首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Eph receptors and their ligands, the ephrins, are thought to act at points of close cell-cell contact to elicit bi-directional signaling in receptor and ligand expressing cells. However, when cultured in vitro, some A-type ephrins are released from the cell surface and it is unclear if these soluble ephrins participate in Eph receptor activation. We show that soluble ephrin A5 is subject to oligomerization. Ephrins A1 and A5 are substrates for a cross-linking enzyme, tissue transglutaminase, which mediates the formation of oligomeric ephrin. Transglutaminase-cross-linked ephrin binds to A-type Eph receptors, stimulates Eph kinase activity, and promotes invasion and migration of HeLa cells. Transglutaminase-mediated oligomerization of soluble ephrin potentially represents a novel mechanism of forward signaling through Eph receptors and may extend the influence of A-type ephrins beyond cell contact mediated signaling.  相似文献   

2.
Epithelial cells are tightly coupled together through specialized intercellular junctions, including adherens junctions, desmosomes, tight junctions, and gap junctions. A growing body of evidence suggests epithelial cells also directly exchange information at cell-cell contacts via the Eph family of receptor tyrosine kinases and their membrane-associated ephrin ligands. Ligand-dependent and -independent signaling via Eph receptors as well as reverse signaling through ephrins impact epithelial tissue homeostasis by organizing stem cell compartments and regulating cell proliferation, migration, adhesion, differentiation, and survival. This review focuses on breast, gut, and skin epithelia as representative examples for how Eph receptors and ephrins modulate diverse epithelial cell responses in a context-dependent manner. Abnormal Eph receptor and ephrin signaling is implicated in a variety of epithelial diseases raising the intriguing possibility that this cell-cell communication pathway can be therapeutically harnessed to normalize epithelial function in pathological settings like cancer or chronic inflammation.  相似文献   

3.
Epithelial cells are tightly coupled together through specialized intercellular junctions, including adherens junctions, desmosomes, tight junctions, and gap junctions. A growing body of evidence suggests epithelial cells also directly exchange information at cell-cell contacts via the Eph family of receptor tyrosine kinases and their membrane-associated ephrin ligands. Ligand-dependent and -independent signaling via Eph receptors as well as reverse signaling through ephrins impact epithelial tissue homeostasis by organizing stem cell compartments and regulating cell proliferation, migration, adhesion, differentiation, and survival. This review focuses on breast, gut, and skin epithelia as representative examples for how Eph receptors and ephrins modulate diverse epithelial cell responses in a context-dependent manner. Abnormal Eph receptor and ephrin signaling is implicated in a variety of epithelial diseases raising the intriguing possibility that this cell-cell communication pathway can be therapeutically harnessed to normalize epithelial function in pathological settings like cancer or chronic inflammation.  相似文献   

4.
The Eph receptor tyrosine kinase family includes many members, which are often expressed together in various combinations and can promiscuously interact with multiple ephrin ligands, generating intricate networks of intracellular signals that control physiological and pathological processes. Knowing the entire repertoire of Eph receptors and ephrins expressed in a biological sample is important when studying their biological roles. Moreover, given the correlation between Eph receptor/ephrin expression and cancer pathogenesis, their expression patterns could serve important diagnostic and prognostic purposes. However, profiling Eph receptor and ephrin expression has been challenging. Here we describe a novel and straightforward approach to catalog the Eph receptors present in cultured cells and tissues. By measuring the binding of ephrin Fc fusion proteins to Eph receptors in ELISA and pull-down assays, we determined that a mixture of four ephrins is suitable for isolating both EphA and EphB receptors in a single pull-down. We then used mass spectrometry to identify the Eph receptors present in the pull-downs and estimate their relative levels. This approach was validated in cultured human cancer cell lines, human tumor xenograft tissue grown in mice, and mouse brain tissue. The new mass spectrometry approach we have developed represents a useful tool for the identification of the spectrum of Eph receptors present in a biological sample and could also be extended to profiling ephrin expression.  相似文献   

