首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hammerhead ribozyme undergoes a well-defined two-stage folding process induced by the sequential binding of two magnesium ions. These probably correspond to the formation of domain 2 (0-500 microM magnesium ions) and domain 1 (1-20 mM magnesium ions), respectively. In this study we have used fluorescence resonance energy transfer (FRET) to analyze the ion-induced folding of a number of variants of the hammerhead ribozyme. We find that both A14G and G8U mutations are highly destabilizing, such that these species are essentially unfolded under all conditions. Thus they appear to be blocked in the first stage of the folding process, and using uranyl-induced photocleavage we show that the core is completely accessible to this probe under these conditions. Changes at G5 do not affect the first transition but appear to provide a blockage at the second stage of folding; this is true of changes in the sugar (removal of the 2'-hydroxyl group) and base (G5C mutation, previously studied by comparative gel electrophoresis). Arrest of folding at this intermediate stage leads to a pattern of uranyl-induced photocleavage that is changed from the wild-type, but suggests a structure less open than the A14G mutant. Specific photocleavage at G5 is found only in the wild-type sequence, suggesting that this ion-binding site is formed late in the folding process. In addition to folding that is blocked at selected stages, we have also observed misfolding. Thus the A13G mutation appears to result in the ion-induced formation of a novel tertiary structure.  相似文献   

2.
Bergman NH  Johnston WK  Bartel DP 《Biochemistry》2000,39(11):3115-3123
The class I RNA ligase ribozyme, isolated previously from random sequences, performs an efficient RNA ligation reaction. It ligates two substrate RNAs, promoting the attack of the 3'-hydroxyl of one substrate upon the 5'-triphosphate of the other substrate with release of pyrophosphate. This ligation reaction has similarities to the reaction catalyzed by RNA polymerases. Using data from steady-state kinetic measurements and pulse-chase/pH-jump experiments, we have constructed minimal kinetic frameworks for two versions of the class I ligase, named 207t and 210t. For both ligases, as well as for the self-ligating parent ribozyme, the rate constant for the chemical step (k(c)) is log-linear with pH in the range 5.7-8.0. At physiological pH, the k(c) is 100 min(-1), a value similar to those reported for the fastest naturally occurring ribozymes. At higher pH, product release is limiting for both 207t and 210t. The 210t ribozyme, with its faster product release, attains multiple-turnover rates (k(cat) = 360 min(-1), pH 9.0) exceeding those of 207t and other reported ribozyme reactions. The kinetic framework for the 210t ribozyme describes the limits of this catalysis and suggests how key steps can be targeted for improvement using design or combinatorial approaches.  相似文献   

3.
Kim KS  Oh S  Yea SS  Yoon MY  Kim DE 《FEBS letters》2008,582(18):2745-2752
Amplification of an RNA template molecule was examined using the ligase ribozyme and its corresponding RNA substrates under alternating temperature conditions. Alternating temperatures enhanced the rate of the thermodynamically unfavorable dissociation of the annealed products into the two separate RNA templates, reminiscent of the polymerase chain reaction. Under these conditions, the RNA ligase ribozyme system was observed to amplify through a mainly cross-catalytic process, generating additional copies of the starting RNA template molecules. Thus, template-directed RNA ligation using the ribozyme under thermally fluctuating conditions will be an intriguing point to consider when explaining the primordial event of chemical evolution.  相似文献   

4.
Kim KS  Choi WH  Choi BR  Oh S  Yea SS  Yoon MY  Kim DE 《FEBS letters》2007,581(21):4065-4072
Self-replication process of the RNA ligase ribozyme molecules was investigated by using the modified RNA ligase ribozyme under alternating temperature condition that enhances turnover rate of the RNA ligation reaction. In our experiment, the RNA ligase ribozyme system mainly undergoes a cross-catalytic replication process, in which two ribozymes catalyze each other's synthesis from a total of four RNA substrates under alternating temperature condition, resulting in time-dependent accumulation of additional copies of the starting ribozymes in a reaction mixture. The present study demonstrates that cross-catalytic replication in nucleic acids system can be efficiently devised under the alternating temperature condition.  相似文献   

