic biomass to ethanol as an alternative to fossil fuels.  相似文献   

17.
The celB gene of Caldicellulosiruptor saccharolyticus was cloned and expressed in Escherichia coli to create a recombinant biocatalyst for hydrolyzing lignocellulosic biomass at high temperature. The GH5 domain of CelB hydrolyzed 4-nitrophenyl-β-d-cellobioside and carboxymethyl cellulose with optimum activity at pH 4.7-5.5 and 80 °C. The recombinant GH5 and CBM3-GH5 constructs were both stable at 80 °C with half-lives of 23 h and 39 h, respectively, and retained >94% activity after 48 h at 70 °C. Enzymatic hydrolysis of corn stover and cellulose pretreated with the ionic liquid 1-ethyl-3-methylimidazolium acetate showed that GH5 and CBM3-GH5 primarily produce cellobiose, with product yields for CBM3-GH5 being 1.2- to 2-fold higher than those for GH5. Confocal microscopy of bound protein on cellulose confirmed tighter binding of CBM3-GH5 to cellulose than GH5, indicating that the enhancement of enzymatic activity on solid substrates may be due to the substrate binding activity of CBM3 domain.  相似文献   

18.
19.
20.
1,4-β-D-glucan cellobiohydrolase Ⅰ (CBH Ⅰ), p-nitrophenyl β-D-cellobioside, p-nitrophenol and cellobiose show distinct ultraviolet spectra, allowing the design of an assay to track the dynamic process of p-nitrophenyl β-D-cellobioside hydrolysis by CBH Ⅰ. Based on the linear relationship between p-nitrophenol formation in the hydrolysate and its first derivative absorption curve of AUC340-400 m (area under the curve), a new sensitive assay for the determination of CBH Ⅰ activity was developed. The dynamic parameters of catalysis reaction, such as Vm and kcat, can all be derived from this result. The influence of β-glucosidase and endoglucanase in crude enzyme sample on the assay was discussed in detail. This approach is useful for accurate determination of the activity of CBHs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号