5.
The Eph receptors are a large family of receptor tyrosine kinases. Their kinase activity and downstream signaling ability are stimulated by the binding of cell surface-associated ligands, the ephrins. The ensuing signals are bidirectional because the ephrins can also transduce signals (known as reverse signals) following their interaction with Eph receptors. The ephrin-binding pocket in the extracellular N-terminal domain of the Eph receptors and the ATP-binding pocket in the intracellular kinase domain represent potential binding sites for peptides and small molecules. Indeed, a number of peptides and chemical compounds that target Eph receptors and inhibit ephrin binding or kinase activity have been identified. These molecules show promise as probes to study Eph receptor/ephrin biology, as lead compounds for drug development, and as targeting agents to deliver drugs or imaging agents to tumors. Current challenges are to find (1) small molecules that inhibit Eph receptor-ephrin interactions with high binding affinity and good lead-like properties and (2) selective kinase inhibitors that preferentially target the Eph receptor family or subsets of Eph receptors. Strategies that could also be explored include targeting additional Eph receptor interfaces and the ephrin ligands.  相似文献   

6.
7.
Vascular diseases span diverse pathology, but frequently arise from aberrant signaling attributed to specific membrane‐associated molecules, particularly the Eph‐ephrin family. Originally recognized as markers of embryonic vessel identity, Eph receptors and their membrane‐associated ligands, ephrins, are now known to have a range of vital functions in vascular physiology. Interactions of Ephs with ephrins at cell‐to‐cell interfaces promote a variety of cellular responses such as repulsion, adhesion, attraction, and migration, and frequently occur during organ development, including vessel formation. Elaborate coordination of Eph‐ and ephrin‐related signaling among different cell populations is required for proper formation of the embryonic vessel network. There is growing evidence supporting the idea that Eph and ephrin proteins also have postnatal interactions with a number of other membrane‐associated signal transduction pathways, coordinating translation of environmental signals into cells. This article provides an overview of membrane‐bound signaling mechanisms that define vascular identity in both the embryo and the adult, focusing on Eph‐ and ephrin‐related signaling. We also discuss the role and clinical significance of this signaling system in normal organ development, neoplasms, and vascular pathologies. Birth Defects Research (Part C) 108:65–84, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

8.
Kao TJ  Kania A 《Neuron》2011,71(1):76-91
Axon guidance receptors guide neuronal growth cones by binding in trans to axon guidance ligands in the developing nervous system. Some ligands are coexpressed in cis with their receptors, raising the question of the relative contribution of cis and trans interactions to axon guidance. Spinal motor axons use Eph receptors to select a limb trajectory in response to trans ephrins, while expressing ephrins in cis. We show that changes in motor neuron ephrin expression result in trajectory selection defects mirrored by changes in growth cone sensitivity to ephrins in vitro, arguing for ephrin cis-attenuation of Eph function. Furthermore, the relative contribution of trans-signaling and cis-attenuation is influenced by the subcellular distribution of ephrins to membrane patches containing Eph receptors. Thus, growth cone ephrins are essential for axon guidance in vivo and the balance between cis and trans modes of axon guidance ligand-receptor interaction contributes to the diversity of axon guidance signaling responses.  相似文献   

9.
Eph receptor tyrosine kinases and their membrane-associated ligands, the ephrins, are essential regulators of axon guidance, cell migration, segmentation, and angiogenesis. There are two classes of vertebrate ephrin ligands which have distinct binding specificities for their cognate receptors. Multimerization of the ligands is required for receptor activation, and ephrin ligands themselves signal intracellularly upon binding Eph receptors. We have determined the structure of the extracellular domain of mouse ephrin-B2. The ephrin ectodomain is an eight-stranded beta barrel with topological similarity to plant nodulins and phytocyanins. Based on the structure, we have identified potential surface determinants of Eph/ephrin binding specificity and a ligand dimerization region. The high sequence similarity among ephrin ectodomains indicates that all ephrins may be modeled upon the ephrin-B2 structure presented here.  相似文献   

10.
11.
Control of cell behaviour by signalling through Eph receptors and ephrins   总被引:5,自引:0,他引:5  
Eph receptor tyrosine kinases and ephrins mediate contact-dependent cell interactions that regulate the repulsion and adhesion mechanisms involved in the guidance and assembly of cells. Recent work has revealed a role of overlapping Eph receptor and ephrin expression in modulating neuronal growth cone repulsion, and has shown that bidirectional activation restricts intermingling and communication between cell populations. In addition, progress has been made in understanding how Eph receptors and ephrins control cell adhesion.  相似文献   