5.
Folding of a universal ribozyme: the ribonuclease P RNA   总被引:1,自引:0,他引:1  
Ribonuclease P is among the first ribozymes discovered, and is the only ubiquitously occurring ribozyme besides the ribosome. The bacterial RNase P RNA is catalytically active without its protein subunit and has been studied for over two decades as a model system for RNA catalysis, structure and folding. This review focuses on the thermodynamic, kinetic and structural frameworks derived from the folding studies of bacterial RNase P RNA.  相似文献   

6.
7.
Substitutional RNA editing plays a crucial role in the regulation of biological processes. Cleavage of target RNA that depends on the specific site of substitutional RNA editing is a useful tool for analyzing and regulating intracellular processes related to RNA editing. Hammerhead ribozymes have been utilized as small catalytic RNAs for cleaving target RNA at a specific site and may be used for RNA-editing-specific RNA cleavage. Here we reveal a design strategy for a hammerhead ribozyme that specifically recognizes adenosine to inosine (A-to-I) and cytosine to uracil (C-to-U) substitutional RNA-editing sites and cleaves target RNA. Because the hammerhead ribozyme cleaves one base upstream of the target-editing site, the base that pairs with the target-editing site was utilized for recognition. RNA-editing-specific ribozymes were designed such that the recognition base paired only with the edited base. These ribozymes showed A-to-I and C-to-U editing-specific cleavage activity against synthetic serotonin receptor 2C and apolipoprotein B mRNA fragments in vitro, respectively. Additionally, the ribozyme designed for recognizing A-to-I RNA editing at the Q/R site on filamin A (FLNA) showed editing-specific cleavage activity against physiologically edited FLNA mRNA extracted from cells. We demonstrated that our strategy is effective for cleaving target RNA in an editing-dependent manner. The data in this study provided an experimental basis for the RNA-editing-dependent degradation of specific target RNA in vivo.  相似文献   

8.
Current in vitro assays for RNA editing in kinetoplastids directly examine the products generated by incubation of pre-mRNA substrate with guide RNA (gRNA) and mitochondrial (mt) extract. RNA editing substrates that are modeled on hammerhead ribozymes were designed with catalytic cores that contained or lacked additional uridylates (Us). They proved to be sensitive reporters of editing activity when used for in vitro assays. A deletion editing substrate that is based on A6 pre-mRNA had no ribozyme activity, but its incubation with gRNA and mt extract resulted in its deletion editing and production of a catalytically active ribozyme. Hammerhead ribozymes are thus sensitive tools to assay in vitro RNA editing.  相似文献   

9.
Characterization of a native hammerhead ribozyme derived from schistosomes   总被引:2,自引:1,他引:1  
A recent re-examination of the role of the helices surrounding the conserved core of the hammerhead ribozyme has identified putative loop-loop interactions between stems I and II in native hammerhead sequences. These extended hammerhead sequences are more active at low concentrations of divalent cations than are minimal hammerheads. The loop-loop interactions are proposed to stabilize a more active conformation of the conserved core. Here, a kinetic and thermodynamic characterization of an extended hammerhead sequence derived from Schistosoma mansoni is performed. Biphasic kinetics are observed, suggesting the presence of at least two conformers, one cleaving with a fast rate and the other with a slow rate. Replacing loop II with a poly(U) sequence designed to eliminate the interaction between the two loops results in greatly diminished activity, suggesting that the loop-loop interactions do aid in forming a more active conformation. Previous studies with minimal hammerheads have shown deleterious effects of Rp-phosphorothioate substitutions at the cleavage site and 5' to A9, both of which could be rescued with Cd2+. Here, phosphorothioate modifications at the cleavage site and 5' to A9 were made in the schistosome-derived sequence. In Mg2+, both phosphorothioate substitutions decreased the overall fraction cleaved without significantly affecting the observed rate of cleavage. The addition of Cd2+ rescued cleavage in both cases, suggesting that these are still putative metal binding sites in this native sequence.  相似文献   

