首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The histochemical activity of adenosine triphosphatase (ATPase) was studied at light and electron microscopic levels in larval tail musculature of Rana catesbeiana and Rana ornativentris during late metamorphic stages. The presence of low, moderate or dark reaction of K2-EDTA-preincubated Ca++-ATPase was correlated with the variable degree of degeneration of white fibres even at the late stage of tail resorption. The reasons for an increase in this ATPase activity in degenerating white muscle fibres are discussed. Irrespective of the degree of degeneration, all red fibres showed high ATPase reaction. During myocytolysis, it is shown that the SR vesicles accumulate electron dense amorphous material. The degree of myofibrillar disintegration correlated with decrease in ultrastructural reaction product for Mg++-ATPase. Although grouped atrophy of muscle fibres (as seen in Xenopus laevis, den Hartog Jager et al., 1973, 1975) was absent in musculature of resorptive tails, ultrastructural characteristics including proliferation of SR and dilation of its vesicles represent alteration of the normal neural influence on the skeletal muscle fibres.  相似文献   

2.
The histochemical activities of succinic dehydrogenase (SDH) and Ca++-activated ATPase (pHs 7.4 and 9.4) were studied in the larval tail musculature of Rana japonica, Rana catesbeiana and Rana ornativentris. The ATPase reaction product was detected by both light and electron microscopy. 'Red' and 'white' muscle fibres, as distinguished by SDH, showed high and low Ca++-ATPase reaction, respectively, at pHs 7.4, 9.4 and following preincubation in cold K2-EDTA solution. The ultrastructural investigation of Ca++-ATPase reaction at pH 7.4 by the Ca++-citrophosphate technique demonstrated electron-dense reaction product in association with A, I and 'Z' bands, intermyofibrillar (SR) compartment and the mitochondrial inner chamber. However, Pb++ precipitation technique demonstrated Mg++-activated myosin ATPase activity at pH 9.2 ultrastructurally. The present histochemical data suggest that the anuran larval tail 'red' muscle fibres are possible 'slow,' and emphasize a possible lack of correlation between the speed of contraction with their ATPase activity. Moreover, 'red' muscle fibres of the anuran tai- musculature are not equivalent to 'Type I' fibres of higher chordates.  相似文献   

3.
Summary The histochemical activities of succinic dehydrogenase (SDH) and Ca++-activated ATPase (pHs 7.4 and 9.4) were studied in the larval tail musculature of Rana japonica, Rana catesbeiana and Rana ornativentris. The ATPase reaction product was detected by both light and electron microscopy. Red and white muscle fibres, as distinguished by SDH, showed high and low Ca++-ATPase reaction, respectively, at pHs 7.4, 9.4 and following preincubation in cold K2-EDTA solution. The ultrastructural investigation of CA++-ATPase reaction at pH 7.4 by the Ca++-citrophosphate technique demonstrated electron-dense reaction product in association with A, I and Z bands, intermyofibrillar (SR) compartment and the mitochondrial inner chamber. However, Pb++ precipitation technique demonstrated Mg++-activated myosin ATPase activity at pH 9.2 ultrastructurally. The present histochemical data suggest that the anuran larval tail red muscle fibres are possible slow, and emphasize a possible lack of correlation between the speed of contraction with their ATPase activity. Moreover, red muscle fibres of the anuran tail musculature are not equivalent to Type I fibres of higher chordates.  相似文献   

4.
Purified sarcoplasmic reticulum (SR) vesicles from dog heart were used as an antigen to produce monoclonal antibodies (mAbs) to the Ca2+-ATPase. Nine of twelve clones of hybridoma cells produce mAbs which cross-react with seven SR preparation isolated from cardiac and skeletal muscles of various species. Three mAbs of IgM type interact with the 45-kDa tryptic fragment of rabbit skeletal muscle Ca2+-ATPase and markedly inhibit Ca2+ uptake (by 95%) and ATPase activity (by 80%) and decrease (by 30-50%) the steady-state level of the Ca2+-ATPase phosphoenzyme. The ATPase activity could be completely blocked by one of these mAbs if the incubation medium was supplemented with 2 microM orthovanadate. On the other hand, when SR vesicles were treated with increasing concentrations of a nonionic detergent C12E8, the inhibiting effect of mAb 4B4 is diminished. It is concluded that the mAbs inhibit the Ca2+-ATPase only if the enzyme exists in an oligomeric form. The inhibition of the SR activities is due to an effect of the mAbs on the whole active center of the enzyme, rather than on a single partial reaction.  相似文献   