12.
Eph receptor tyrosine kinases (Ephs) and their membrane-anchored ligands (ephrins) form a vital cell communication system capable of bi-directional signaling. This Eph receptor/ephrin system has classically been demonstrated to play a role in development. However, emerging evidence has revealed differential expression of Ephs and ephrins in numerous cancers. Recent studies suggest that this system influences invasive behaviour, promoting a more aggressive and metastatic phenotype. Hence, this minireview summarizes the current understanding of the contribution of both Eph receptors and their ephrin ligands to invasiveness in cancer, as well as their use as potential therapeutic targets.  相似文献   

13.
Eph receptors and ephrin ligands are widely expressed during embryonic development with well-defined functions in directing neuronal and vascular network formation. Over the last decade, evidence has mounted that Ephs and ephrins are also actively involved in prenatal and postnatal development of epithelial tissues. Their functions beyond developmental settings are starting to be recognized as well. The diverse functions of Eph/ephrin are largely related to the complementary expression pattern of the Eph receptors and corresponding ephrin ligands that are expressed in adjacent compartments, although overlapping expression pattern also exists in epithelial tissue. The interconnection between Ephs or ephrins and classical cell junctional molecules suggests they may function coordinately in maintaining epithelial structural integrity and homeostasis. This review will highlight cellular and molecular evidence in current literature that support a role of Eph/ephrin systems in regulating epithelial cell development and physiology.  相似文献   

14.
Eph receptors and their ligands, the ephrins, mediate cell-to-cell signals implicated in the regulation of cell migration processes during development. We report the molecular cloning and tissue distribution of zebrafish transmembrane ephrins that represent all known members of the mammalian class B ephrin family. The degree of homology among predicted ephrin B sequences suggests that, similar to their mammalian counterparts, zebrafish B-ephrins can also bind promiscuously to several Eph receptors. The dynamic expression patterns for each zebrafish B-ephrin support the idea that these ligands are confined to interact with their receptors at the borders of their complementary expression domains. Zebrafish B-ephrins are expressed as early as 30% epiboly and during gastrula stages: in the germ ring, shield, prechordal plate, and notochord. Ectopic overexpression of dominant-negative soluble ephrin B constructs yields reproducible defects in the morphology of the notochord and prechordal plate by the end of gastrulation. Notably disruption of Eph/ephrin B signaling does not completely destroy structures examined, suggesting that cell fate specification is not altered. Thus abnormal morphogenesis of the prechordal plate and the notochord is likely a consequence of a cell movement defect. Our observations suggest Eph/ephrin B signaling plays an essential role in regulating cell movements during gastrulation.  相似文献   

15.
Eph receptors and ephrins play important roles in regulating cell migration and positioning during both normal and oncogenic tissue development. Using a surface plasma resonance (SPR) biosensor, we examined the binding kinetics of representative monomeric and dimeric ephrins to their corresponding Eph receptors and correlated the apparent binding affinity with their functional activity in a neuronal growth cone collapse assay. Our results indicate that the Eph receptor binding of dimeric ephrins, formed through fusion with disulfide-linked Fc fragments, is best described using a bivalent analyte model as a two-step process involving an initial monovalent 2:1 binding followed by a second bivalent 2:2 binding. The bivalent binding dramatically decreases the apparent dissociation rate constants with little effect on the initial association rate constants, resulting in a 30- to 6000-fold decrease in apparent equilibrium dissociation constants for the binding of dimeric ephrins to Eph receptors relative to their monomeric counterparts. Interestingly, the change was more prominent in the A-class ephrin/Eph interactions than in the B-class of ephrins to Eph receptors. The increase in apparent binding affinities correlated well with increased activation of Eph receptors and the resulting growth cone collapse. Our kinetic analysis and correlation of binding affinity with function helped us better understand the interactions between ephrins and Eph receptors and should be useful in the design of inhibitors that interfere with the interactions.  相似文献   