10.
The hammerhead domain is one of the smallest known ribozymes. Like other ribozymes it catalyzes site-specific cleavage of a phosphodiester bond. The hammerhead ribozyme has been the subject of a vast number of biochemical and structural studies aimed at determining the structure and mechanism of cleavage. Recently crystallographic analysis has produced a structure for the hammerhead. As the hammerhead is capable of undergoing cleavage within the crystal, it would appear that the crystal structure is representative of the catalytically active solution structure. However, the crystal structure conflicts with much of the biochemical data and reveals a catalytic metal ion binding site expected to be of very low affinity. Clearly, additional studies are needed to reconcile the discrepancies and provide a clear understanding of the structure and mechanism of the hammerhead ribozyme. Here we demonstrate that a unique crosslink can be induced in the hammerhead with 2-thiocytidine or 4-thiouridine substitution at different locations within the conserved core. Generation of the same crosslink with different modifications at different positions suggests that the structure trapped by the crosslink may be relevant to the catalytically active solution structure of the hammerhead ribozyme. As this crosslink appears to be incompatible with the crystal structure, this provides yet another indication that the active solution and crystal structures may differ significantly.  相似文献   

11.
12.
Hammann C  Cooper A  Lilley DM 《Biochemistry》2001,40(5):1423-1429
The hammerhead ribozyme undergoes a well-defined two-stage conformational folding process, induced by the binding of magnesium ions. In this study, we have used isothermal titration calorimetry to analyze the thermodynamics of magnesium binding and magnesium ion-induced folding of the ribozyme. Binding to the natural sequence ribozyme is strongly exothermic and can be analyzed in terms of sequential interaction at two sites with association constants K(A) = 480 and 2840 M(-1). Sequence variants of the hammerhead RNA give very different isothermal titration curves. An A14G variant that cannot undergo ion-induced folding exhibits endothermic binding. By contrast, a deoxyribose G5 variant that can undergo only the first of the two folding transitions gives a complex titration curve. However, despite these differences the ITC data for all three species can be analyzed in terms of the sequential binding of magnesium ions at two sites. While the binding affinities are all in the region of 10(3) M(-1), corresponding to free energies of Delta G degrees = -3.5 to -4 kcal mol(-1), the enthalpic and entropic contributions show much greater variation. The ITC experiments are in good agreement with earlier conformational studies of the folding of the ion-induced folding of the hammerhead ribozyme.  相似文献   

13.
In vitro selection can generate functional sequence variants of an RNA structural motif that are useful for comparative analysis. The technique is particularly valuable in cases where natural variation is unavailable or non-existent. We report the extension of this approach to a new extreme--the identification of a 112 nt ribozyme secondary structure imbedded within a 186 nt RNA. A pool of 10(14) variants of an RNA ligase ribozyme was generated using combinatorial chemical synthesis coupled with combinatorial enzymatic ligation such that 172 of the 186 relevant positions were partially mutagenized. Active variants of this pool were enriched using an in vitro selection scheme that retains the sequence variability at positions very close to the ligation junction. Ligases isolated after four rounds of selection catalyzed self-ligation up to 700 times faster than the starting sequence. Comparative analysis of the isolates indicated that when complexed with substrate RNAs the ligase forms a nested, double pseudo-knot secondary structure with seven stems and several important joining segments. Comparative analysis also suggested the identity of mutations that account for the increased activity of the selected ligase variants; designed constructs incorporating combinations of these changes were more active than any of the individual ligase isolates.  相似文献   