5.
The profile structure of functional sarcoplasmic reticulum (SR) membranes was investigated by X-ray diffraction methods to a resolution of 10 A. The lamellar diffraction data from hydrated oriented multilayers of SR vesicles showed monotonically increasing widths for higher order lamellar reflections, indicative of simple lattice disorder within the multilayer. A generalized Patterson function analysis, previously developed for treating lamellar diffraction from lattice-disordered multilayers, was used to identify the autocorrelation function of the unit cell electron density profile. Subsequent deconvolution of this autocorrelation function provided the most probable unit cell electron density profile of the SR vesicle membrane pair. The resulting single membrane profile possesses marked asymmetry, suggesting that a major portion of the Ca++ -ATPase resides on the exterior of the vesicle. The electron density profile also suggests that the Ca++-dependent ATPase penetrates into the lipid hydrocarbon core of the SR membrane. Under conditions suitable for X-ray analysis, SR vesicles prepared as partially dehydrated oriented multilayers are shown to conserve most of their ATP-induced Ca++ uptake functionality, as monitored spectrophotometrically with the Ca++ indicator arsenazo III. This has been verified both in resuspensions of SR after centrifugation and slow partial dehydration, and directly in SR multilayers in a partially dehydrated state (20-30 percent water). Therefore, the profile structure of the SR membrane that we have determined may closely resemble that found in vivo.  相似文献   

6.
The conventional model for transport of Ca(2+) by the Ca(2+)-ATPase of skeletal muscle sarcoplasmic reticulum (SR) involves a pair of binding sites for Ca(2+) that change upon phosphorylation of the ATPase from being high affinity and exposed to the cytoplasm to being low affinity and exposed to the lumen. However, a number of recent experiments suggest that in fact transport involves two separate pairs of binding sites for Ca(2+), one pair exposed to the cytoplasmic side and the other pair exposed to the lumenal side. Here we show that the carbodiimide 1-ethyl-3-[3-(dimethylamino)-propyl] carbodiimide (EDC) is membrane-impermeable, and we use EDC to distinguish between cytoplasmic and lumenal sites of reaction. Modification of the Ca(2+)-ATPase in sealed SR vesicles with EDC leads to loss of ATPase activity without modification of the pair of high affinity Ca(2+)-binding sites. Modification of the purified ATPase in unsealed membrane fragments was faster than modification in SR vesicles, suggesting the presence of more quickly reacting lumenal sites. This was confirmed in experiments measuring EDC modification of the ATPase reconstituted randomly into sealed lipid vesicles. Modification of sites on the lumenal face of the ATPase led to loss of the Ca(2+)-induced increase in phosphorylation by P(i). It is concluded that carboxyl groups on the lumenal side of the ATPase are involved in Ca(2+) binding to the lumenal side of the ATPase and that modification of these sites leads to loss of ATPase activity. The presence of MgATP or MgADP leads to faster inhibition of the ATPase by EDC in unsealed membrane fragments than in sealed vesicles, suggesting that binding of MgATP or MgADP to the ATPase leads to a conformational change on the lumenal side of the membrane.  相似文献   

7.
The specificity of the histochemical localization of the calcium activated adenosine triphosphatase (ATPase) activity of the sarcoplasmic reticulum (SR) at pH 7.4 was studied using a calcium-citro-phosphate technique. The latter involves the splitting of ATP by ATPase producing phosphate ions which then react with calcium and citrate to form an insoluble reaction product. This reaction product was detected by both light and electron microscopy. Light microscopic examination showed a darkly stained continuous reticular pattern of reaction product which surrounded individual myofibrils. This reticular pattern of reaction product was distinctly dissimilar to that found when the histochemical reactions for mitochondrial or myofibrillar ATPase were performed. Ultrastructural investigations demonstrated the presence of discrete foci of electron dense reaction product in close association with the membranes of the SR in striated muscle fibres. Only occasional flecks were seen in the vicinity of mitochondria or myofilaments. The possibility is considered that the reticular pattern of staining achieved by the calcium-citro-phosphate technique may reflect the distribution of the "extra ATPase" of the SR, an enzyme implicated in the process of calcium uptake and muscle relaxation.  相似文献   