16.
17.
树突棘是神经元树突上的功能性突起结构,通常作为突触后成份与投射来的轴突共同构成完整的突触连接。树突棘的形态与结构具有明显的可塑性,其变化通常会引起突触功能的改变。Eph受体酪氨酸激酶家族分子与其配体ephrin都是重要的神经导向因子,同时对树突棘结构也有直接的调控作用。Eph受体的活化可以促进树突棘的发生并影响树突棘的形态及内部结构;而Eph受体的异常也往往会损害正常的突触功能,甚至导致许多与树突棘结构异常相关的神经系统病变的发生。  相似文献   

18.
Eph receptors comprise the largest known family of receptor tyrosine kinases in mammals. They bind members of a second family, the ephrins. As both Eph receptors and ephrins are membrane bound, interactions permit unusual bidirectional cell–cell signaling. Eph receptors and ephrins each form two classes, A and B, based on sequences, structures, and patterns of affinity: Class A Eph receptors bind class A ephrins, and class B Eph receptors bind class B ephrins. The only known exceptions are the receptor EphA4, which can bind ephrinB2 and ephrinB3 in addition to the ephrin‐As (Bowden et al., Structure 2009;17:1386–1397); and EphB2, which can bind ephrin‐A5 in addition to the ephrin‐Bs (Himanen et al., Nat Neurosci 2004;7:501–509). A crystal structure is available of the interacting domains of the EphA4‐ephrin B2 complex (wwPDB entry 2WO2) (Bowden et al., Structure 2009;17:1386–1397). In this complex, the ligand‐binding domain of EphA4 adopts an EphB‐like conformation. To understand why other cross‐class EphA receptor–ephrinB complexes do not form, we modeled hypothetical complexes between (1) EphA4–ephrinB1, (2) EphA4–ephrinB3, and (3) EphA2–ephrinB2. We identify particular residues in the interface region, the size variations of which cause steric clashes that prevent formation of the unobserved complexes. The sizes of the sidechains of residues at these positions correlate with the pattern of binding affinity. Proteins 2014; 82:349–353. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
Eph receptor tyrosine kinases mediate cell-cell communication by interacting with ephrin ligands residing on adjacent cell surfaces. In doing so, these juxtamembrane signaling complexes provide important contextual information about the cellular microenvironment that helps orchestrate tissue morphogenesis and maintain homeostasis. Eph/ephrin signaling has been implicated in various aspects of mammalian skin physiology, with several members of this large family of receptor tyrosine kinases and their ligands present in the epidermis, hair follicles, sebaceous glands, and underlying dermis. This review focuses on the emerging role of Eph receptors and ephrins in epidermal keratinocytes where they can modulate proliferation, migration, differentiation, and death. The activation of Eph receptors by ephrins at sites of cell-cell contact also appears to play a key role in the maturation of intercellular junctional complexes as keratinocytes move out of the basal layer and differentiate in the suprabasal layers of this stratified, squamous epithelium. Furthermore, alterations in the epidermal Eph/ephrin axis have been associated with cutaneous malignancy, wound healing defects and inflammatory skin conditions. These collective observations suggest that the Eph/ephrin cell-cell communication pathway may be amenable to therapeutic intervention for the purpose of restoring epidermal tissue homeostasis and integrity in dermatological disorders.  相似文献   

20.
Eph receptors comprise the largest family of receptor tyrosine kinases. They are classified into an A family and a B family on the basis of the characteristic properties of the corresponding ephrin ligands which are either GPI-anchored peripheral membrane molecules (A class ephrins) or transmembrane molecules (B class ephrins). Eph receptors and ephrin ligands were originally identified as neuronal pathfinding molecules. Yet, gene targeting experiments in mice have identified the EphB/ephrinB system as critical and rate-limiting determinant of arterio-venous differentiation during embryonic vascular development. Identification of vascular EphB/ephrinB functions has in the last few years stimulated two emerging fields of vascular biology research, namely (1) the molecular analysis of the structural and functional mechanisms of arterio-venous differentiation, and (2) the molecular study of the commonalities between vascular and neuronal guidance and patterning mechanisms. This review summarizes the current understanding of vascular Eph receptor and ephrin ligand functions and provides an overview of emerging roles of the Eph/ephrin system in controlling tumor and vascular functions during tumorigenesis and tumor progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号