14.
Glasner ME  Bergman NH  Bartel DP 《Biochemistry》2002,41(25):8103-8112
The class I ligase, a ribozyme previously isolated from random sequence, catalyzes a reaction similar to RNA polymerization, positioning its 5'-nucleotide via a Watson-Crick base pair, forming a 3',5'-phosphodiester bond between its 5'-nucleotide and the substrate, and releasing pyrophosphate. Like most ribozymes, it requires metal ions for structure and catalysis. Here, we report the ionic requirements of this self-ligating ribozyme. The ligase requires at least five Mg(2+) for activity and has a [Mg(2+)](1/2) of 70-100 mM. It has an unusual specificity for Mg(2+); there is only marginal activity in Mn(2+) and no detectable activity in Ca(2+), Sr(2+), Ba(2+), Zn(2+), Co(2+), Cd(2+), Pb(2+), Co(NH(3))(6)(3+), or spermine. All tested cations other than Mg(2+), including Mn(2+), inhibit the ribozyme. Hill analysis in the presence of inhibitory cations suggested that Ca(2+) and Co(NH(3))(6)(3+) inhibit by binding at least two sites, but they appear to productively fill a subset of the required sites. Inhibition is not the result of a significant structural change, since the ribozyme assumes a nativelike structure when folded in the presence of Ca(2+) or Co(NH(3))(6)(3+), as observed by hydroxyl-radical mapping. As further support for a nativelike fold in Ca(2+), ribozyme that has been prefolded in Ca(2+) can carry out the self-ligation very quickly upon the addition of Mg(2+). Ligation rates of the prefolded ribozyme were directly measured and proceed at 800 min(-1) at pH 9.0.  相似文献   

15.
Blount KF  Uhlenbeck OC 《Biochemistry》2002,41(21):6834-6841
A method was developed that permits covalent cross-links of different linker lengths to be introduced into RNA at defined positions. The previous observation that a cross-link between stems I and II of the hammerhead ribozyme was confirmed and further explored. By examining the catalytic consequences of varying the position and length of this cross-link, we conclude that the previously proposed conformational dampening model cannot sufficiently explain the increase in ligation rate induced by the cross-link. Rather, the cross-link constrains the cleaved hammerhead into a structure that more closely resembles the transition state, thereby increasing the reverse ligation rate relative to a non-cross-linked control.  相似文献   

16.
Mikulecky PJ  Takach JC  Feig AL 《Biochemistry》2004,43(19):5870-5881
Helical junctions are extremely common motifs in naturally occurring RNAs, but little is known about the thermodynamics that drive their folding. Studies of junction folding face several challenges: non-two-state folding behavior, superposition of secondary and tertiary structural energetics, and drastically opposing enthalpic and entropic contributions to folding. Here we describe a thermodynamic dissection of the folding of the hammerhead ribozyme, a three-way RNA helical junction, by using isothermal titration calorimetry of bimolecular RNA constructs. By using this method, we show that tertiary folding of the hammerhead core occurs with a highly unfavorable enthalpy change, and is therefore entropically driven. Furthermore, the enthalpies and heat capacities of core folding are the same whether supported by monovalent or divalent ions. These properties appear to be general to the core sequence of bimolecular hammerhead constructs. We present a model for the ion-induced folding of the hammerhead core that is similar to those advanced for the folding of much larger RNAs, involving ion-induced collapse to a structured, non-native state accompanied by rearrangement of core residues to produce the native fold. In agreement with previous enzymological and structural studies, our thermodynamic data suggest that the hammerhead structure is stabilized in vitro predominantly by diffusely bound ions. Our approach addresses several significant challenges that accompany the study of junction folding, and should prove useful in defining the thermodynamic determinants of stability in these important RNA motifs.  相似文献   