8.
Sarcoplasmic reticulum (SR) isolated from the deep red portion of the gastrocnemius muscle of Sprague-Dawley rats after a single bout of prolonged exercise was shown to have depressed Ca(2+)-stimulated Mg(2+)-dependent ATPase activity over a temperature range of 15 to 42.5 degrees C when compared to SR obtained from control muscle. Inclusion of the calcium ionophore, A23187, failed to restore the depressed ATPase activity from SR of exercised muscle to control values, but it did normalize the stimulatory effect of temperature on ATPase activity. This depression was also manifested as an increased activation energy when the data were converted to an Arrhenius plot. SR vesicles from both groups showed no differences or discontinuities in plots of steady-state fluorescence anisotropy. When the binding characteristics of the fluorescent probe, fluorescein isothiocyanate (FITC), were analyzed, SR vesicles prepared from exercised muscle displayed a 40% reduction in binding capacity with no apparent change in Kd. These findings support the conclusion that a single bout of exercise induces a structural change in the Ca(2+)-ATPase protein of rat red gastrocnemius muscle that is not a direct result of gross lipid alterations or increased muscle temperature.  相似文献   

9.
The sarcoplasmic reticulum (SR) is composed of two fractions, the heavy fraction that contains proteins involved in Ca2+ release, and the light fraction enriched in Ca(2+)-ATPase (SERCA), an enzyme responsible for Ca2+ transport from the cytosol to the lumen of SR. It is known that in red muscle thyroid hormones regulate the expression of SERCA 1 and SERCA 2 isoforms. Here we show the effects of thyroid hormone on SERCA expression and distribution in light and heavy SR fractions from rabbit white and red muscles. In hyperthyroid red muscle there is an increase of SERCA 1 and a decrease of SERCA 2 expression. This is far more pronounced in the heavy than in the light SR fraction. As a result, the rates of Ca(2+)- ATPase activity and Ca(2+)-uptake by the heavy vesicles are increased. In hypothyroidism we observed a decrease in SERCA 1 and no changes in the amount of SERCA 2 expressed. This promoted a decrease of both Ca(2+)-uptake and Ca(2+)-ATPase activity. While the major differences in hyperthyroidism were found in the heavy SR fraction, the effects of hypothyroidism were restricted to light SR fraction. In white muscle we did not observe any significant changes in either hypo- or hyperthyroidism in both SR fractions. Thus, the regulation of SERCA isoforms by thyroid hormones is not only muscle specific but also varies depending on the subcellular compartment analyzed. These changes might correspond to the molecular basis of the altered contraction and relaxation rates detected in thyroid dysfunction.  相似文献   

10.
Summary White, pink, red and deep red fibres, selected from a head muscle and from axial muscles of the perch, show significant differences in actin filament length, Z line thickness, Z line lattice space, myofibril girth, the percentages volume occupied by T system and terminal cisternae of the SR, and in the degree of T system SR contact per sarcomere. In both muscles the degree of T system SR contact decreases in the order: white, pink, red, deep red, which suggests a decrease of contraction velocity in the same order.The position of the T system (at the Z line or at the AI junction) is related to the actin filament length. The actin filaments in the red fibres are appreciably longer than in the white, which suggests that the sarcomeres of the red fibres have a broader length-tension curve. The Z line thickness is positively correlated with the actin filament length and, in the white and the red fibres, negatively with the degree of sarcomere shortening. Thicker Z lines are suggested to allow greater sarcomere sizes (length or girth).The percentage volume occupied by mitochondria varies independently of the extent of membrane systems.The ultrastructural characteristics of the fibre types are in agreement with the functional roles as reported in literature.  相似文献   

11.
A spectrophotometric method is described for the determination of sarcoplasmic reticulum (SR) Ca2(+)-ATPase activity (EC 3.1.6.38) in unfractionated muscle homogenates. Conditions were established that give maximal SR Ca2(+)-ATPase activity, while eliminating Ca2(+)-dependent myofibrillar ATPase activity and reducing Ca2(+)-independent or background ATPase activity. High [Ca2+] (20 mM) could be used to selectively inhibit the SR Ca2+ ATPase. Identification of the Ca2(+)-dependent ATPase activity in muscle homogenates as being SR Ca2+ ATPase was based on a comparison of several parameters using homogenate material and purified SR. The following parameters were compared and found to be the same in homogenate and SR: activation and inactivation between 0 and 20 mM Ca2+, temperature dependence, sensitivity toward Triton X-100, and the maximal level of inhibition of ATPase activity achieved by an antibody specific for SR Ca2+ ATPase. The method is illustrated with the analysis of homogenates prepared from freeze-dried muscle fibers and thin sections of muscles typically used in microscope analyses as well as an analysis of freshly prepared homogenates from various types of muscle, which shows a good correlation over a wide range between SR specific Ca2(+)-uptake and -ATPase activities. In addition, a simple, easily constructed cuvette is described which allows the analysis of less than 5 micrograms of tissue (wet weight) in a volume of 25 microliters.  相似文献   

12.
The Ca2+-ATPase accounts for the majority of Ca2+ removed from the cytoplasm during cardiac muscle relaxation. The Ca2+-ATPase is regulated by phospholamban, a 52 amino acid phosphoprotein, which inhibits Ca2+-ATPase activity by decreasing the apparent affinity of the ATPase for Ca2+. To study the physical mechanism of Ca2+-ATPase regulation by phospholamban using spectroscopic and kinetic experiments, large amounts of both proteins are required. Therefore, we developed a Ca2+-ATPase and phospholamban preparation based on the baculovirus-insect cell expression system using High-Five insect cells to produce large amounts of microsomal vesicles that contain either Ca2+-ATPase expressed alone or Ca2+-ATPase co-expressed with phospholamban. The expressed proteins were characterized using immunofluorescence spectroscopy, Ca2+ -ATPase activity assays, Ca2+ uptake and efflux assays, and Western blotting. Our purification method yields 140 mg of microsomal protein per liter of infection (1.7 x 10(9)cells), and the Ca2+-ATPase and phospholamban account for 16 and 1.4%, respectively, of the total microsomal protein by weight, yielding a phospholamban:Ca2+-ATPase ratio of 1.6:1, similar to that observed in native cardiac SR vesicles. The enzymatic properties of the expressed Ca2+-ATPase are also similar to those observed in native cardiac SR vesicles, and when co-expressed with phospholamban, the Ca2+-ATPase is functionally coupled to phospholamban similar to that observed in cardiac SR vesicles.  相似文献   

13.
The sarcoplasmic reticulum (SR) of skeletal muscle contains a 53 kDa glycoprotein of unknown function, as well as the (Ca(2+)-Mg2+)-ATPase. It has been suggested that the glycoprotein couples the hydrolysis of ATP by the ATPase to the transport of calcium. It has been shown that if SR vesicles are solubilized in cholate in media containing low K+ concentrations followed by reconstitution, then vesicles are formed containing the glycoprotein and with ATP hydrolysis coupled to Ca2+ accumulation, as shown by a large stimulation of ATPase activity by addition of A23187. In contrast, if SR vesicles are solubilized in media containing a high concentration of K+, then the vesicles that are produced following reconstitution lack the glycoprotein and show low stimulation by A23187 (Leonards, K.S. and Kutchai, H. (1985) Biochemistry 24, 4876-4884). We show that the effect of K+ on reconstitution does not follow from any changes in the amount of glycoprotein but rather from an effect of K+ on the detergent properties of cholate. In low K+ media, the cmc of cholate is high, cholate is a relatively poor detergent and incomplete solubilization results in 'reconstitution' of vesicles with the correct orientation of ATPase molecules. In high K+ media, the cmc of cholate is reduced and more complete solubilization of the SR leads to a true reconstitution with the formation of vesicles with a random orientation of ATPase molecules. The experiments provide no evidence for an effect of the glycoprotein on the (Ca(2+)-Mg2+)-ATPase.  相似文献   