17.
Distinct structural models for the hammerhead ribozyme derived from single-crystal X-ray diffraction and fluorescence resonance energy transfer (FRET) measurements have been compared. Both models predict the same overall geometry, a wishbone shape with helices II and III nearly colinear and helix I positioned close to helix II. However, the relative orientations of helices I and II are different. To establish whether one of the models represents a kinetically active structure, a new crosslinking procedure was developed in which helices I and II of hammerhead ribozymes were disulfide-crosslinked via the 2' positions of specific sugar residues. Crosslinking residues on helices I and II that are close according to the X-ray structure did not appreciably reduce the catalytic efficiency. In contrast, crosslinking residues closely situated according to the FRET model dramatically reduced the cleavage rate by at least three orders of magnitude. These correlations between catalytic efficiencies and spatial proximities are consistent with the X-ray structure.  相似文献   

18.
A cytidine-free ribozyme with RNA ligase activity was obtained by in vitro evolution, starting from a pool of random-sequence RNAs that contained only guanosine, adenosine, and uridine. This ribozyme contains 74 nt and catalyzes formation of a 3',5'-phosphodiester linkage with a catalytic rate of 0.016 min(-1). The RNA adopts a simple secondary structure based on a three-way junction motif, with ligation occurring at the end of a stem region located several nucleotides away from the junction. Cytidine was introduced to the cytidine-free ribozyme in a combinatorial fashion and additional rounds of in vitro evolution were carried out to allow the molecule to adapt to this added component. The resulting cytidine-containing ribozyme formed a 3',5' linkage with a catalytic rate of 0.32 min(-1). The improved rate of the cytidine-containing ribozyme was the result of 12 mutations, including seven added cytidines, that remodeled the internal bulge loops located adjacent to the three-way junction and stabilized the peripheral stem regions.  相似文献   

19.
Mixed DNA/RNA polymers are cleaved by the hammerhead ribozyme.   总被引:3,自引:0,他引:3  
A series of chemically synthesized oligodeoxyribonucleotides containing one or two ribonucleotides (DNA/RNA mixed polymers) at and/or adjacent to the cleavage site of the substrate can be cleaved by the "hammerhead" ribozyme. In comparison with the all-RNA substrate, the predominantly deoxyribonucleotide substrates have (1) lower optimal temperatures of cleavage, (2) approximately 6-fold higher Km's and 7-fold lower kcat's at 30 degrees C, and (3) 15-fold higher Km's and 8-fold lower kcat's at 37 degrees C. The extent to which the RNA substrate cleavage is inhibited in the presence of an all-DNA (KI = 13 microM) and an RNA substrate analogue with a dC at the cleavage site (KI = 0.96 microM) supports the contention that the formation of the ribozyme-substrate complex with the predominantly deoxyribonucleotide substrates (D substrates) is impaired. The weaker binding of D substrates was confirmed by thermal denaturation and determination of the Tm of the complex. Analysis of the kinetic data also suggests that the conformation of the catalytic core of the ribozyme-substrate complex differs from that of the all-RNA complex, a change that results from the presence of a DNA/RNA heteroduplex in the complex.  相似文献   

20.
Joyce's DNA enzyme catalyzes cleavage of RNAs with almost the same efficiency as the hammerhead ribozyme. The cleavage activity of the DNA enzyme was pH dependent, and the logarithm of the cleavage rate increased linearly with pH from pH 6 to pH 9 with a slope of approximately unity. The existence of an apparent solvent isotope effect, with cleavage of RNA by the DNA enzyme in H(2)O being 4.3 times faster than cleavage in D(2)O, was in accord with the interpretation that, at a given pH, the concentration of the active species (deprotonated species) is 4.3 times higher in H(2)O than the concentration in D(2)O. This leads to the intrinsic isotope effect of unity, demonstrating that no proton transfer occurs in the transition state in reactions catalyzed by the DNA enzyme. Addition of La(3+) ions to the Mg(2+)-background reaction mixture inhibited the DNA enzyme-catalyzed reactions, suggesting the replacement of catalytically and/or structurally important Mg(2+) ions by La(3+) ions. Similar kinetic features of DNA enzyme mediated cleavage of RNA and of hammerhead ribozyme-mediated cleavage suggest that a very similar catalytic mechanism is used by the two types of enzyme, despite their different compositions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号