14.
Previous results from this laboratory suggest that the 53 kDa glycoprotein (GP-53) of rabbit skeletal muscle sarcoplasmic reticulum membrane (SR) may influence coupling between Ca2+ transport and ATP hydrolysis by the Ca(2+)-ATPase. Here we report evidence that GP-53 may influence the cooperative behavior of the Ca(2+)-ATPase. The ATPase activity of the Ca(2+)-ATPase displays negative cooperative dependence (Hill coefficient n less than 1) on [MgATP] and has positive cooperative dependence (n greater than 1) on [Ca2+]free. We have determined the degree of cooperativity for native SR vesicles, SR preincubated with antiserum against GP-53 or preimmune serum, and SR partially extracted with KCl-cholate. Our results show that SR preincubated with preimmune serum or SR treated with cholate in 50 mM KCl (yielding membranes rich in GP-53) demonstrate a cooperative dependence of Ca(2+)-ATPase activity on both [ATP] and [Ca2+] similar to that of untreated SR. SR preincubated with anti-GP-53 antiserum (which causes an uncoupling of Ca2+ transport from ATP hydrolysis) or SR extracted with cholate in 1 M KCl (yielding membranes depleted of GP-53) displays decreased positive cooperative dependence on [Ca2+] and decreased negative cooperative dependence on [ATP]. The results are consistent with the interpretation that GP-53 may influence the cooperative behavior of the Ca(2+)-ATPase.  相似文献   

15.
Fibre-type differentiation of the lateral musculature has been studied in Sparus aurata (L.) and Dicentrarchus labrax (L.) during larval development. Histochemical and ultrastructural techniques show two presumptive muscle layers and two germinative zones of presumptive myoblasts. At hatching, myotomal muscle consists of a monolayer of thin undifferentiated cells near the skin (first germinative zone) overlying another mono-layer of small diameter fibres extending hypaxially and epaxially away from the transverse septum. Below this, there is a much thicker, deep layer of fibres, generally large in diameter and polygonal in shape. The presumptive myoblasts are located between these two layers of fibres in the second germinative zone. Initially, the superficial and deep muscle fibres show high and low myosin ATPase activity, respectively. Both layers grow by generating new fibres from the two mentioned germinative zones. At the end of larval life, the superficial layer changes its histochemical profile from high to low myosin ATPase activity and, at the same time, intermediate or pink muscle fibres can be observed by oxidative activity (the NADH-TR reaction). Morphometric analysis shows a significant increase in mean fibre diameter during successive ages, as shown by the Student's t-test (hypertrophic growth). Skewness and kurtosis values of fibre diameters point to the generation of a new fibre population from the germinative zones (hyperplastic growth).  相似文献   

16.
The sarcoplasmic reticulum (SR) is composed of two fractions, the heavy fraction that contains proteins involved in Ca2?+? release, and the light fraction enriched in Ca2?+?-ATPase (SERCA), an enzyme responsible for Ca2?+? transport from the cytosol to the lumen of SR. It is known that in red muscle thyroid hormones regulate the expression of SERCA 1 and SERCA 2 isoforms. Here we show the effects of thyroid hormone on SERCA expression and distribution in light and heavy SR fractions from rabbit white and red muscles. In hyperthyroid red muscle there is an increase of SERCA 1 and a decrease of SERCA 2 expression. This is far more pronounced in the heavy than in the light SR fraction. As a result, the rates of Ca2?+?- ATPase activity and Ca2?+?-uptake by the heavy vesicles are increased. In hypothyroidism we observed a decrease in SERCA 1 and no changes in the amount of SERCA 2 expressed. This promoted a decrease of both Ca2?+?-uptake and Ca2?+?-ATPase activity. While the major differences in hyperthyroidism were found in the heavy SR fraction, the effects of hypothyroidism were restricted to light SR fraction. In white muscle we did not observe any significant changes in either hypo- or hyperthyroidism in both SR fractions. Thus, the regulation of SERCA isoforms by thyroid hormones is not only muscle specific but also varies depending on the subcellular compartment analyzed. These changes might correspond to the molecular basis of the altered contraction and relaxation rates detected in thyroid dysfunction.  相似文献   

17.
Effects of exercise of varying duration on sarcoplasmic reticulum function   总被引:5,自引:0,他引:5  
Sarcoplasmic reticulum (SR) Ca2+ uptake and Ca2+-Mg2+-ATPase activity were examined in muscle homogenates and the purified SR fraction of the superficial and deep fibers of the gastrocnemius and vastus muscles of the rat after treadmill runs of 20 or 45 min or to exhaustion (avg time to exhaustion 140 min). Vesicle intactness and cross-contamination of isolated SR were estimated using a calcium ionophore and mitochondrial and sarcolemmal marker enzymes, respectively. Present findings confirm previously reported fiber-type specific depression in the initial rate and maximum capacity of Ca2+ uptake and altered ATPase activity after exercise. Depression of the Ca2+-stimulated ATPase activity of the enzyme was evident after greater than or equal to 20 min of exercise in SR isolated from the deep fibers of these muscles. The lowered ATPase activity was followed by a depression in the initial rate of Ca2+ uptake in both muscle homogenates and isolated SR fractions after greater than or equal to 45 min of exercise. Maximum Ca2+ uptake capacity was lower in isolated SR only after exhaustive exercise. Ca2+ uptake and Ca2+-sensitive ATPase activity were not affected at any duration of exercise in SR isolated from superficial fibers of these muscles; however, the Mg2+-dependent ATPase activity was increased after 45 min and exhaustive exercise bouts. The alterations in SR function could not be attributed to disrupted vesicles or differential contamination in the SR from exercise groups and were reinforced by similar changes in Ca2+ uptake in crude muscle homogenates.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The histochemical pattern of red, pink and white muscle of fish living in fresh, brackish, and salt water is reported. The muscle fibres were stained routinely during the year for lactate dehydrogenase (LDH), menadione α-glycerophosphate dehydrogenase (Mα—GPDH), succinic dehydrogenase (SDH), myosin adenosine triphosphatase (myosin ATPase), phosphorylase, lipids and glycogen. The pink and red muscles contain more glycogen and lipids and have a higher SDH activity, which is in accord with their aerobic metabolism and function in sustained swimming activity. The acid labile myosin ATPase activity characteristic of fast twitch fibres is present in the white fibres of most species, however in the white muscle of Gobius paganellus the enzyme activity is stable to both acid and alkali and, in addition, there is a scattered distribution of different fibre types in red and, especially, pink muscle. A study of seasonal variation patterns of myosin ATPase in white muscle of mugilidae over a period of two years has demonstrated, in late summer, the appearance of new small diameter fibres, with a high acid stable enzyme activity, that develop into the large diameter acid labile fibres.  相似文献   

19.
Antibodies were produced against 5 peptides corresponding to segments of the (Ca2+-Mg2+)-ATPase of fast-twitch rabbit skeletal muscle sarcoplasmic reticulum (SR) including the N- and C-terminal regions. With the exception of antibodies directed against the peptide corresponding to residues 567-582 all antibodies bound strongly to the ATPase in intact SR vesicles, indicating that the epitopes were located on the cytoplasmic face of the SR. When the vesicles were disrupted, by solubilisation in SDS, binding of these antibodies was unchanged, further supporting the idea that these epitopes were located on the cytoplasmic face of SR. This is the first demonstration of the location of the N- and C-terminal regions of SR (Ca2+-Mg2+)-ATPase. These observations are discussed in the light of current structural models of the ATPase.  相似文献   

20.
In myotomes of the stickleback three main complexes of muscle fibres were present. They comprised dwarf, intermediate and white fibres, which differed in regard to histochemical, immunohistochemical and ultrastructural features. In addition, dwarf fibres were divided into two categories on the basis of myofibrillar ATPase activity and cross-reactions with specific antisera. Among intermediate muscle fibres it was possible to observe some 'aberrant fibres', which were characterized by low reactivity with and P-myosin serum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号